首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Amphiphysins interact directly with clathrin and have a function in clathrin-mediated synaptic vesicle recycling and clathrin-mediated endocytosis. The neuronal isoform amphiphysin-1 is a serine/threonine phosphoprotein that is dephosphorylated upon stimulation of synaptic vesicle endocytosis. Rephosphorylation was stimulated by nerve growth factor. We analysed the regulation of amphiphysin-clathrin interactions by phosphorylation. The N-terminal domain of clathrin bound to unphosphorylated amphiphysin-1, but not to the phosphorylated protein. A search for possible phosphorylation sites revealed two casein kinase 2 consensus motifs in close proximity to the clathrin binding sites in amphiphysin-1 and -2. We mutagenized these residues (T350 and T387) to glutamate, mimicking a constitutive phosphorylation. The double mutant showed a strong reduction in clathrin binding. The assumption that casein kinase 2 phosphorylates amphiphysin-1 at T350 and T387 was corroborated by experiments showing that: (i) casein kinase 2 phosphorylated these residues directly in vitro, (ii) when expressed in HeLa cells, the glutamate mutant showed reduced phosphorylation, and (iii) casein kinase 2 inhibitors blocked nerve growth factor-induced phosphorylation of endogenous amphiphysin-1 in PC12 cells. These observations are consistent with the hypothesis that, upon activation by nerve growth factor, casein kinase 2 phosphorylates amphiphysin-1 and thereby regulates the endocytosis of clathrin-coated vesicles via the interaction between clathrin and amphiphysin.  相似文献   

3.
4.
5.
Gastrointestinal epithelial cell damage triggers an important biological response called restitution, a process aimed at re-epithelializing the wounded areas. Unfortunately, little is known about the intrinsic molecular signaling events implicated in this host response. We hypothesized that wounding intestinal epithelial cells activates signaling pathways leading to chromatin modification and COX-2 upregulation during restitution. Confluent rat IEC18 cells were mechanically wounded by multiple parallel scratches using a pipet tip. NF-kappaB(Ser536), p38, and histone H3(Ser10) (H3S10) phosphorylation were determined by Western blot using specific phospho-antibodies. COX-2 gene expression was evaluated by RT-PCR, Western Blot, and ELISA. Association of phosphorylated H3, RelA (NF-kappaB), and RNA polymerase II to the COX-2 gene promoter was evaluated by chromatin immunoprecipitation (ChIP). The specific inhibitors Bay11-7082 and SB239063 as well as Ad5IkappaB-superrepressor (Ad5IkappaBAA) and Ad5dnp38 were used to block NF-kappaB- and p38-signaling pathways, respectively. Wounding induced a rapid and sustained (24 h) phosphorylation of RelAS536, H3S10, and p38MAPK in enterocytes. ChIP analysis of the COX-2 gene promoter demonstrated the presence of phospho-H3S10 and recruitment of RelA and RNA polymerase II, a process blocked by SB239063. Finally, molecular blockade of NF-kappaB (Ad5IkappaBAA) or p38MAPK (Ad5dnp38) signaling strongly inhibited enterocyte restitution. p38MAPK-dependent histone 3 phosphorylation is an important component of the intestinal wound-healing response. Targeting-signaling pathways selectively involved in healing/restitution may provide a novel means to maintain or re-establish host intestinal barrier integrity.  相似文献   

6.
7.
Binding of nerve growth factor (NGF) to the p75 neurotrophin receptor (p75) in cultured hippocampal neurons has been reported to cause seemingly contrasting effects, namely ceramide-dependent axonal outgrowth of freshly plated neurons, versus Jun kinase (Jnk)-dependent cell death in older neurons. We now show that the apoptotic effects of NGF in hippocampal neurons are observed only from the 2nd day of culture onward. This switch in the effect of NGF is correlated with an increase in p75 expression levels and increasing levels of ceramide generation as the cultures mature. NGF application to neuronal cultures from p75(exonIII-/-) mice had no effect on ceramide levels and did not affect neuronal viability. The neutral sphingomyelinase inhibitor, scyphostatin, inhibited NGF-induced ceramide generation and neuronal death, whereas hippocampal neurons cultured from acid sphingomyelinase(-/-) mice were as susceptible to NGF-induced death as wild type neurons. The acid ceramidase inhibitor, (1S,2R)-d-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol, enhanced cell death, supporting a role for ceramide itself and not a downstream lipid metabolite. Finally, scyphostatin inhibited NGF-induced Jnk phosphorylation in hippocampal neurons. These data indicate an initiating role of ceramide generated by neutral sphingomyelinase in the diverse neuronal responses induced by binding of neurotrophins to p75.  相似文献   

