首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Through the proteome analysis of Escherichia coli BL21(DE3), we previously identified the stress-responsive protein, arsenate reductase (ArsC), that showed a high cytoplasmic solubility and a folding capacity even in the presence of stress-inducing reagents. In this study, we used ArsC as an N-terminal fusion partner to synthesize nine aggregation-prone proteins as water-soluble forms. As a result, solubility of the aggregation-prone proteins increased dramatically by the fusion of ArsC, due presumably to its tendency to facilitate the folding of target proteins. Also, we evaluated and confirmed the efficacy of ArsC-fusion expression in making the fusion-expressed target proteins have their own native function or structure. That is, the self-assembly function of human ferritin light chain, l-arginine-degrading function of arginine deiminase, and the correct secondary structure of human granulocyte colony stimulating factor were clearly observed through transmission electron microscope analysis, colorimetric enzyme activity assay, and circular dichroism, respectively. It is strongly suggested that ArsC can be in general an efficient fusion expression partner for the production of soluble and active heterologous proteins in E. coli.  相似文献   

2.
Three native E. coli proteins-NusA, GrpE, and bacterioferritin (BFR)-were studied in fusion proteins expressed in E. coli for their ability to confer solubility on a target insoluble protein at the C-terminus of the fusion protein. These three proteins were chosen based on their favorable cytoplasmic solubility characteristics as predicted by a statistical solubility model for recombinant proteins in E. coli. Modeling predicted the probability of soluble fusion protein expression for the target insoluble protein human interleukin-3 (hIL-3) in the following order: NusA (most soluble), GrpE, BFR, and thioredoxin (least soluble). Expression experiments at 37 degrees C showed that the NusA/hIL-3 fusion protein was expressed almost completely in the soluble fraction, while GrpE/hIL-3 and BFR/hIL-3 exhibited partial solubility at 37 degrees C. Thioredoxin/hIL-3 was expressed almost completely in the insoluble fraction. Fusion proteins consisting of NusA and either bovine growth hormone or human interferon-gamma were also expressed in E. coli at 37 degrees C and again showed that the fusion protein was almost completely soluble. Starting with the NusA/hIL-3 fusion protein with an N-terminal histidine tag, purified hIL-3 with full biological activity was obtained using immobilized metal affinity chromatography, factor Xa protease cleavage, and anion exchange chromatography.  相似文献   

3.
Enhanced soluble protein expression using two new fusion tags   总被引:3,自引:0,他引:3  
Production of soluble recombinant proteins is vital for structure-function analysis and therapeutic applications. Unfortunately, when expressed in a heterologous host, such as Escherichia coli, most proteins are expressed as insoluble aggregates. Two new fusion partners have been identified to address these solubility problems. One of the tags was derived from a bacteriophage T7 protein kinase and the other one from a small E. coli chaperone, Skp. We have expressed a panel of insoluble human proteins including Hif1alpha, IL13, and folliculin as fusion proteins using these tags. Most of these fusion proteins were able to be expressed in a soluble form and could be purified by virtue of a Strep-tag II installed at the amino-terminal end of the fusion partners. In addition, we show that some of these proteins remained soluble after removal of the fusion tags by a site-specific protease. The results with these tags compare favorably to results with the most commonly used solubility tags described in the literature. Therefore, these two new fusion tags have the potential to express soluble proteins when fused with many recalcitrant proteins.  相似文献   

4.
The human interferon gamma (hIFNgamma) gene was used as a fusion partner to mediate the expression of heterologous proteins and the effect of the fusion partner length on the expression of the heterologous protein was researched. Plasminogen kringle 5 (pk5), an inhibitor of angiogenesis, was fused to hIFNgamma and its serially truncated fragments, respectively, and the expression of fusion proteins was determined by SDS-Page gel. The pk5 protein was obtained readily by the introduction of sequences recognized by protease factor Xa at the fusion site and ion-exchange chromatography was employed to purify pk5. The recovery of the biological activities of pk5 was studied using the orthogonal experimental design L9 (3(4)) (four factors, three levels, nine experiments) and evaluated by measurement of anti-endothelial cell proliferation in vitro.  相似文献   

