首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The serum level of the fourth component of complement (C4) in mice bearing the H-2k haplotype is only 1/10 to 1/20 of that of non-H-2k mice. We have analyzed C4 cDNA clones from B10.BR(H-2k) mouse liver and found aberrant C4 cDNA which contained a 200-base pair (bp) insertion between the exon 13 and exon 14 encoded sequences in addition to the normal C4 cDNA. The 5' 148 bp and the 3' 52 bp of this insert were derived from the B2 sequence, the short interspersed repeats of mouse genome, and the central part of intron 13, respectively. Sequence analysis of intron 13 of the C4k gene showed the presence of a complete copy of a B2 consensus sequence. The structure of aberrant C4 mRNA indicated that the possible 3' splice site in the B2 sequence and the cryptic 5' splice site in intron 13 were used. Both the insertion of the B2 sequence into intron 13 and the presence of aberrant mRNA in the liver were specific to H-2k-bearing mice, suggesting that the aberrant splicing due to the B2 insertion is the basis for low C4 expression in H-2k mice.  相似文献   

6.
The long interspersed repetitive family L1 was analysed in different species belonging to the genus Mus. It is shown to be highly conserved even in M.n. setulosus, which diverged from the other species around ten million years ago. The study of the linkage between diagnostic restriction sites in the various species and the sequence variations of different regions of the L1Md repeat shows that the L1 family undergoes concerted changes involving subsets of repeats. The rate at which this homogenization process occurs does not appear to be the same for all the subfamilies detected. The L1Md repeat in the twelfth intron of the serum albumin gene of Balb/c mice is shown to be a recent insertion. The role retroposon- and gene conversion-like events may play in the concerted evolution of the L1 family is discussed.  相似文献   

7.
8.
9.
10.
11.
T Kao  E Moon    R Wu 《Nucleic acids research》1984,12(19):7305-7315
We have isolated and sequenced the cytochrome oxidase subunit II gene from rice (Oryza sativa L. var Labelle). The overall structural organization of this gene is very similar to that of the maize gene. This gene contains an intron in a position identical to the intron in the maize gene. However, the intron in the rice gene is longer than that of the maize gene largely due to a 461 bp insertion sequence, which has inverted repeats at its termini and is flanked by direct repeats, characteristic of transposable elements. Apart from this insertion sequence, the remainder of the intron sequence is strikingly homologous to that of maize (98.6% homology), suggesting a possible functional or structural role. The coding regions of the two genes exhibit 99.5% nucleotide sequence homology and their deduced amino acid sequences are identical. Similarly, the 3'-noncoding regions, except for several small insertions and deletions, show complete sequence homology. On the contrary, no sequence homology is detected in the 5'-noncoding regions.  相似文献   

12.
Novel functional role of CA repeats and hnRNP L in RNA stability   总被引:6,自引:1,他引:5  
CA dinucleotide repeat sequences are very common in the human genome. We have recently demonstrated that the polymorphic CA repeats in intron 13 of the human endothelial nitric oxide synthase (eNOS) gene function as an unusual, length-dependent splicing enhancer. The CA repeat enhancer requires for its activity specific binding of hnRNP L. Here we show that in the absence of bound hnRNP L, the pre-mRNA is cleaved directly upstream of the CA repeats. The addition of recombinant hnRNP L restores RNA stability. CA repeats are both necessary and sufficient for this specific cleavage in the 5' adjacent RNA sequence. We conclude that-in addition to its role as a splicing activator-hnRNP L can act in vitro as a sequence-specific RNA protection factor. Based on the wide abundance of CA repetitive sequences in the human genome, this may represent a novel, generally important role of this abundant hnRNP protein.  相似文献   

13.
The complete nucleotide sequence of L1Md-A13, a 6372 base-pair (bp) member of the L1Md repetitive family isolated from a BALB/c mouse genomic DNA library, is reported. The nucleotide sequence of 4331 bp from the 5' end of L1Md-9, which is located in the beta-globin complex of the C57BL/10 mouse, is also reported. Parsimony analysis of these sequences plus two previously reported L1Md sequences allows the determination of an ancestral L1Md sequence. Analysis of the L1Md population indicates that this ancestral sequence is likely to represent a functional L1 sequence. This ancestral sequence confirms that the length (1137 bp and 3900 bp) and relationship (14 bp overlap) of the two large open reading frames previously reported are conserved features of the L1Md family. It also allows the determination of an ancestral amino acid sequence for these two open reading frames. Full-length L1Md elements have one of two sequences tandemly repeated at the 5' end. These two monomers are called A-type and F-type. Our data define the 5' end of A-type full-length L1Md elements. L1Md elements of the A-type have varying numbers of tandemly repeated 208 bp monomers, but each element ends about 78 bp from the 5' end of the terminal 208 bp monomer.  相似文献   

