首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here that the Leishmania major ascorbate peroxidase (LmAPX), having similarity with plant ascorbate peroxidase, catalyzes the oxidation of suboptimal concentration of ascorbate to monodehydroascorbate (MDA) at physiological pH in the presence of added H2O2 with concurrent evolution of O2. This pseudocatalatic degradation of H2O2 to O2 is solely dependent on ascorbate and is blocked by a spin trap, α-phenyl-n-tert-butyl nitrone (PBN), indicating the involvement of free radical species in the reaction process. LmAPX thus appears to catalyze ascorbate oxidation by its peroxidase activity, first generating MDA and H2O with subsequent regeneration of ascorbate by the reduction of MDA with H2O2 evolving O2 through the intermediate formation of O2. Interestingly, both peroxidase and ascorbate-dependent pseudocatalatic activity of LmAPX are reversibly inhibited by SCN in a concentration dependent manner. Spectral studies indicate that ascorbate cannot reduce LmAPX compound II to the native enzyme in presence of SCN. Further kinetic studies indicate that SCN itself is not oxidized by LmAPX but inhibits both ascorbate and guaiacol oxidation, which suggests that SCN blocks initial peroxidase activity with ascorbate rather than subsequent nonenzymatic pseudocatalatic degradation of H2O2 to O2. Binding studies by optical difference spectroscopy indicate that SCN binds LmAPX (Kd = 100 ± 10 mM) near the heme edge. Thus, unlike mammalian peroxidases, SCN acts as an inhibitor for Leishmania peroxidase to block ascorbate oxidation and subsequent pseudocatalase activity.  相似文献   

2.
In spinach thylakoids prepared from intact chloroplasts by shocking in the presence of ascorbate to preserve the operation of ascorbate peroxidase, the rate of oxygen uptake with methyl viologen as acceptor decreased in response to the addition of H2O2. Such a decrease was not observed in the presence of KCN or when the thylakoids lost ascorbate peroxidase activity. Illumination of intact chloroplasts in the presence of H2O2 and methyl viologen showed an initial rate of oxygen exchange, which is intermediate between the initial rate of oxygen evolution in the presence of H2O2 alone and steady-state oxygen uptake in the presence of methyl viologen. The data showed that monodehydroascorbate radical generated in ascorbate peroxidase reaction could compete with methyl viologen for electrons supplied by the electron transport chain in both thylakoids and intact chloroplasts. During the illumination of intact chloroplasts the rate of oxygen uptake increased. The presence of nigericin swiftly led to steady-state oxygen uptake, and to a clear-cut 1:1 relationship between the electron transport rate estimated from fluorescence assay and the electron transport rate determined from oxygen uptake, taking the stoichiometry 1O2:4e. The increase in oxygen uptake was attributed to the cessation of monodehydroascorbate radical generation brought about by consumption of intrachloroplast ascorbate in the peroxidase reactions, and the effects of nigericin were explained by acceleration of such consumption. The competition between methyl viologen and monodehydroascorbate radical in the intact chloroplasts was estimated under various conditions.  相似文献   

3.
All aerobic biological systems, including N2-fixing root nodules, are subject to O2 toxicity that results from the formation of reactive intermediates such as H2O2 and free radicals of O2. H2O2 may be removed from root nodules in a series of enzymic reactions involving ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. We confirm here the presence of these enzymes in root nodules from nine species of legumes and from Alnus rubra. Ascorbate peroxidase from soybean nodules was purified to near homogeneity. This enzyme was found to be a hemeprotein with a molecular weight of 30,000 as determined by sodium dodecyl sulfate gel electrophoresis. KCN, NaN3, CO, and C2H2 were potent inhibitors of activity. Nonphysiological reductants such as guaiacol, o-dianisidine, and pyrogallol functioned as substrates for the enzyme. No activity was detected with NAD(P)H, reduced glutathione, or urate. Ascorbate peroxidation did not follow Michaelis-Menten kinetics. The substrate concentration which resulted in a reaction rate of ½ Vmax was 70 micromolar for ascorbate and 3 micromolar for H2O2. The high affinity of ascorbate peroxidase for H2O2 indicates that this enzyme, rather than catalase, is responsible for most H2O2 removal outside of peroxisomes in root nodules.  相似文献   