5.
Synonymous codon replacement can change protein structure and function, indicating that protein structure depends on DNA sequence. During heterologous protein expression, low expression or formation of insoluble aggregates may be attributable to differences in synonymous codon usage between expression and natural hosts. This discordance may be particularly important during translation of the domain boundaries (link/end segments) that separate elements of higher ordered structure. Within such regions, ribosomal progression slows as the ribosome encounters clusters of infrequently used codons that preferentially encode a subset of amino acids. To replicate the modulation of such localized translation rates during heterologous expression, we used known relationships between codon usage frequencies and secondary protein structure to develop an algorithm ("codon harmonization") for identifying regions of slowly translated mRNA that are putatively associated with link/end segments. It then recommends synonymous replacement codons having usage frequencies in the heterologous expression host that are less than or equal to the usage frequencies of native codons in the native expression host. For protein regions other than these putative link/end segments, it recommends synonymous substitutions with codons having usage frequencies matched as nearly as possible to the native expression system. Previous application of this algorithm facilitated E. coli expression, manufacture and testing of two Plasmodium falciparum vaccine candidates. Here we describe the algorithm in detail and apply it to E. coli expression of three additional P. falciparum proteins. Expression of the "recoded" genes exceeded that of the native genes by 4- to 1,000-fold, representing levels suitable for vaccine manufacture. The proteins were soluble and reacted with a variety of functional conformation-specific mAbs suggesting that they were folded properly and had assumed native conformation. Codon harmonization may further provide a general strategy for improving the expression of soluble functional proteins during heterologous expression in hosts other than E. coli.  相似文献   

6.
Previously, we found that baculoviral polyhedrin (Polh) can successfully be used in Escherichia coli as a fusion partner for the expression of special foreign proteins as inclusion bodies, and the resulting, easily isolatable Polh-induced fusion inclusion bodies had almost the same characteristics as the native Polh. Here, we investigated the effects of co-expression of baculoviral FP25 protein on Polh-induced inclusion-body production in an E. coli expression system, as FP25 is known to be involved specifically in polyhedra formation. Using several analytical tools, including SDS-PAGE, pronase proteolysis, solubilization under alkaline conditions, and electron microscopy, we found that co-expressed FP25 was associated with Polh-induced inclusion bodies and that its co-expression led to formation of compact inclusion bodies as well as high production levels. We confirmed that FP25 co-expression induced higher production levels of other heterologous protein, antimicrobial peptide Hal18, fused with aggregation-prone Polh. Therefore, co-expression of baculoviral FP25 can be promisingly used to increase the levels of baculoviral Polh-fused foreign proteins, especially harmful proteins, expressed as inclusion bodies in an E. coli expression system.  相似文献   

7.
We have expressed synthetic genes encoding human insulin-like growth factors I and II in large quantities in Escherichia coli as fusion proteins with the 300 N-terminal amino acids of the E. coli trpE gene product. The resulting hybrid proteins were purified from the insoluble fraction of crude bacterial lysates using a rapid HPLC separation procedure employing a C8 reversed-phase column and a gradient of 2-propanol in formic acid. With the procedure we obtained in volatile solvents highly purified fusion proteins that were used for further biochemical and immunological procedures. Here we describe biochemical characteristics of the bacterially expressed fusion proteins and demonstrate that these proteins share substantial antigenic properties with the native polypeptides allowing the establishment of highly specific monoclonal antibodies.  相似文献   

8.
Obtaining enough membrane protein in native or native-like status is still a challenge in membrane protein structure biology. Maltose binding protein (MBP) has been widely used as a fusion partner in improving membrane protein production. In the present work, a systematic assessment on the application of mature MBP (mMBP) for membrane protein overexpression and purification was performed on 42 membrane proteins, most of which showed no or poor expression level in membrane fraction fused with an N-terminal Histag. It was found that most of the small membrane proteins were overexpressed in the native membrane of Escherichia coli when using mMBP. In addition, the proteolysis of the fusions were performed on the membrane without solubilization with detergents, leading to the development of an efficient protocol to directly purify the target membrane proteins from the membrane fraction through a one-step affinity chromatography. Our results indicated that mMBP is an excellent fusion partner for overexpression, membrane targeting and purification of small membrane proteins. The present expression and purification method may be a good solution for the large scale preparation of small membrane proteins in structural and functional studies.  相似文献   

