首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive oxygen species (ROS) is generated by oxidative stress and plays an important role in various cardiac pathologies. The SIRT1 signaling pathway and mitochondrial biogenesis play essential roles in mediating the production of ROS. SIRT1 activated by resveratrol protects cardiomyocytes from oxidative stress, but the exact mechanisms by which SIRT1 prevents oxidative stress, and its relationship with mitochondrial biogenesis, remain unclear. In this study, it was observed that after stimulation with 50 μM H2O2 for 6 h, H9C2 cells produced excessive ROS and downregulated SIRT1. The mitochondrial protein NDUFA13 was also downregulated by ROS mediated by SIRT1. Resveratrol induced the expression of SIRT1 and mitochondrial genes NDUFA1, NDUFA2, NDUFA13 and Mn-SOD. However, the production of these genes was reversed by SIRT1 inhibitor nicotinamide. These results suggest that resveratrol inhibits ROS generation in cardiomyocytes via SIRT1 and mitochondrial biogenesis signaling pathways.  相似文献   

2.
Apoptosis repressor with a CARD domain (ARC) has been demonstrated to protect heart cells against ischemia/reperfusion (I/R) injury. In this study, we investigated the mechanism by which ARC protects heart cells against oxidative stress. We monitored the extent of apoptosis and activity of multiple components of the intrinsic apoptotic pathway in rat cardiac myoblast cell line H9c2 with either reduced or increased expression of ARC during oxidative stress. Overexpression of ARC-inhibited oxidative stress-induced caspase-2/3 activation, cytochrome c release, and translocation of Bax to mitochondria. Furthermore, phosphorylation of ARC at threonine 149 was found to be critical to its function. ARC containing a T149A mutation failed to translocate to mitochondria, did not inhibit caspase-2 activation, and had a dominant negative effect against the protective effect of endogenous ARC during oxidative stress. In addition, wild-type ARC but not the T149A mutant inhibited cell death induced by overexpression of caspase-2. Using a yeast two-hybrid (YTH) screening approach and co-immunoprecipitation (Co-IP), we found that protein phosphatase 2C (PP2C) interacted with ARC and that PP2C mediated-dephosphorylation of ARC inhibited its anti-apoptotic activity. Eliminating either the N-terminal CARD domain or the C-terminal P/E domain also abolished the anti-apoptotic function of ARC, suggesting that full-length ARC is required for its apoptotic inhibition. These results indicate that ARC plays an important role in protection of H9c2 cells against oxidative stress-induced apoptosis by phosphorylation-dependent suppression of the mitochondria-mediated intrinsic pathway, partially initiated through the activation of caspase-2.  相似文献   

3.
Fluoride is an effective caries prophylactic, but at high doses can also be an environmental health hazard. Acute or chronic exposure to high fluoride doses can result in dental enamel and skeletal and soft tissue fluorosis. Dental fluorosis is manifested as mottled, discolored, porous enamel that is susceptible to dental caries. Fluoride induces cell stress, including endoplasmic reticulum stress and oxidative stress, which leads to impairment of ameloblasts responsible for dental enamel formation. Recently we reported that fluoride activates SIRT1 and autophagy as an adaptive response to protect cells from stress. However, it still remains unclear how SIRT1/autophagy is regulated in dental fluorosis. In this study, we demonstrate that fluoride exposure generates reactive oxygen species (ROS) and the resulting oxidative damage is counteracted by SIRT1/autophagy induction through c-Jun N-terminal kinase (JNK) signaling in ameloblasts. In the mouse-ameloblast-derived cell line LS8, fluoride induced ROS, mitochondrial damage including cytochrome-c release, up-regulation of UCP2, attenuation of ATP synthesis, and H2AX phosphorylation (γH2AX), which is a marker of DNA damage. We evaluated the effects of the ROS inhibitor N-acetylcysteine (NAC) and the JNK inhibitor SP600125 on fluoride-induced SIRT1/autophagy activation. NAC decreased fluoride-induced ROS generation and attenuated JNK and c-Jun phosphorylation. NAC decreased SIRT1 phosphorylation and formation of the autophagy marker LC3II, which resulted in an increase in the apoptosis mediators γH2AX and cleaved/activated caspase-3. SP600125 attenuated fluoride-induced SIRT1 phosphorylation, indicating that fluoride activates SIRT1/autophagy via the ROS-mediated JNK pathway. In enamel organs from rats or mice treated with 50, 100, or 125 ppm fluoride for 6 weeks, cytochrome-c release and the DNA damage markers 8-oxoguanine, p-ATM, and γH2AX were increased compared to those in controls (0 ppm fluoride). These results suggest that fluoride-induced ROS generation causes mitochondrial damage and DNA damage, which may lead to impairment of ameloblast function. To counteract this impairment, SIRT1/autophagy is induced via JNK signaling to protect cells/ameloblasts from fluoride-induced oxidative damage that may cause dental fluorosis.  相似文献   

