首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nitrogen-fixing filamentous cyanobacterium Nostoc PCC 7120 (formerly named Anabaena PCC 7120) possesses two genes for superoxide dismutase, a unique membrane-associated manganese superoxide dismutase (MnSOD) and a soluble iron superoxide dismutase (FeSOD). A phylogenetic analysis of FeSODs shows that cyanobacterial enzymes form a well separated cluster with filamentous species found in one subcluster and unicellular species in the other. Activity staining, inhibition patterns, and immunogold labeling show that FeSOD is localized in the cytosol of vegetative cells and heterocysts (nitrogenase containing specialized cells formed during nitrogen-limiting conditions). The recombinant Nostoc FeSOD is a homodimeric, acidic enzyme exhibiting the characteristic iron peak at 350 nm in its ferric state, an almost 100% occupancy of iron per subunit, a specific activity using the ferricytochrome assay of (2040 +/- 90) units mg(-1) at pH 7.8, and a dissociation constant Kd of the azide-FeSOD complex of 2.1 mM. Using stopped flow spectroscopy it was shown that the decay of superoxide in the presence of various FeSOD concentrations is first-order in enzyme concentration allowing the calculation of the catalytic rate constants, which increase with decreasing pH: 5.3 x 10(9) M(-1) s(-1) (pH 7) to 4.8 x 10(6) M(-1) s(-1) (pH 10). FeSOD and MnSOD complement each other to keep the superoxide level low in Nostoc PCC 7120, which is discussed with respect to the fact that Nostoc PCC 7120 exhibits oxygenic photosynthesis and oxygen-dependent respiration within a single prokaryotic cell and also has the ability to form differentiated cells under nitrogen-limiting conditions.  相似文献   

2.
The filamentous cyanobacterium Anabaena PCC 7120 (now renamed Nostoc PCC 7120) possesses two genes for superoxide dismutase (SOD). One is an iron-containing (FeSOD) whereas the other is a manganese-containing superoxide dismutase (MnSOD). Localization experiments and analysis of the sequence showed that the FeSOD is cytosolic, whereas the MnSOD is a membrane-bound homodimeric protein containing one transmembrane helix, a spacer region, and a soluble catalytic domain. It is localized in both cytoplasmic and thylakoid membranes at the same extent with the catalytic domains positioned either in the periplasm or the thylakoid lumen. A phylogenetic analysis revealed that generally the highly homologous MnSODs of filamentous cyanobacteria are unique in being membrane-bound. Two recombinant variants of Anabaena MnSOD lacking either the hydrophobic region (MnSOD(Delta 28)) or the hydrophobic and the linker region (MnSOD(Delta 60)) are shown to exhibit the characteristic manganese peak at 480 nm, an almost 100% occupancy of manganese per subunit, a specific activity using the ferricytochrome assay of (660 +/- 90) unit mg-1 protein and a dissociation constant for the inhibitor azide of (0.84 +/- 0.05) mm. Using stopped-flow spectroscopy it is shown that the decay of superoxide in the presence of various (MnSOD(Delta 28)) or (MnSOD(Delta 60)) concentrations is first-order in enzyme concentration allowing the calculation of catalytic rate constants which increase with decreasing pH: 8 x 10(6) m-1 s-1 (pH 10) and 6 x 10(7) m-1 s-1 (pH 7). The physiological relevance of these findings is discussed with respect to the bioenergetic peculiarities of cyanobacteria.  相似文献   

3.
4.
Superoxide dismutases are enzymes that defend against oxidative stress through decomposition of superoxide radical. Escherichia coli contains two highly homologous superoxide dismutases, one containing manganese (MnSOD) and the other iron (FeSOD). Although E. coli Mn and FeSOD catalyze the dismutation of superoxide with comparable rate constants, it is not known if they are physiologically equivalent in their protection of cellular targets from oxyradical damage. To address this issue, isogenic strains of E. coli containing either Mn or FeSOD encoded on a plasmid and under the control of tac promoter were constructed. SOD specific activity in the Mn and FeSOD strains could be controlled by the concentration of isopropyl beta-thiogalactoside in the medium. The tolerance of these strains to oxidative stress was compared at equal Mn and FeSOD specific activities. Our results indicate that E. coli Mn and FeSOD are not functionally equivalent. The MnSOD is more effective than FeSOD in preventing damage to DNA, while the FeSOD appears to be more effective in protecting a cytoplasmic superoxide-sensitive enzyme. These data are the first demonstration that Mn and FeSOD are adapted to different antioxidant roles in E. coli.  相似文献   