8.
9.
Very little is known about the contribution of a low affinity neurotrophin receptor, p75, to neurotransmitter release. Here we show that nerve growth factor (NGF) induced a rapid release of glutamate and an increase of Ca2+ in cerebellar neurons through a p75-dependent pathway. The NGF-induced release occurred even in the presence of the Trk inhibitor K252a. The release caused by NGF but not brain-derived neurotrophic factor was enhanced in neurons overexpressing p75. Further, after transfection of p75-small interfering RNA, which down-regulated the endogenous p75 expression, the NGF-induced release was inhibited, suggesting that the NGF-induced glutamate release was through p75. We found that the NGF-increased Ca2+ was derived from the ryanodine-sensitive Ca2+ receptor and that the NGF-increased Ca2+ was essential for the NGF-induced glutamate release. Furthermore, scyphostatin, a sphingomyelinase inhibitor, blocked the NGF-dependent Ca2+ increase and glutamate release, suggesting that a ceramide produced by sphingomyelinase was required for the NGF-stimulated Ca2+ increase and glutamate release. This action of NGF only occurred in developing neurons whereas the brain-derived neurotrophic factor-mediated Ca2+ increase and glutamate release was observed at the mature neuronal stage. Thus, we demonstrate that NGF-mediated neurotransmitter release via the p75-dependent pathway has an important role in developing neurons.  相似文献   

10.
Both p53 and ATM are checkpoint regulators with roles in genetic stabilization and cancer susceptibility. ATM appears to function in the same DNA damage checkpoint pathway as p53. However, ATM's role in p53-dependent apoptosis and tumor suppression in response to cell cycle dysregulation is unknown. In this study, we tested the role of murine ataxia telangiectasia protein (Atm) in a transgenic mouse brain tumor model in which p53-mediated apoptosis results in tumor suppression. These p53-mediated activities are induced by tissue-specific inactivation of pRb family proteins by a truncated simian virus 40 large T antigen in brain epithelium. We show that p53-dependent apoptosis, transactivation, and tumor suppression are unaffected by Atm deficiency, suggesting that signaling in the DNA damage pathway is distinct from that in the oncogene-induced pathway. In addition, we show that Atm deficiency has no overall effect on tumor growth and progression in this model.  相似文献   

11.
12.
Terminal differentiation requires molecules also involved in aging such as the cell cycle inhibitor p16(INK4a).Like other organs, the adult liver represents a quiescent organ with terminal differentiated cells, hepatocytes and cholangiocytes. These cells retain the ability to proliferate in response to liver injury or reduction of liver mass. However, under conditions which prevent mitotic activation of hepatocytes, regeneration can occur instead from facultative hepatic stem cells.For therapeutic application a non-toxic activation of this stem cell compartment is required. We have established transgenic mice with conditional overexpression of the cell cycle inhibitor p16(INK4a) in hepatocytes and have provoked and examined oval cell activation in adult liver in response to a range of proliferative stimuli.We could show that the liver specific expression of p16(INK4a) leads to a faster differentiation of hepatocytes and an activation of oval cells already in postnatal mice without negative consequences on liver function.  相似文献   

13.
14.
15.
We have previously reported (Dobreva, I., Waeber, G., Mooser, V., James, R. W., and Widmann, C. (2003) J. Lipid Res. 44, 2382-2390) that low density lipoproteins (LDLs) induce activation of the p38 MAPK pathway, resulting in fibroblast spreading and lamellipodia formation. Here, we show that LDL-stimulated fibroblast spreading and wound sealing are due to secretion of a soluble factor. Using an antibody-based human protein array, interleukin-8 (IL-8) was identified as the main cytokine whose concentration was increased in supernatants from LDL-stimulated cells. Incubation of supernatants from LDL-treated cells with an anti-IL-8 blocking antibody completely abolished their ability to induce cell spreading and mediate wound closure. In addition, fibroblasts treated with recombinant IL-8 spread to the same extent as cells incubated with LDL or supernatants from LDL-treated cells. The ability of LDL and IL-8 to induce fibroblast spreading was mediated by the IL-8 receptor type II (CXCR-2). Furthermore, LDL-induced IL-8 production and subsequent wound closure required the activation of the p38 MAPK pathway, because both processes were abrogated by a specific p38 inhibitor. Therefore, the capacity of LDLs to induce fibroblast spreading and accelerate wound closure relies on their ability to stimulate IL-8 secretion in a p38 MAPK-dependent manner. Regulation of fibroblast shape and migration by lipoproteins may be relevant to atherosclerosis that is characterized by increased LDL cholesterol levels, IL-8 production, and extensive remodeling of the vessel wall.  相似文献   