9.
The ability to express heterologous proteins in microbial hosts is crucial for many areas of research and technology. In most cases, however, successful expression and purification of the desired protein require fusion to another protein. To date, all fusion partners have been chosen from natural sequences, which evolved for other purposes, and may not be optimal fusion partners. However, the rise of synthetic biology and protein design make it possible to design and optimize fusion proteins using novel sequences that did not arise in nature. Here, we describe a series of De novo Expression Enhancer Proteins (DEEPs) that facilitate high‐level expression and facile purification of heterologous proteins and peptides. To test the DEEP system, a de novo protein was fused to several target proteins covering a range of sizes and solubilities. In all cases, fusions to DEEP outperformed fusions to SUMO, a commonly used natural fusion partner. The availability of novel proteins that can be engineered for specific fusion applications could be beneficial to enhance the expression of a wide range of heterologous proteins.  相似文献   

10.
Previously, we found that baculoviral polyhedrin (Polh) used as a fusion partner for recombinant expression in Escherichia coli showed almost the same characteristics (rapid solubilization under alkaline conditions and specific degradation by specific alkaline proteases in insect midgut) as the native baculoviral Polh, and formed easily isolatable inclusion bodies. Here, Polh derived from the Autographa californica nuclear polyhedrosis virus (AcNPV) was fused with a Bacillus thuringiensis (Bt) toxin protein (truncated Cry1Ac having toxin region as a model Bt toxin) for the novel generation of a new bio-insecticide. The Polh-Cry1Ac fusion protein (approximately 99 kDa) was highly expressed (3.6-fold induction as compared to E. coli-derived single Cry1Ac (approximately 68 kDa)) as an insoluble inclusion body fraction in E. coli. Trypsin and alpha-chymotrypsin, which have similar properties to the insect midgut alkaline proteases, rapidly degraded the Polh portion in vitro, leaving only the toxic Cry1Ac protein behind. In vivo, the Polh-Cry1Ac fusion protein showed high insecticidal activity against the pest, Plutella xylostella. Because this novel bio-insecticide employs E. coli as the host, mass production at a low cost should be possible. Also, since this is a protein-based insecticide, living modified organism (LMO) issues such as environmental and ecological safety can be avoided.  相似文献   

11.
Several fusion strategies have been developed for the expression and purification of small antimicrobial peptides (AMPs) in recombinant bacterial expression systems. However, some of these efforts have been limited by product toxicity to host cells, product proteolysis, low expression levels, poor recovery yields, and sometimes an absence of posttranslational modifications required for biological activity. For the present work, we investigated the use of the baculoviral polyhedrin (Polh) protein as a novel fusion partner for the production of a model AMP (halocidin 18-amino-acid subunit; Hal18) in Escherichia coli. The useful solubility properties of Polh as a fusion partner facilitated the expression of the Polh-Hal18 fusion protein ( approximately 33.6 kDa) by forming insoluble inclusion bodies in E. coli which could easily be purified by inclusion body isolation and affinity purification using the fused hexahistidine tag. The recombinant Hal18 AMP ( approximately 2 kDa) could then be cleaved with hydroxylamine from the fusion protein and easily recovered by simple dialysis and centrifugation. This was facilitated by the fact that Polh was soluble during the alkaline cleavage reaction but became insoluble during dialysis at a neutral pH. Reverse-phase high-performance liquid chromatography was used to further purify the separated recombinant Hal18, giving a final yield of 30% with >90% purity. Importantly, recombinant and synthetic Hal18 peptides showed nearly identical antimicrobial activities against E. coli and Staphylococcus aureus, which were used as representative gram-negative and gram-positive bacteria, respectively. These results demonstrate that baculoviral Polh can provide an efficient and facile platform for the production or functional study of target AMPs.  相似文献   

12.
Baculoviral polyhedrin, which originated from Autographa californica nuclear polyhedrosis virus (AcNPV), was employed for the first time as a novel fusion partner for expression of foreign proteins in an Escherichia coli system. We characterized the expression of recombinant polyhedrin protein fused to green fluorescent protein (GFP). The polyhedrin fusion protein ( approximately 58 kDa) was successfully expressed as an insoluble inclusion body comprising approximately 30% of the total cellular protein. The E. coli expressing polyhedrin-GFP fusion protein showed higher cell growth ( approximately 1.8-fold) and higher GFP yield ( approximately 3.5-fold) than the strain expressing soluble single GFP. Interestingly, the polyhedrin fusion portion showed almost the same characteristics as the native baculoviral polyhedrin; it was rapidly solubilized under alkaline conditions, similar to the conditions found in the insect midgut. In addition, the polyhedrin fusion portion was rapidly digested by alkaline proteases in insect Plutella xylostella midgut as well as by alpha-chymotrypsin, a protease that has similar properties to insect midgut polyhedra-associated alkaline proteases. These unique properties suggest that baculoviral polyhedrin might be an advantageous fusion partner for production of foreign proteins, especially harmful proteins, in E. coli expression systems.  相似文献   