4.
Induction of zeaxanthin formation and the associated nonphotochemical quenching in iodoacetamide-treated, non-CO2-fixing intact chloroplasts of Lactuca sativa L. cv Romaine is reported. The electron transport needed to generate the required ΔpH for zeaxanthin formation and nonphotochemical quenching are ascribed to the Mehler-ascorbate peroxidase reaction. KCN, an inhibitor of ascorbate peroxidase, significantly affected these activities without affecting linear electron transport to methyl viologen or violaxanthin deepoxidase activity. At 1 millimolar KCN, zeaxanthin formation and ΔpH were inhibited 60 and 55%, respectively, whereas ascorbate peroxidase activity was inhibited almost totally. The KCN-resistant activity, which apparently was due to electron transport mediated by the Mehler reaction alone, however, was insufficient to support a high level of nonphotochemical quenching. We suggest that in vivo, as CO2 fixation becomes limiting, the Mehler-peroxidase reaction protects photosystem II against the excess light by supporting the electron transport needed for zeaxanthin-dependent nonphotochemical quenching and concomitantly scavenging H2O2. Ascorbate is essential for this process to occur.  相似文献   

5.
Dieter Groden  Erwin Beck 《BBA》1979,546(3):426-435
Washed lamellae from isolated spinach chloroplasts exhibited peroxidative activity with 3,3′-diaminobenzidine or ascorbate as electron donors. By heat treatment or by incubation of the chloroplasts with pronase a heat-labile enzymic activity (system A) and a heat-stable non-enzymic peroxidative activity (system B) could be differentiated.System A is membrane-bound, reacts with 3,3′-diaminobenzidine and with ascorbate as electron donors, shows a sharp pH optimum between 7.5 and 8.0 with both substrates and is inhibited competitively by cyanide.The heat-stable factor can be extracted from the chloroplast lamellae by heat treatment, reacts only with ascorbate as electron donor, shows increasing activity with higher pH values but no optimum and is not inhibited by cyanide.Both peroxidative systems in connection with a relatively high concentration of ascorbate in chloroplasts should represent an important tool for the detoxification of H2O2 which is produced in these organelles by photosynthetic O2 reduction.  相似文献   

6.
Brennan T 《Plant physiology》1980,66(5):815-817
Dark activation of light-inactivated glucose-6-phosphate dehydrogenase was inhibited by catalase in a broken pea chloroplast system. Partially purified glucose-6-phosphate dehydrogenase from pea leaf chloroplasts can be inactivated in vitro by dithiothreitol and thioredoxin and reactivated by H2O2. The in vitro activation by H2O2 was not enhanced by horseradish peroxidase, and dark activation in the broken chloroplast system was only slightly inhibited by NaCN. These results indicate that the dark activation of glucose-6-phosphate dehydrogenase may involve oxidation by H2O2 of SH groups on the enzyme which were reduced in the light by the light effect mediator system.  相似文献   

7.
The biochemical properties of a peroxidase previously localized cytochemically in the mitochondria of Hymenolepis diminuta were determined. The method chosen was the o-dianisidine procedure in which the decomposition of hydrogen peroxide has been followed spectrophotometrically. Peroxidase activity was initially demonstrated in the mitochondrial pellet. Subsequently, mitochondrial pellets were sonicated and the membrane and supernatant fractions were tested for peroxidase activity. Enzyme activity was demonstrated in the membrane fraction. The enzyme displayed a pH optimum of 5.0, was ascorbate sensitive, and was inhibited by excess H2O2. Neither peroxidase nor catalase were observed in any other fraction of the tapeworm tissue, confirming previous cytochemical investigations.  相似文献   

8.
Purification and characterization of pea cytosolic ascorbate peroxidase   总被引:2,自引:0,他引:2  
The cytosolic isoform of ascorbate peroxidase was purified to homogeneity from 14-day-old pea (Pisum sativum L.) shoots. The enzyme is a homodimer with molecular weight of 57,500, composed of two subunits with molecular weight of 29,500. Spectral analysis and inhibitor studies were consistent with the presence of a heme moiety. When compared with ascorbate peroxidase activity derived from ruptured intact chloroplasts, the purified enzyme was found to have a higher stability, a broader pH optimum for activity, and the capacity to utilize alternate electron donors. Unlike classical plant peroxidases, the cytosolic ascorbate peroxidase had a very high preference for ascorbate as an electron donor and was specifically inhibited by p-chloromercurisulfonic acid and hydroxyurea. Antibodies raised against the cytosolic ascorbate peroxidase from pea did not cross-react with either protein extracts obtained from intact pea chloroplasts or horseradish peroxidase. The amino acid sequence of the N-terminal region of the purified enzyme was determined. Little homology was observed among pea cytosolic ascorbate peroxidase, the tea chloroplastic ascorbate peroxidase, and horseradish peroxidase; homology was, however, found with chloroplastic ascorbate peroxidase isolated from spinach leaves.  相似文献   