5.
The superoxide dismutase (SOD) gene (slr 1516) from the cyanobacterium Synechocystis sp. PCC 6803 was cloned and overexpressed in Escherichia coli BL 21 (DE3) using the pET-20b(+) expression vector. E. coli cells transformed with pET-SOD overexpressed the protein in cytosol, upon induction by isopropyl beta-D-thiogalactopyranoside (IPTG). The recombinant protein was purified to near homogeneity by gel filtration and ion-exchange chromatography. The SOD activity of the recombinant protein was sensitive to hydrogen peroxide and sodium azide, confirming it to be FeSOD. The pET-FeSOD transformed E. coli showed significantly higher SOD activity and tolerance to paraquat-mediated growth inhibition compared to the empty vector transformed cells. Based on these results it is suggested that overexpression of FeSOD gene from a heterologous source like Synechocystis sp. PCC 6803 may provide protection to E. coli against superoxide radical-mediated oxidative stress mediated by paraquat.  相似文献   

6.
The effect of Mn deficiency on plant growth and activities ofsuperoxide dismutase (SOD) was studied in hydroponically-grownseedlings of transgenic tobacco (Nicotiana tabacum L.) engineeredto overexpress FeSOD in chloroplasts or MnSOD in chloroplastsor mitochondria. In comparison to the non-transgenic parentalline, the activity of MnSOD in the lines overproducing MnSODwas 1.6-fold greater, and the activity of FeSOD in the FeSOD-overproducinglines was 3.2-fold greater, regardless of the Mn treatment (deficientor sufficient). The MnSOD activities decreased due to Mn deficiency,while activities of FeSOD and Cu/ZnSOD remained unaffected 25d after transplanting (DAT). With an increased duration of theMn deficiency stress (45 DAT), FeSOD activity decreased, andthat of MnSOD continued to decrease, while Cu/ZnSOD activitysimultaneously increased. Under Mn sufficiency, non-transgenicparental plants had greater shoot biomass than the transgenics;however, when subjected to Mn deficiency stress, non-transgenicparents suffered a proportionally greater growth reduction thantransgenic lines. Thus, overproduction of MnSOD in chloroplastsmay provide protection from oxidative stress caused by Mn deficiency.Copyright 1999 Annals of Botany Company Manganese deficiency, Nicotiana tabacum, superoxide dismutase (SOD), transgenic tobacco.  相似文献   

7.
The antioxidant composition and relative water stress tolerance of nodulated alfalfa plants ( Medicago sativa L. ×  Sinorhizobium meliloti 102F78) of the elite genotype N4 and three derived transgenic lines have been studied in detail. These transgenic lines overproduced, respectively, Mn-containing superoxide dismutase (SOD) in the mitochondria of leaves and nodules, MnSOD in the chloroplasts, and FeSOD in the chloroplasts. In general for all lines, water stress caused moderate decreases in MnSOD and FeSOD activities in both leaves and nodules, but had distinct tissue-dependent effects on the activities of the peroxide-scavenging enzymes. During water stress, with a few exceptions, ascorbate peroxidase and catalase activities increased moderately in leaves but decreased in nodules. At mild water stress, transgenic lines showed, on average, 20% higher photosynthetic activity than the parental line, which suggests a superior tolerance of transgenic plants under these conditions. However, the untransformed and the transgenic plants performed similarly during moderate and severe water stress and recovery with respect to important markers of metabolic activity and of oxidative stress in leaves and nodules. We conclude that the base genotype used for transformation and the background SOD isozymic composition may have a profound effect on the relative tolerance of the transgenic lines to abiotic stress.  相似文献   

8.
蓝藻Anabaena 7120经用Ar+CO_2、空气和Ar处理后,固氮活性有明显不同。Ar+CO_2处理的活性比空气处理的高出数倍,而Ar处理的则比空气中的低很多。以上三种处理的Anabaena 7120固氮对不同生理条件反应不一样,固氮活性高者对CO和O_2的敏感程度小些、受到CO_2和N_2的抑制程度也轻。但是分子氢对三者固氮作用的支持效用相同,并且也是和氢酶活动有联系。弱光下固氮活力低的蓝藻固氮活性下降得更大些。光合抑制剂和结合态氮对固氮活力高的蓝藻固氮活性的抑制显著比固氮活力低者小。三者的放氢和放氧能力也不同,固氮活力高者放氧高而放氢量小些,低固氮活力的蓝藻正好相反。  相似文献   