4.
Poujol N  Margeat E  Baud S  Royer CA 《Biochemistry》2003,42(17):4918-4925
A purified RAR/RXR-DeltaAB heterodimer was obtained by production of His-tagged RAR and untagged RXR in Escherichia coli, followed by combined purification on a Ni(2+) affinity column using excess RXR extract, and finally a gel filtration chromatography step to isolate a pure heterodimer. The purified heterodimer preparation bound 9-cisRA at a level of 0.85-0.95 mol of binding sites per mole of protein monomer. Titration of a 26 kDa fluorescent labeled fragment of the SRC-1 coactivator protein with the purified heterodimer in the presence of the agonist 9-cisRA yielded a binding affinity near 300 nM, whereas no binding was observed in the absence of agonist. Binding of the purified heterodimer to a DR5 target was identical in the absence of ligand and in the presence of 9-cisRA. Competition by unlabeled specific and nonspecific DNA allowed us to demonstrate that the binding curve was bimodal. The first phase of binding was highly specific and of high affinity. This phase also exhibited a high degree of cooperativity in the binding profile. Nonspecific DNA efficiently competes for the second phase. Thus, the first phase of binding likely corresponds to the formation of the specific heterodimer complex in which heterodimerization is energetically coupled to DNA binding. While agonist binding had no effect on the apparent affinity of the heterodimer for DR5, a series of antagonists significantly destabilized the heterodimer-DR5 complex, either through a direct decrease in the affinity of the protein for the DNA or through destabilization of the heterodimer itself. Impeding the interaction between the heterodimer and DNA appears as an additional mechanism of antagonist action of varying efficiency, depending upon the chemical structure of the antagonist.  相似文献   

5.
O-linked β-N-acetylglucosamine (O-GlcNAc) is an inducible, dynamically cycling and reversible post-translational modification of Ser/Thr residues of nucleocytoplasmic and mitochondrial proteins. We recently discovered that O-GlcNAcylation confers cytoprotection in the heart via attenuating the formation of mitochondrial permeability transition pore (mPTP) and the subsequent loss of mitochondrial membrane potential. Because Ca2+ overload and reactive oxygen species (ROS) generation are prominent features of post-ischemic injury and favor mPTP formation, we ascertained whether O-GlcNAcylation mitigates mPTP formation via its effects on Ca2+ overload and ROS generation. Subjecting neonatal rat cardiac myocytes (NRCMs, n ≥ 6 per group) to hypoxia, or mice (n ≥ 4 per group) to myocardial ischemia reduced O-GlcNAcylation, which later increased during reoxygenation/reperfusion. NRCMs (n ≥ 4 per group) infected with an adenovirus carrying nothing (control), adenoviral O-GlcNAc transferase (adds O-GlcNAc to proteins, AdOGT), adenoviral O-GlcNAcase (removes O-GlcNAc to proteins, AdOGA), vehicle or PUGNAc (blocks OGA; increases O-GlcNAc levels) were subjected to hypoxia–reoxygenation or H2O2, and changes in Ca2+ levels (via Fluo-4AM and Rhod-2AM), ROS (via DCF) and mPTP formation (via calcein-MitoTracker Red colocalization) were assessed using time-lapse fluorescence microscopy. Both OGT and OGA overexpression did not significantly (P > 0.05) alter baseline Ca2+ or ROS levels. However, AdOGT significantly (P < 0.05) attenuated both hypoxia and oxidative stress-induced Ca2+ overload and ROS generation. Additionally, OGA inhibition mitigated both H2O2-induced Ca2+ overload and ROS generation. Although AdOGA exacerbated both hypoxia and H2O2-induced ROS generation, it had no effect on H2O2-induced Ca2+ overload. We conclude that inhibition of Ca2+ overload and ROS generation (inducers of mPTP) might be one mechanism through which O-GlcNAcylation reduces ischemia/hypoxia-mediated mPTP formation.  相似文献   