9.
Tewari RK  Watanabe D  Watanabe M 《Planta》2012,235(1):99-110
Despite extensive research over the past years, regeneration from protoplasts has been observed in only a limited number of plant species. Protoplasts undergo complex metabolic modification during their isolation. The isolation of protoplasts induces reactive oxygen species (ROS) generation in Brassica napus leaf protoplasts. The present study was conducted to provide new insight into the mechanism of ROS generation in B. napus leaf protoplasts. In vivo localization of H2O2 and enzymes involved in H2O2 generation and detoxification, molecular antioxidant-ascorbate and its redox state and lipid peroxidation were investigated in the leaf and isolated protoplasts. Incubating leaf strips in the macerating enzyme (ME) for different duration (3, 6, and 12 h) induced accumulation of H2O2 and malondialdehyde (lipid peroxidation, an index of membrane damage) in protoplasts. The level of H2O2 was highest just after protoplast isolation and subsequently decreased during culture. Superoxide generating NADPH oxidase (NOX)-like activity was enhanced, whereas superoxide dismutase (SOD) and ascorbate peroxidase (APX) decreased in the protoplasts compared to leaves. Diaminobenzidine peroxidase (DAB-POD) activity was also lower in the protoplasts compared to leaves. Total ascorbate content, ascorbate to dehydroascorbate ratio (redox state), were enhanced in the protoplasts compared to leaves. Higher activity of NOX-like enzyme and weakening in the activity of antioxidant enzymes (SOD, APX, and DAB-POD) in protoplasts resulted in excessive accumulation of H2O2 in chloroplasts of protoplasts. Chloroplastic NADPH oxidase-like activity mediated perpetual H2O2 generation probably induced apoptotic-like cell death of B. napus leaf protoplasts as indicated by parallel DNA laddering and decreased mitochondrial membrane potential.  相似文献   

10.
A reconstituted spinach chloroplast system containing thylakoids, stroma and 0.1 mM NADPH supported O2 evolution in the presence of oxidised glutathione (GSSG). The properties of the reaction were consistent with light-coupled GSSG-reductase activity involving H2O as eventual electron donor. The reconstituted system also supported dehydroascorbate-dependent O2 evolution in the presence of 0.6 mM reduced glutathione (GSH) and 0.1 mM NADPH with the concomitant production of ascorbate. The GSSG could replace GSH in which case the production of GSH preceded the accumulation of ascorbate. The data are consistent with the light-dependent reduction of dehydroascorbate using H2O as eventual electron donor via the sequence H2O→NADP→GSSG→dehydroascorbate. Approximately 30% of the GSH-dehydrogenase activity of spinach leaf protoplasts is localised in chloroplasts: this could not be attributed to contamination of chloroplasts by activity from the extrachloroplast compartment. Washed intact chloroplasts supported the uptake of ascorbate but the uptake mechanism had a very low affinity for ascorbate (Km approximately 20 mM). The rate of uptake of ascorbate was less than the rate of light-dependent reduction of dehydroascorbate and too slow to account for the rate of H2O2 reduction by washed intact chloroplasts.  相似文献   

11.
Potential roles for cyclic and pseudocyclic electron flow in C4 plants are to provide ATP for the C4 cycle and, under excess light, to down-regulate PS II activity through membrane energization. Intact mesophyll chloroplasts of maize were used to evaluate forms of electron transport including the Mehler peroxidase reaction (linear electron flow to O2, formation of H2O2 which is reduced by ascorbate, and linear flow linked to reduction of oxidized ascorbate). Addition of H2O2 to isolated chloroplasts in the light in the presence of an uncoupler induced Photosystem (PS) II activity, as determined from increases in photochemical quenching of chlorophyll fluorescence (qp) and the quantum yield of PS II. H2O2 also induced dissipation of energy by thylakoid membrane energization and non-photochemical fluorescence quenching (qn), which was inhibited by addition of an uncoupler. These effects of H2O2 on qp and qn were inhibited by addition of KCN, an inhibitor of ascorbate peroxidase. The results suggest that H2O2 is reduced via ascorbate, and that the oxidized ascorbate is then reduced by linear electron flow contributing to photochemistry and thylakoid membrane energization. Evidence for function of pseudocyclic electron flow via the Mehler peroxidase reaction was obtained with only oxygen as an electron acceptor, as well as in the presence of oxaloacetate a natural electron acceptor in C4 photosynthesis. KCN decreased qp and PS II yield in the absence and presence of oxaloacetate and, in the former case, it severely reduced q_n. KCN also decreased pH formation across the thylakoid membrane based on its decrease in the light-induced quenching of 9-aminoacridine fluorescence, particularly in the absence of oxaloacetate. Antimycin A, an inhibitor of cyclic electron flow, also diminished pH formation. These results provide evidence for shared energization of thylakoid membranes by the Mehler peroxidase reaction, cyclic electron flow, and linear electron flow linked to the C4 pathway.  相似文献   