13.
Using pBR322- and pUC-derived plasmid vectors, a homologous (Escherichia coli native esterase) and three heterologous proteins (human interleukin-2, human interleukin-6, and Zymomonas levansucrase) were synthesized in E. coli IC2015(recA::lacZ) and GY4786 (sfiA::lacZ) strains. Via time-course measurement of beta-galactosidase activity in each recombinant culture, the SOS induction was estimated in detail and the results were systematically compared. In recombinant E. coli, the SOS response did not happen either with the recombinant insert-negative plasmid backbone alone or the expression vectors containing the homologous gene. Irrespective of gene expression level and toxic activity of synthesized foreign proteins, the SOS response was induced only when the heterologous genes were expressed using a particular plasmid vector, indicating strong dependence on the recombinant gene clone and the selection of a plasmid vector system. It is suggested that in recombinant E. coli the SOS response (i.e., activation of recA expression and initial sfiA expression) may be related neither to metabolic burden nor toxic cellular event(s) by synthesized heterologous protein, but may be provoked by foreign gene-specific interaction between a foreign gene and a plasmid vector. Unlike in E. coli XL1-blue(recA(-)) strains used, all expression vectors encoding each of the three heterologous proteins were multimerized in E. coli IC2015 strains in the course of cultivation, whereas the expression vectors containing the homologous gene never formed the plasmid multimers. The extent of multimerization was also dependent on a foreign gene insert in the expression vector. As a dominant effect of the SOS induction, recombinant plasmid vectors used for heterologous protein expression appear to significantly form various multimers in the recA(+) E. coli host.  相似文献   

14.
以大肠杆菌为代表的原核表达蛋白系统具有操作简单、周期短、成本低、表达量高等优点而成为获得外源表达蛋白的首选方案.但外源蛋白在原核宿主中往往以无生物活性的包涵体形式存在,这限制了原核表达系统的广泛应用.随着对蛋白折叠动力学、参与蛋白折叠的酶和分子伴侣等认识的不断深入,科学家们通过诱导条件优化、宿主细胞改造以及使用融合标签...  相似文献   

15.
A prerequisite for structural genomics and related projects is to standardize the process of gene overexpression and protein solubility screening to enable automation for higher throughput. We have tested a methodology to rapidly subclone a large number of human genes and screen these for expression and protein solubility in Escherichia coli. The methodology, which can be partly automated, was used to compare the effect of six different N-terminal fusion proteins and an N-terminal 6*His tag. As a realistic test set we selected 32 potentially interesting human proteins with unknown structures and sizes suitable for NMR studies. The genes were transferred from cDNA to expression vectors using subcloning by recombination. The subcloning yield was 100% for 27 (of 32) genes for which a PCR fragment of correct size could be obtained. Of these, 26 genes (96%) could be overexpressed at detectable levels and 23 (85%) are detected in the soluble fraction with at least one fusion tag. We find large differences in the effects of fusion protein or tag on expression and solubility. In short, four of seven fusions perform very well, and much better than the 6*His tag, but individual differences motivate the inclusion of several fusions in expression and solubility screening. We also conclude that our methodology and expression vectors can be used for screening of genes for structural studies, and that it should be possible to obtain a large fraction of all NMR-sized and nonmembrane human proteins as soluble fusion proteins in E. coli.  相似文献   

16.
A dual affinity fusion approach has been used to study the expression and secretion of labile recombinant proteins in Escherichia coli. Here we show that three small eukaryotic proteins (human proinsulin, a thioredoxin homologous domain of rat protein disulfide isomerase, and the extracellular domain of the alpha 1.2-chain of a human T-cell receptor) are stabilized in vivo using a dual affinity fusion strategy, where the gene encoding the desired product is fused between two genes encoding two different affinity domains. Relatively high yields of full-length product were obtained for all three proteins as compared to when fused to a single fusion partner. Despite the use of a signal peptide, significant amounts of the disulfide protein isomerase and T-cell receptor gene products were maintained in the cytoplasm, while the proinsulin fusion was efficiently secreted to the periplasm. Interestingly, the E. coli heat shock proteins DnaK and GroEL were associated with the fusion proteins isolated from the cytoplasm.  相似文献   