6.
Bian YF  Wang DX  Yang HY  Xiao CS 《生理学报》2011,63(4):387-395
本文旨在观察胰高血糖素样肽-1(glucagon like peptide-1,GLP-1)对高糖所致新生大鼠心室肌细胞氧化应激的影响,并探讨PI3K-Akt通路在其中所起的作用。将酶消化法分离的经α-肌动蛋白免疫荧光法鉴定的原代培养72~96h的新生大鼠心室肌细胞分为5组:正常对照组、高糖组、高糖+GLP-1组、高糖+GLP-1+LY294002(PI3K-Akt通路的抑制剂)组、高渗对照组。采用硫代巴比妥酸显色法测定细胞上清液中丙二醛(malonaldehyde,MDA)含量,用黄嘌呤氧化酶法测定细胞上清液中超氧化物歧化酶(superoxide dismutase,SOD)的活性,运用PCR凝胶电泳检测NADPH P47phox亚基mRNA的变化,运用荧光显微镜及流式细胞术检测心室肌细胞内的ROS含量,运用流式细胞术及DNAladder法检测心室肌细胞的凋亡,Western blot检测各组心肌细胞Akt磷酸化水平。结果显示:(1)与正常对照组相比,高糖组细胞生长状态较差,搏动频率减慢甚至消失,细胞凋亡率显著增加,DNA ladder呈现凋亡独有的梯状图谱,胞浆MDA水平增高,上清液中SOD活性下降,心肌...  相似文献   

7.
Oxidative stress contributes to the pathogenesis of aging-associated heart failure. Among various signaling pathways mediating oxidative stress, the NAD(+) -dependent protein deacetylase SirT1 has been implicated in the protection of heart muscle. Expression of a locally acting insulin-like growth factor-1 (IGF-1) propeptide (mIGF-1) helps the heart to recover from infarct and enhances SirT1 expression in cardiomyocytes (CM) in vitro, exerting protection from hypertrophic and oxidative stresses. To study the role of mIGF-1/SirT1 signaling in vivo, we generated cardiac-specific mIGF-1 transgenic mice in which SirT1 was depleted from adult CM in a tamoxifen-inducible and conditional fashion. Analysis of these mice confirmed that mIGF-1-induced SirT1 activity is necessary to protect the heart from paraquat (PQ)-induced oxidative stress and lethality. In cultured CM, mIGF-1 increases SirT1 expression through a c-Jun NH(2)-terminal protein kinase 1 (JNK1)-dependent signaling mechanism. Thus, mIGF-1 protects the heart from oxidative stress via SirT1/JNK1 activity, suggesting new avenues for cardiac therapy during aging and heart failure.  相似文献   

8.
Changes in the genetic makeup of an organism can extend lifespan significantly if they promote tolerance to environmental insults and thus prevent the general deterioration of cellular function that is associated with aging. Here, we introduce the Jun N-terminal kinase (JNK) signaling pathway as a genetic determinant of aging in Drosophila melanogaster. Based on expression profiling experiments, we demonstrate that JNK functions at the center of a signal transduction network that coordinates the induction of protective genes in response to oxidative challenge. JNK signaling activity thus alleviates the toxic effects of reactive oxygen species (ROS). In addition, we show that flies with mutations that augment JNK signaling accumulate less oxidative damage and live dramatically longer than wild-type flies. Our work thus identifies the evolutionarily conserved JNK signaling pathway as a major genetic factor in the control of longevity.  相似文献   