12.
The presence of an acidic lumen and the xanthophylls, zeaxanthin and antheraxanthin, are minimal requirements for induction of non-radiative dissipation of energy in the pigment bed of Photosystem II. We recently reported that ascorbate, which is required for formation for these xanthophylls, also can mediate the needed lumen acidity through the Mehler-peroxidase reaction [Neubauer and Yamamoto (1992) Plant Physiol 99: 1354–1361]. It is demonstrated that in non-CO2-fixing intact chloroplasts and thylakoids of Lactuca sativa, L. c.v. Romaine, the ascorbate available to support de-epoxidase activity is influenced by membrane barriers and the ascorbate-consuming Mehler-peroxidase reaction. In intact chloroplasts, this results in biphasic kinetic behavior for light-induced de-epoxidation. The initial relatively high activity is due to ascorbate preloaded into the thylakoid before light-induction and the terminal low activity due to limiting ascorbate from the effects of chloroplast membranes barriers and a light-dependent process. A five-fold difference between the initial and final activities was observed for light-induced de-epoxidation in chloroplasts pre-incubated with 120 mM ascorbate for 40 min. The light-dependent activity is ascribed to the competitive use of ascorbic acid by ascorbate peroxidase in the Mehler-peroxidase reaction. Thus, stimulating ascorbic peroxidase with H2O2 transiently inhibited de-epoxidase activity and concomitantly increased photochemical quenching. Also, the effects inhibiting ascorbate peroxidase with KCN, and the KM values for ascorbate peroxidase and violaxanthin de-epoxidase of 0.36 and 3.1 mM, respectively, support this conclusion. These results indicate that regulation of xanthophyll-dependent non-radiative energy dissipation in the pigment bed of Photosystem II is modulated not only by lumen acidification but also by ascorbate availability.Abbreviations APO ascorbate peroxidase - MP Mehler ascorbate-peroxidase - NIG nigericin - NPQ non-photochemical quenching - Fo dark fluorescence - F fluorescence at any time - FM maximal fluorescence of the (dark) non-energized state - FM maximal fluorescence of the energized state - qP coefficient for photochemical fluorescence quenching - VDE violaxanthin de-epoxidase - k first-order rate constant for violaxanthin de-epoxidase activity  相似文献   

13.
Intact mesophyll and bundle sheath chloroplasts wee isolated from the NADP-malic enzyme type C4 plants maize, sorghum (monocots), and Flaveria trinervia (dicot) using enzymic digestion and mechanical isolation techniques. Bundle sheath chloroplasts of this C4 subgroup tend to be agranal and were previously reported to be deficient in photosystem II activity. However, following injection of intact bundle sheath chloroplasts into hypotonic medium, thylakoids had high Hill reaction activity, similar to that of mesophyll chloroplasts with the Hill oxidants dichlorophenolindophenol, p-benzoquinone, and ferricyanide (approximately 200 to 300 micromoles O2 evolved per mg chlorophyll per hour). In comparison to that of mesophyll chloroplasts, the Hill reaction activity of bundle sheath chloroplasts of maize and sorghum was labile and lost activity during assay. Bundle sheath chloroplasts of maize also exhibited some capacity for 3-phosphoglycerate dependent O2 evolution (29 to 58 micromoles O2 evolved per milligram chlorophyll per hour). Both the mesophyll and bundle sheath chloroplasts were equally effective in light dependent scavenging of hydrogen peroxide. The results suggest that both chloroplast types have noncyclic electron transport and the enzymology to reduce hydrogen peroxide to water. The activities of ascorbate peroxidase from these chloroplast types was consistent with their capacity to scavenge hydrogen peroxide.  相似文献   