9.
Reactive oxygen species (ROS) are inevitably generated as by-products of respiratory/photosynthetic electron transport in oxygenic photoautotrophs. Unless effectively scavenged, these ROS can damage all cellular components. The filamentous, heterocystous, nitrogen-fixing strains of the cyanobacterium, Anabaena, serve as naturally abundant contributors of nitrogen biofertilizers in tropical rice paddy fields. Anabaena strains are known to tolerate several abiotic stresses, such as heat, UV, gamma radiation, desiccation, etc., that are known to generate ROS. ROS are detoxified by specific antioxidant enzymes like superoxide dismutases (SOD), catalases and peroxiredoxins. The genome of Anabaena PCC7120 encodes two SODs, two catalases and seven peroxiredoxins, indicating the presence of an elaborate antioxidant enzymatic machinery to defend its cellular components from ROS. This article summarizes recent findings and depicts important perspectives in oxidative stress management in Anabaena PCC7120.  相似文献   

10.
11.
Superoxide dismutase (SOD) is considered to be the first line of defense against oxygen toxicity. It exists as a family of three metalloproteins with copper,zinc (Cu,ZnSOD), manganese (MnSOD), and iron (FeSOD) forms. In this work, we have targeted Escherichia coli FeSOD to the mitochondrial intermembrane space (IMS) of yeast cells deficient in mitochondrial MnSOD. Our results show that FeSOD in the IMS increases the growth rate of the cells growing in minimal medium in air but does not protect the MnSOD-deficient yeast cells when exposed to induced oxidative stress. Cloned FeSOD must be targeted to the mitochondrial matrix to protect the cells from both physiological and induced oxidative stress. This confirms that the superoxide radical is mainly generated on the matrix side of the inner mitochondrial membrane of yeast cells, without excluding its potential appearance in the mitochondrial IMS where its elimination by SOD is beneficial to the cells.  相似文献   

12.
A circadian rhythm in the total activity of superoxide dismutase (SOD; EC 1.15.1.1) from the unicellular alga Lingulodinium polyedrum is shown to be attributable to the mitochondrial MnSOD and chloroplastic FeSOD isoforms. Activity gels and labelling with polyclonal antibodies against pure CuZnSOD, MnSOD and FeSOD revealed a distinct circadian pattern in the abundance of the latter two isoforms, with peak values in early photophase 5 times greater than at the dark phase. However, no such changes were detected for the CuZnSOD isoform, which remained at constant levels over the 24-h light/dark cycle. These SOD isoforms might provide protection against damage from photochemically generated oxygen radicals, thus preventing subcellular oxidative stress.  相似文献   

13.
A circadian rhythm in the total activity of superoxide dismutase (SOD; EC 1.15.1.1) from the unicellular alga Lingulodinium polyedrum is shown to be attributable to the mitochondrial MnSOD and chloroplastic FeSOD isoforms. Activity gels and labelling with polyclonal antibodies against pure CuZnSOD, MnSOD and FeSOD revealed a distinct circadian pattern in the abundance of the latter two isoforms, with peak values in early photophase 5 times greater than at the dark phase. However, no such changes were detected for the CuZnSOD isoform, which remained at constant levels over the 24-h light/dark cycle. These SOD isoforms might provide protection against damage from photochemically generated oxygen radicals, thus preventing subcellular oxidative stress.  相似文献   

14.
15.
To investigate the role of superoxide dismutases (SOD) in root colonization and oxidative stress, mutants of Pseudomonas putida lacking manganese-superoxide dismutase (MnSOD) (sodA), iron-superoxide dismutase (FeSOD) (sodB), or both were generated. The sodA sodB mutant did not grow on components washed from bean root surfaces or glucose in minimal medium. The sodB and sodA sodB mutants were more sensitive than wild type to oxidative stress generated within the cell by paraquat treatment. In single inoculation of SOD mutants on bean, only the sodA sodB double mutant was impaired in growth on root surfaces. In mixed inoculations with wild type, populations of the sodA mutant were equal to those of the wild type, but levels of the sodB mutant and, to a great extent, the sodA sodB mutant, were reduced. Confocal microscopy of young bean roots inoculated with green fluorescent protein-tagged cells showed that wild type and SOD single mutants colonized well predominantly at the root tip but that the sodA sodB double mutant grew poorly at the tip. Our results indicate that FeSOD in P. putida is more important than MnSOD in aerobic metabolism and oxidative stress. Inhibition of key metabolic enzymes by increased levels of superoxide anion may cause the impaired growth of SOD mutants in vitro and in planta.  相似文献   