16.
Yung LY  Tso PH  Wu EH  Yu JC  Ip NY  Wong YH 《Cellular signalling》2008,20(8):1538-1544
Differentiation of PC12 cells by nerve growth factor (NGF) requires the activation of various mitogen-activated protein kinases (MAPKs) including p38 MAPK. Accumulating evidence has suggested cross-talk regulation of NGF-induced responses by G protein-coupled receptors, thus we examined whether NGF utilizes G(i/o) proteins to regulate p38 MAPK in PC12 cells. Induction of p38 MAPK phosphorylation by NGF occurred in a time- and dose-dependent manner and was partially inhibited by pertussis toxin (PTX). NGF-dependent p38 MAPK phosphorylation became insensitive to PTX treatment upon transient expressions of Galpha(z) or the PTX-resistant mutants of Galpha(i2) and Galpha(oA). Moreover, Galpha(i2) was co-immunoprecipitated with the TrkA receptor from PC12 cell lysates. To discern the participation of various signaling intermediates, PC12 cells were treated with a panel of specific inhibitors prior to the NGF challenge. NGF-induced p38 MAPK phosphorylation was abolished by inhibitors of Src (PP1, PP2, and SU6656) and MEK1/2 (U0126). Inhibition of the p38 MAPK pathway also suppressed NGF-induced PC12 cell differentiation. In contrast, inhibitors of JAK2, phospholipase C, protein kinase C and Ca(2+)/calmodulin-dependent kinase II did not affect the ability of NGF to activate p38 MAPK. Collectively, these studies indicate that NGF-dependent p38 MAPK activity may be mediated via G(i2) protein, Src, and the MEK/ERK cascade.  相似文献   

17.
18.
Basic fibroblast growth factor (bFGF) induces cell death in cells of the Ewing's sarcoma family of tumors in vivo and in vitro. In this study we demonstrate that this is dependent on the rapid and sustained activation of p38(MAPK), in contrast to the transient activation of p38(MAPK) associated with bFGF-induced cell proliferation. Stem cell factor-induced survival of TC-32 cells was also associated with transient activation of p38(MAPK). Inhibition of p38(MAPK) by SB202190 and p38(MAPK) small interfering RNA reduces bFGF-induced death in TC-32 cells, consistent with the hypothesis that activation of p38(MAPK) is essential for induction of death by bFGF. This appears to be dependent on sustained activation of p38(MAPK), demonstrated by inhibition of bFGF-induced cell death following addition of SB202190 to TC-32 cells 5 min after exposure to bFGF (20 ng/ml) and activation of p38(MAPK). Prolonged activation of p38(MAPK) is accompanied by a rapid and sustained phosphorylation of Ras and ERK; inhibition of ERK phosphorylation using the MEK-1 inhibitor PD98059 rescued approximately 30% of cells from bFGF-induced death suggesting ERK plays a secondary role in the induction of death. This hypothesis is supported by observations in the A673 cell line; bFGF induced sustained activation of ERK and transient activation of p38(MAPK), which was not associated with cell death. These data demonstrate that sustained activation of p38(MAPK) is essential for activation of the death cascade following exposure of Ewing's sarcoma family of tumors cells to bFGF and provide evidence that activation of p38(MAPK) results in an up-regulation of the death receptor p75(NTR).  相似文献   

19.
20.
Pancreatic β-cell death in type 2 diabetes has been related to p53 subcellular localisation and phosphorylation. However, the mechanisms by which p53 is phosphorylated and its activation in response to oxidative stress remain poorly understood. Therefore, the aim of this study was to investigate mitochondrial p53 phosphorylation, its subcellular localisation and its relationship with apoptotic induction in RINm5F cells cultured under high glucose conditions. Our results show that p53 phosphorylation in the mitochondrial fraction was greater at ser392 than at ser15. This increased phosphorylation correlated with an increase in reactive oxygen species, a decrease in the Bcl-2/Bax ratio, a release of cytochrome c and an increase in the rate of apoptosis. We also observed a decline in ERK 1/2 phosphorylation over time, which is an indicator of cell proliferation. To identify the kinase responsible for phosphorylating p53, p38 mitogen-activated protein kinase (MAPK) activation was analysed. We found that high glucose induced an increase in p38 MAPK phosphorylation in the mitochondria after 24–72 h. Moreover, the phosphorylation of p53 (ser392) by p38 MAPK in mitochondria was confirmed by colocalisation studies with confocal microscopy. The addition of a specific p38 MAPK inhibitor (SB203580) to the culture medium during high glucose treatment blocked p53 mobilisation to the mitochondria and phosphorylation; thus, the release of cytochrome c and the apoptosis rate in RINm5F cells decreased. These results suggest that mitochondrial p53 phosphorylation by p38 MAPK plays an important role in RINm5F cell death under high glucose conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号