14.
The rate of ascorbate and nicotinamide adenine dinucleotide plus hydrogen (NADH) cooxidation (i.e., their nonenzymic oxidation by peroxidase/H2O2-generated phenoxyl radicals of three hydroxycinnamates: caffeate, ferulate and p-coumarate) was studied in vitro. The reactions initiated by different sources of peroxidase (EC 1.11.1.7) [isolates from soybean (Glycine max L.) seed coat, maize (Zea mays L.) root-cell wall, and commercial horseradish peroxidase] were monitored. Native electrophoresis of samples and specific staining for peroxidase activity revealed various isoforms in each of the three enzyme sources. The peroxidase sources differed both in the rate of H2O2-dependent hydroxycinnamate oxidation and in the order of affinity for the phenolic substrates. The three hydroxycinnamates did not differ in their ability to cooxidize ascorbate, whereas NADH cooxidation was affected by substitution of the phenolic ring. Thus, p-coumarate was more efficient than caffeate in NADH cooxidation, with ferulate not being effective at all. Metal ions (Zn2+ and Al3+) inhibited the reaction of peroxidase with p-coumarate and affected the cooxidation rate of ascorbate and the peroxidase reaction in the same manner with all substrates used. However, inhibition of p-coumarate oxidation by metal ions did not affect NADH cooxidation rate. We propose that both the ascorbate and NADH cooxidation systems can function as mechanisms to scavenge H2O2 and regenerate phenolics in different cellular compartments, thus contributing to protection from oxidative damage. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Externally added quercetin (100 micromolar) was oxidized by intact spinach chloroplasts at a rate of 30 micromoles per mg chlorophyll per hour in the presence of 100 micromolar H2O2. The oxidation rate was increased by about 20% in a hypotonic reaction mixture. The thylakoid fraction also oxidized the flavonol in the presence of H2O2, and the rate was about 25% of that by intact chloroplasts. The oxidation of quercetin was inhibited by KCN and NaN3. Ascorbate, which permeates slowly across chloroplast envelope, only slightly suppressed the initial rate of quercetin oxidation by intact chloroplasts, while the oxidation by ruptured chloroplasts was suppressed by ascorbate by about 60%. Quercetin glycosides, quercitrin and rutin, were also oxidized by chloroplasts in the presence of H2O2. These results suggest that flavonols are oxidized by peroxidase-like activity in chloroplasts and that externally added flavonols can permeate into the stroma through the envelope of intact chloroplasts.  相似文献   

16.
Hydrogen peroxide (H2O2) scavenging systems of spruce (Picea abies) needles were investigated in both extracts obtained from the extracellular space and extracts of total needles. As assessed by the lack of activity of symplastic marker enzymes, the extracellular washing fluid was free from intracellular contaminations. In the extracellular washing fluid ascorbate, glutathione, cysteine, and high specific activities of guaiacol peroxidases were observed. Guaiacol peroxidases in the extracellular washing fluid and needle homogenates had the same catalytic properties, i.e. temperature optimum at 50°C, pH optimum in the range of pH 5 to 6 and low affinity for guaiacol (apparent Km = 40 millimolar) and H2O2 (apparent Km = 1-3 millimolar). Needle homogenates contained ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, glutathione reductase, and catalase, but not glutathione peroxidase activity. None of these activities was detected in the extracellular washing fluid. Ascorbate and glutathione related enzymes were freeze sensitive; ascorbate peroxidase was labile in the absence of ascorbate. The significance of extracellular antioxidants for the detoxification of injurious oxygen species is discussed.  相似文献   