16.
Two varieties of tobacco (Nicotiana tabacum var PBD6 and var SR1) were used to generate transgenic lines overexpressing Mn-superoxide dismutase (MnSOD) in the chloroplasts. The overexpressed MnSOD suppresses the activity of those SODs (endogenous MnSOD and chloroplastic and cytosolic Cu/ZnSOD) that are prominent in young leaves but disappear largely or completely during aging of the leaves. The transgenic and control plants were grown at different light intensities and were then assayed for oxygen radical stress tolerance in leaf disc assays and for abundance of antioxidant enzymes and substrates in leaves. Transgenic plants had an enhanced resistance to methylviologen (MV), compared with control plants, only after growth at high light intensities. In both varieties the activities of FeSOD, ascorbate peroxidase, dehydroascorbate reductase, and monodehydroascorbate reductase and the concentrations of glutathione and ascorbate (all expressed on a chlorophyll basis) increased with increasing light intensity during growth. Most of these components were correlated with MV tolerance. It is argued that SOD overexpression leads to enhancement of the tolerance to MV-dependent oxidative stress only if one or more of these components is also present at high levels. Furthermore, the results suggest that in var SR1 the overexpressed MnSOD enhances primarily the stromal antioxidant system.  相似文献   

17.
MnSOD is the only mammalian isoform of SOD that is necessary for life. MnSOD(-/-) mice die soon after birth, and MnSOD(+/-) mice are more susceptible to oxidative stress than wild-type (WT) mice. In this study, we examined vasomotor function responses in aortas of MnSOD(+/-) mice under normal conditions and during oxidative stress. Under normal conditions, contractions to serotonin (5-HT) and prostaglandin F2alpha (PGF2alpha), relaxation to ACh, and superoxide levels were similar in aortas of WT and MnSOD(+/-) mice. The mitochondrial inhibitor antimycin A reduced contraction to PGF2alpha and impaired relaxation to ACh to a similar extent in aortas of WT and MnSOD(+/-) mice. The Cu/ZnSOD and extracellular SOD inhibitor diethyldithiocarbamate (DDC) paradoxically enhanced contraction to 5-HT and superoxide more in aortas of WT mice than in MnSOD(+/-) mice. DDC impaired relaxation to ACh and reduced total SOD activity similarly in aortas of both genotypes. Tiron, a scavenger of superoxide, normalized contraction to 5-HT, relaxation to ACh, and superoxide levels in DDC-treated aortas of WT and MnSOD(+/-) mice. Hypoxia, which reportedly increases superoxide, reduced contractions to 5-HT and PGF2alpha similarly in aortas of WT and MnSOD(+/-) mice. The vasomotor response to acute hypoxia was similar in both genotypes. In summary, under normal conditions and during acute oxidative stress, vasomotor function is similar in WT and MnSOD(+/-) mice. We speculate that decreased mitochondrial superoxide production may preserve nitric oxide bioavailability during oxidative stress.  相似文献   

18.
An 11-kilobase-pair element interrupts the nifD gene in vegetative cells of Anabaena sp. strain PCC 7120. The nifD element normally excises only from the chromosomes of cells that differentiate into nitrogen-fixing heterocysts. The xisA gene contained within the element is required for the excision. Shuttle vectors containing the Escherichia coli tac consensus promoter fused to various 5' deletions of the xisA gene were constructed and conjugated into Anabaena sp. strain PCC 7120 cells. Some of the expression plasmids resulted in excision of the nifD element in a high proportion of vegetative cells. Excision of the element required deletion of an xisA 5' regulatory region which presumably blocks expression in Anabaena sp. strain PCC 7120 vegetative cells but not in E. coli. Strains lacking the nifD element grew normally in medium containing a source of combined nitrogen and showed normal growth and heterocyst development in medium lacking combined nitrogen. The xisA gene was shown to be the only Anabaena gene required for the proper rearrangement in E. coli of a plasmid containing the borders of the nifD element.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号