9.
10.
11.
Differentiation of embryonic and adult myogenic progenitors undergoes a complex series of cell rearrangements and specification events which are controlled by distinct gene regulatory networks. Delineation of the molecular mechanisms that regulate skeletal muscle specification and formation should be important for understanding congenital myopathies and muscular degenerative diseases. Retinoic acid (RA) signaling plays an important role in development. However, the role of RA signaling in adult myogenic progenitors is poorly understood. Here, we investigate the role of RA signaling in regulating myogenic differentiation of myoblastic progenitor cells. Using the mouse myoblast progenitor C2C12 line as a model, we have found that the endogenous expression of most RAR and RXR isotypes is readily detected. While the nuclear receptor co-repressors are highly expressed, two of the three nuclear receptor co-activators and the enzymes involved in RA synthesis are expressed at low level or undetectable, suggesting that the RA signaling pathway may be repressed in myogenic progenitors. Using the α-myosin heavy chain promoter-driven reporter (MyHC-GLuc), we have demonstrated that either ATRA or 9CRA is able to effectively induce myogenic differentiation, which can be synergistically enhanced when both ATRA and 9CRA are used. Upon ATRA and 9CRA treatment of C2C12 cells the expression of late myogenic markers significantly increases. We have further shown that adenovirus-mediated exogenous expression of RARα and/or RXRα is able to effectively induce myogenic differentiation in a ligand-independent fashion. Morphologically, ATRA- and 9CRA-treated C2C12 cells exhibit elongated cell body and become multi-nucleated myoblasts, and even form myoblast fusion. Ultrastructural analysis under transmission electron microscope reveals that RA-treated myogenic progenitor cells exhibit an abundant presence of muscle fibers. Therefore, our results strongly suggest that RA signaling may play an important role in regulating myogenic differentiation.  相似文献   

12.

Background

Cardiac cell apoptosis is the initiating factor of cardiac complications especially diabetic cardiomyopathy. Mitochondria are susceptible to the damaging effects of elevated glucose condition. Calcium overload and oxidative insult are the two mutually non-exclusive phenomena suggested to cause cardiac dysfunction. Here, we examined the effect of high-glucose induced calcium overload in calpain-1 mediated cardiac apoptosis in an in vitro setting.

Methods

H9c2, rat ventricular myoblast cell line was treated with elevated glucose condition and the cellular consequences were studied. Intracellular calcium trafficking, ROS generation, calpain-1 activation and caspase-12 and caspase-9 pathway were studied using flow cytometry, confocal microscopy and Western blot analysis.

Results

High-glucose treatment resulted in increased intracellular calcium ([Ca2 +]i) which was mobilized to the mitochondria. Concomitant intra-mitochondrial calcium ([Ca2 +]m) increase resulted in enhanced reactive oxygen and nitrogen species generation. These events led to mitochondrial dysfunction and apoptosis. Cardiomyocyte death exhibited several classical markers of apoptosis, including activation of caspases, appearance of annexin V on the outer plasma membrane, increased population of cells with sub-G0/G1 DNA content and nuclear condensation. Key findings include elucidation of cell signaling mechanism of high-glucose induced calcium-dependent cysteine protease calpain-1 activation, which triggers non-conventional caspases as alternate mode of cell death.

Conclusion

This information increases the understanding of cardiac cell death under hyperglycemic condition and can possibly be extended for designing new therapeutic strategies for diabetic cardiomyopathy.