17.
Cytochrome (cyt) b-559 absorbance changes in intact chloroplasts were deconvoluted using a previously described LED-Array-Spectrophotometer (Klughammer et al. (1990), Photosynth Res 25: 317–327). When intact chloroplasts were isolated in the presence of ascorbate, approx. 15% of the total cyt b-559 could be transiently oxidised by 200 M H2O2 in the dark. This fraction displays low-potential properties, as it can be also oxidised by menadione in the presence of 5 mM ascorbate. Heat pretreatment increased the size of this fraction by a factor of 3–4. Low concentrations of cyanide (in the M range) prolonged the oxidation time while high concentrations suppressed the oxidation (I50=1.5 mM KCN). The former KCN-effect relates to inhibition of ascorbate dependent H2O2-reduction which is catalysed by ascorbate peroxidase, whereas the latter effect reflects competition between H2O2 and CN for the same binding site at the cytochrome heme. In the light, much lower concentrations of H2O2 were required to obtain oxidation, the amplitude depending on light intensity and on the concentration of the added H2O2, but never exceeding approx. 15% of the total cyt b-559. In the light, but not in the dark, H2O2 also induced the transient oxidation of a cyt f fraction similar in size to the H2O2-oxidisable cyt b-559 fraction. In this case, H2O2 serves as an acceptor of Photosystem I in conjunction with the ascorbate peroxidase detoxification system. Light can also induce oxidation of a 15% cyt b-559 fraction without H2O2-addition, if nitrite is present as electron acceptor and the chloroplasts are depleted of ascorbate. It is concluded that light-induced cyt b-559 oxidation in vivo is likely to be restricted to the H2O2-oxidisable cyt b-559 LP fraction and is normally counteracted by ascorbate.Abbreviations APX ascorbate peroxidase - chl chlorophyll - cyt cytochrome - HP high potential - LP low potential - MDA monodehydroascorbate - PQ plastoquinone - PS I and PS II Photosystems I and II  相似文献   

18.
Ascorbate is present at high concentrations in neutrophils and becomes oxidized when the cells are stimulated. We have investigated the mechanism of oxidation by studying cultured HL60 cells and isolated neutrophils. Addition of H2O2 to ascorbate-loaded HL60 cells resulted in substantial oxidation of intracellular ascorbate. Oxidation was myeloperoxidase-dependent, but not attributable to hypochlorous acid, and can be explained by myeloperoxidase (MPO) exhibiting direct ascorbate peroxidase activity. When neutrophils were stimulated with phorbol myristate acetate, about 40% of their intracellular ascorbate was oxidized over 20 min. Ascorbate loss required NADPH oxidase activity but in contrast to the HL60 cells did not involve myeloperoxidase. It did not occur when exogenous H2O2 was added, was not inhibited by myeloperoxidase inhibitors, and was the same for normal and myeloperoxidase-deficient cells. Neutrophil ascorbate loss was enhanced when endogenous superoxide dismutase was inhibited by cyanide or diethyldithiocarbamate and appears to be due to oxidation by superoxide. We propose that in HL60 cells, MPO-dependent ascorbate oxidation occurs because cellular ascorbate can access newly synthesized MPO before it becomes packaged in granules: a mechanism not possible in neutrophils. In neutrophils, we estimate that ascorbate is capable of competing with superoxide dismutase for a small fraction of the superoxide they generate and propose that the superoxide responsible is likely to come from previously identified sites of intracellular NADPH oxidase activity. We speculate that ascorbate might protect the neutrophil against intracellular effects of superoxide generated at these sites.  相似文献   

19.
In this report the effect of hydrogen peroxide (H2O2) on peroxidase (POD) activity during leaf senescence was studied with and without phenylmethylsulfonyl fluoride (PMSF) pre-treatment in detached neem (Azadirachta indica A. juss) leaf chloroplasts. Increased POD activity was detected in natural and H2O2-promoted senescent leaf chloroplasts compared to untreated control mature green leaf chloroplasts. However, under H2O2 POD activity markedly increased at 1 day, and then significantly decreased until 4 days. In the presence of H2O2, PMSF, the induction of POD activity was alleviated at 1 day, whereas reduced after 4 days. In contrast, in the presence of H2O2, cycloheximide (CX), the induction of POD activity was reduced at 1 day, whereas alleviated after 4 days. The was a partial reduction in H2O2-induced POD activity with PMSF and CX, indicating the presence of pre-existing inactive PODs in chloroplasts. We also propose a new role for chloroplastidial proteases as activators of pre-existing inactive PODs during leaf senescence.Key words: chloroplast, leaf senescence, peroxidase, protease  相似文献   

20.
《Free radical research》2013,47(1):845-850
Oxidative stress responses were tested in the unicellular cyanobacterium synechococcus PCC 7942 (R-2). Cells were exposed to hydrogen peroxide, cumene hydroperoxide and high light intensities. The extent and time course of oxidative stress were related to the activities of ascorbate peroxidase and catalase. Ascorbate peroxidase was found to be the major enzyme involved in the removal of hydrogen peroxide under the tested oxidative stresse. Catalase activity was inhibited in cells, treated with high H2O2 concentrations, and was not induced under photooxidative stress. Catalase was specifically induced in cells treated with cumene hydroperoxide.

Superoxide dismutase activity increased under conditions generating superoxide, such as high light intensities. The induction of the antioxidative enzymes was light dependent and was inhibited by chloramphenicol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号