17.
Insoluble expression of heterologous proteins in Escherichia coli is a major bottleneck of many structural genomics and high-throughput protein biochemistry projects. Many of these proteins may be amenable to refolding, but their identification is hampered by a lack of high-throughput methods. We have developed a matrix-assisted refolding approach in which correctly folded proteins are distinguished from misfolded proteins by their elution from affinity resin under non-denaturing conditions. Misfolded proteins remain adhered to the resin, presumably via hydrophobic interactions. The assay can be applied to insoluble proteins on an individual basis but is particularly well suited for high-throughput applications because it is rapid, automatable and has no rigorous sample preparation requirements. The efficacy of the screen is demonstrated on small-scale expression samples for 15 proteins. Refolding is then validated by large-scale expressions using SEC and circular dichroism.  相似文献   

18.
Escherichia coli represents a robust, inexpensive expression host for the production of recombinant proteins. However, one major limitation is that certain protein classes do not express well in a biologically relevant form using standard expression approaches in the cytoplasm of E. coli. To improve the usefulness of the E. coli expression platform we have investigated combinations of promoters and selected N-terminal fusion tags for the extracellular expression of human target proteins. A comparative study was conducted on 24 target proteins fused to outer membrane protein A (OmpA), outer membrane protein F (OmpF) and osmotically inducible protein Y (OsmY). Based on the results of this initial study, we carried out an extended expression screen employing the OsmY fusion and multiple constructs of a more diverse set of human proteins. Using this high-throughput compatible system, we clearly demonstrate that secreted biomedically relevant human proteins can be efficiently retrieved and purified from the growth medium.  相似文献   

19.
Expressing proteins with fusion partners improves yield and simplifies the purification process. We developed a novel fusion partner to improve the secretion of heterologous proteins that are otherwise poorly excreted in yeast. The VOA1 (YGR106C) gene of Saccharomyces cerevisiae encodes a subunit of vacuolar ATPase. We found that C-terminally truncated Voa1p was highly secreted into the culture medium, even when fused with rarely secreted heterologous proteins such as human interleukin-2 (hIL-2). Deletion mapping of C-terminally truncated Voa1p, identified a hydrophilic 28-amino acid peptide (HL peptide) that was responsible for the enhanced secretion of target protein. A purification tag and a protease cleavage site were added to use HL peptide as a multi-purpose fusion partner. The utility of this system was tested via the expression and purification of various heterologous proteins. In many cases, the yield of target proteins fused with the peptide was significantly increased, and fusion proteins could be directly purified with affinity chromatography. The fusion partner was removed by in vitro processing, and intact proteins were purified by re-application of samples to affinity chromatography.  相似文献   

20.
Addition of an N-terminal fusion partner can greatly aid the expression and purification of a recombinant protein in Escherichia coli. We investigated two genetically engineered proteases designed to remove the fusion partner after the protein of interest has been expressed. Recombinant human insulin-like growth factor-II (hIGF-II) has been produced from E. coli-derived fusion proteins using a novel enzymatic cleavage system that uses a mutant of alpha-lytic protease. Initially, two potential fusion protein linkers were designed, Pro-Ala-Pro-His (PAPH) and Pro-Ala-Pro-Met (PAPM), and were tested as substrates in the form of synthetic dodecapeptides. Using mass spectrometry and reverse-phase HPLC, the position of cleavage was confirmed and the kinetics of synthetic peptide cleavage were examined. Use of the linkers in hIGF-II fusion proteins produced in E. coli was then evaluated. The fusion proteins constructed consist of the first 11 amino acids of porcine growth hormone linked N-terminally to hIGF-II by six amino acids that include the dipeptide Val-Asn followed by a variable tetrapeptide protease cleavage motif. Mass spectrometry and N-terminal sequencing confirmed that proteolytic cleavage of the fusion proteins had occurred at the predicted sites. Using the fusion proteins as substrates, the cleavage of the rationally designed motifs by the alpha-lytic protease mutant was compared. The fusion protein containing the motif PAPM had a k(cat)/K(M) ratio indicating a 1.6-fold preference over the PAPH fusion protein for cleavage by this enzyme. Furthermore, when hIGF-II fusion proteins containing the designed cleavable linkers were processed with the engineered alpha-lytic protease, they gave greatly improved yields of native hIGF-II compared to an analogous fusion protein cleaved by H64A subtilisin. Comparison of the peptide and protein cleavage studies shows that the efficient proteolysis of the cleavage motifs is an inherent property of the designed sequences and is not determined by secondary or tertiary structure in the fusion proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号