General significance

The novel findings of the study reveal that high glucose induces apoptosis by both mitochondria-dependent and independent pathways via concomitant rise in intracellular calcium.  相似文献   

13.
Vitamin A deficiency has been known for a long time to be accompanied with immune deficiency and susceptibility to a wide range of infectious diseases. Increasing evidence suggests that retinoic acids derived from vitamin A are involved in the functional regulation of the immune system. Of the two groups of retinoid receptors, retinoic acid receptors (RARs) and retinoid X receptors (RXRs) all-trans and 9-cis retinoic acids are high affinity ligands for RARs and 9-cis retinoic acid additionally binds to RXRs. In cells, at high concentrations, all-trans retinoic acid can be converted to 9-cis retinoic acid by unknown mechanisms. Apoptosis plays a major role in shaping the T cell repertoire and one way in which retinoids may affect immune functions is to influence the various apoptosis pathways. Indeed, it has been shown that retinoic acids can induce apoptosis, increase the rate of dexamethasone-induced death and inhibit activation-induced death of thymocytes and T lymphocytes. Therefore, retinoids together with glucocorticoids may be involved in regulating positive and negative selection of T lymphocytes. Here we demonstrate that retinoids can induce apoptosis of T cells through the stimulation of RARgamma. Specific stimulation of RARalpha, on the other hand, prevents both RARgamma-dependent and TCR-mediated cell death. In all these functions 9-cis retinoic acid proved to be more effective than all-trans retinoic acid suggesting the involvement of RXRs. Based on these results a possible mechanism through which costimulation of RARs and RXRs might affect spontaneous and activation-induced death of T lymphocytes is proposed.  相似文献   

14.
A role for tissue transglutaminase (TG2) and its substrate dual leucine zipper-bearing kinase (DLK), an upstream component of the c-Jun N-terminal kinase (JNK) signaling pathway, has been previously suggested in the apoptotic response induced by calphostin C. In the current study, we directly tested this hypothesis by examining via pharmacological and RNA-interference approaches whether inhibition of expression or activity of TG2, DLK and JNK in mouse NIH 3T3 fibroblasts and human MDA-MB-231 breast cancer epithelial cells affects calphostin C-induced apoptosis. Our experiments with the selective JNK inhibitor SP600125 reveal that calphostin C is capable of causing JNK activation and JNK-dependent apoptosis in both cell lines. Small interfering RNA-mediated depletion of TG2 alone strongly reduces calphostin C action on JNK activity and apoptosis. Consistent with an active role for DLK in this cascade of event, cells deficient in DLK demonstrate a substantial delay of JNK activation and poly-ADP-ribose polymerase (PARP) cleavage in response to calphostin C, whereas overexpression of a recombinant DLK resistant to silencing, but sensitive to TG2-mediated oligomerization, reverses this effect. Importantly, combined depletion of TG2 and DLK further alters calphostin C effects on JNK activity, Bax translocation, caspase-3 activation, PARP cleavage and cell viability, demonstrating an obligatory role for TG2 and DLK in calphostin C-induced apoptosis.  相似文献   

15.
Although the synthesis of angiogenic factors in hypoxic regions of solid tumors is recognized as one of the critical steps in tumor growth and metastasis, the signal transduction pathway involved in hypoxic induction of basic fibroblast growth factor (bFGF) gene expression is still obscure. In the study described here, we investigated the intracellular responses to hypoxia and the mechanisms triggering the initiation of angiogenic activity in drug-resistant human breast carcinoma MCF-7/ADR cells. Northern blots showed an increase in the level of c-jun, c-fos, and bFGF mRNA during hypoxia. Gel mobility-shift analysis of nuclear extracts from hypoxia-exposed cells showed an increase in AP-1 binding activity. In addition, hypoxic treatment strongly activated c-Jun N-terminal kinase 1 (JNK1), leading to phosphorylation and activation of c-Jun. Expression of a dominant negative mutant of JNK1 suppressed hypoxia-induced JNK1 activation as well as bFGF gene expression. Taken together, hypoxia-induced bFGF gene expression is mediated through the stress-activated protein kinase (SAPK) signal transduction pathway.  相似文献   

16.
Oxidative stress caused by hyperglycemia is one of the key factors responsible for maternal diabetes-induced congenital malformations, including neural tube defects in embryos. However, mechanisms by which maternal diabetes induces oxidative stress during neurulation are not clear. The present study was aimed to investigate whether high glucose induces oxidative stress in neural stem cells (NSCs), which compose the neural tube during development. We also investigated the mechanism by which high glucose disturbs the growth and survival of NSCs in vitro . NSCs were exposed to physiological d -glucose concentration (PG, 5 mmol/L), PG with l -glucose (25 mmol/L), or high d -glucose concentration (HG, 30 or 45 mmol/l). HG induced reactive oxygen species production and mRNA expression of aldose reductase (AR), which catalyzes the glucose reduction through polyol pathway, in NSCs. Expression of glucose transporter 1 (Glut1) mRNA and protein which regulates glucose uptake in NSCs was increased at early stage (24 h) and became down-regulated at late stage (72 h) of exposure to HG. Inhibition of AR by fidarestat, an AR inhibitor, decreased the oxidative stress, restored the cell viability and proliferation, and reduced apoptotic cell death in NSCs exposed to HG. Moreover, inhibition of AR attenuated the down-regulation of Glut1 expression in NSCs exposed to HG for 72 h. These results suggest that the activation of polyol pathway plays a role in the induction of oxidative stress which alters Glut1 expression and cell cycle in NSCs exposed to HG, thereby resulting in abnormal patterning of the neural tube in embryos of diabetic pregnancy.  相似文献   

17.
The objective of this study was to test the hypothesis that cytoskeletal actin fragmentation is mediated through caspase-2, specifically examining the ability of a caspase-2 inhibitor to interfere with actin fragmentation, in comparison with a caspase-3 inhibitor. Cardiomyocytes were cultured from embryonic chick heart. The fine structural element of cellular F-actin was visualized by staining cardiomyocytes with NBD-phallacidin. Lovastatin induced a dramatic and concentration-dependent loss of intact F-actin. The selectivity of this effect of lovastatin was demonstrated by the absence of similar changes in F-actin when cardiomyocytes were treated with the apoptotic stimulus palmitate, the metabolism of which produces acetyl CoA, the early substrate of cholesterol synthesis, through the mevalonate pathway. FACS analysis of NBD-phallacidin-stained cells was used to quantify the amount of F-actin loss. Actin fragmentation produced by lovastatin was operative through a caspase-2 pathway, as the caspase-2 inhibitor, z-VDVAD-fmk, significantly blocked lovastatin-induced changes in F-actin, but the caspase-3 inhibitor, Ac-DEVD-CHO, did not. Interruption of the mevalonate pathway was in part responsible for lovastatin's action, as the downstream metabolite mevalonate partially reversed the effect of lovastatin on actin fragmentation. These data indicate a previously unrecognized link between cytoskeletal actin and caspase-2.  相似文献   

18.
BackgroundExcess copper (Cu) is an oxidative stress factor which associates with a variety of diseases. The aim of this study was to evaluate the effect of Cu in primary chicken embryo hepatocytes (CEHs).MethodsCEHs were isolated from 13 days old chicken embryos and followed by different concentration Cu (0, 10, 100, 200 μM) and/or ALC treatment (0.3 mg/mL) for 12 or 24 h. The effects of Cu exposure in CEHs were determined by detecting reactive oxygen species (ROS), malondialdehyde (MDA), mitochondrial membrane potential (MMP), and ATP levels. The expression of mitochondrial dynamics-related genes and proteins were also detected.ResultsResults showed that Cu treatment (100 or 200 μM) significantly decreased CEHs viability, MMP and ATP levels, increased ROS and MDA levels in 12 or 24 h. The up-regulated mitochondrial fission genes and protein in 100 and 200 μM Cu groups suggested Cu promoted mitochondrial division but not fusion. However, the co-treatment of ALC and Cu alleviated those changes compared with the 100 or 200 μM Cu groups.ConclusionIn conclusion, we speculated that Cu increased the oxidative stress and induced mitochondria dysfunction via disturbing mitochondrial dynamic balance in CEHs, and this process was not completely reversible.  相似文献   

19.

Background

Eosinophils are critically involved in the pathogenesis of asthma. Nitric oxide (NO) is produced in high amounts in asthmatic lungs and has an important role as a regulator of lung inflammation. NO was previously shown to induce eosinophil apoptosis mediated via c-jun N-terminal kinase (JNK) and caspases. Our aim was to clarify the cascade of events leading to NO-induced apoptosis in granulocyte macrophage-colony stimulating factor (GM-CSF)-treated human eosinophils concentrating on the role of mitochondria, reactive oxygen species (ROS) and JNK.

Methods

Apoptosis was determined by flow cytometric analysis of relative DNA content, by Annexin-V labelling and/or morphological analysis. Immunoblotting was used to study phospho-JNK (pJNK) expression. Mitochondrial membrane potential was assessed by JC-1-staining and mitochondrial permeability transition (mPT) by loading cells with calcein acetoxymethyl ester (AM) and CoCl2 after which flow cytometric analysis was conducted. Statistical significance was calculated by repeated measures analysis of variance (ANOVA) or paired t-test.

Results

NO-donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) induced late apoptosis in GM-CSF-treated eosinophils. SNAP-induced apoptosis was suppressed by inhibitor of mPT bongkrekic acid (BA), inhibitor of JNK SP600125 and superoxide dismutase-mimetic AEOL 10150. Treatment with SNAP led to late loss of mitochondrial membrane potential. Additionally, we found that SNAP induces early partial mPT (1 h) that was followed by a strong increase in pJNK levels (2 h). Both events were prevented by BA. However, these events were not related to apoptosis because SNAP-induced apoptosis was prevented as efficiently when BA was added 16 h after SNAP. In addition to the early and strong rise, pJNK levels were less prominently increased at 20–30 h.

Conclusions

Here we demonstrated that NO-induced eosinophil apoptosis is mediated via ROS, JNK and late mPT. Additionally, our results suggest that NO induces early transient mPT (flickerings) that leads to JNK activation but is not significant for apoptosis. Thereby, we showed some interesting early events in NO-stimulated eosinophils that may take place even if the threshold for irreversible mPT and apoptosis is not crossed. This study also revealed a previously unknown physiological function for transient mPT by showing that it may function as initiator of non-apoptotic JNK signalling.  相似文献   

20.
Dopamine and norepinephrine are neurotransmitters which participate in various regulatory functions of the human brain. These functions are lost in neurodegenerative diseases including Parkinson’s disease and Alzheimer’s disease. In this study, we used SK-N-MC neuroblastoma cells to investigate the cytotoxicities of high concentrations of dopamine and norepinephrine on neuronal cells. Dopamine, norepinephrine, as well as their corresponding synthetic agonists (SKF38393 and isoproterenol, respectively) triggered SK-N-MC cell death when applied at 50–100 μM persistently for 2 days. This catecholamine-induced cell death appears to be neuronal specific, as demonstrated by their inabilities of triggering apoptosis of A549 lung carcinoma cells and Cos-7 kidney fibroblasts. By pretreating SK-N-MC cells with target-specific inhibitors before administration of catecholamine, components of G protein signaling (i.e. G s /cAMP/PKA), monoamine oxidases, nitric oxide synthase, c-Jun N-terminal kinase and oxidative stress were found to be involved in this dopamine/norepinephrine-induced cytotoxicity, which subsequently led to caspase-dependent and -independent apoptotic responses as well as DNA degradation. In contrast, agonists of G i -coupled dopamine receptors and adrenergic receptors (quinpirole and UK14,304, respectively) were incapable of triggering apoptosis of SK-N-MC cells. Our results suggest that both G protein (G s )-mediated signaling cascade and oxidative stress participate in the dopamine/norepinephrine-induced neuronal apoptosis. Anthony Chan and Ng Contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号