14.
The structures of two cloned recombinants of bacteriophage lambda and mouse genomic DNA (lambda mA14 and lambda mA36) were compared by electron microscopic analysis of various heteroduplex DNAs, restriction endonuclease mapping and nucleotide sequence determination. Each clone was shown to be derived from a distinct region of the mouse genome, but the two exhibited structural similarity over a region of at least 11,000 bases which included a cytoskeletal gamma-actin processed pseudogene of approximately 1800 bases. It is concluded that the two genomic regions were derived from a common ancestral region by duplication or amplification. The homologous regions of the two clones contained members of the long interspersed repetitive L1Md (long interspersed repeated sequence 1 of Mus domesticus) family lying in opposite orientation to one another, so that single-stranded DNA from the clones could form intra-molecular heteroduplexes. The complete nucleotide sequences of three L1Md members in lambda mA14 were determined. The longest of these (L1Md-14LH) had inserted into the gamma-actin processed pseudogene and, although it contained internal deletions, appeared to possess intact 5' and 3' ends. A second L1Md member (L1Md-14RH1) also appeared to have an intact 5' end but had lost most of its 3' portion, and a third member (L1Md-14RH2) was an internal fragment. The repeated sequence at the 5' ends of L1Md-14LH and L1Md-14RH1 showed these to be members of the L1Md-A family.  相似文献   

15.
Sequence studies of repetitive DNA elements approximately 6 kb 3' of the mouse immunoglobulin CK region gene show that the R element located there (Gebhard et al. (1982) J. Mol. Biol. 157, 453-471) is adjacent to a 500 base pair long element which shows 80% homology to the BAM5 element sequenced by Fanning (Nuc. Acids Res. (1982), 10, 5003-5013). Neither the BAM5 element nor the R element itself is surrounded by a direct repeat, but the composite element (BAM5 + R) is surrounded by a 15 base pair direct repeat (with one mismatch). Direct repeats, consisting of target site sequences that surround a repetitive DNA element, are thought to arise during the insertion of the element at that site. It therefore appears that the BAM5 and R elements interacted and inserted as a linked entity. The existence of other BAM5/R composites throughout the mouse lambda chain locus indicates that BAM5-R cooperation is not a rare event.  相似文献   

16.
17.
18.
Summary Polymerase chain reaction and direct sequencing were used to investigate an amplified DNA fragment containing the suspected polymorphic site of all known intragenic restriction fragment length polymorphisms (RFLPs) within the human tissue-type plasminogen activator (TPA) gene. Sequence data obtained showed that these RFLPs were all generated by the presence or absence of one of the two Alu sequences located in intron h of the human TPA gene. Furthermore, one of the direct repeats flanking this Alu sequence was absent in the minor allele. In addition to indicating the presence of an Alu insertion in an ancestral human TPA gene, these findings suggest a slip-replication mechanism for the deletion of this Alu repeat, once inserted into the gene. As both alleles have been observed in similar frequencies among different ethnic groups, the insertion or subsequent deletion of this Alu sequence in the human TPA gene must have occurred early in human evolution.  相似文献   

19.
An analysis of the nuclear β-fibrinogen intron 7 locus from 30 taxa representing 12 placental orders of mammals reveals the enriched occurrences of short interspersed element (SINE) insertion events. Mammalian-wide interspersed repeats (MIRs) are present at orthologous sites of all examined species except those in the order Rodentia. The higher substitution rate in mouse and a rare MIR deletion from rat account for the absence of MIR in the rodents. A minimum of five lineage-specific SINE sequences are also found to have independently inserted into this intron in Carnivora, Artiodactyla and Lagomorpha. In the case of Carnivora, the unique amplification pattern of order-specific CAN SINE provides important evidence for the “pan-carnivore” hypothesis of this repeat element and reveals that the CAN SINE family may still be active today. Particularly interesting is the finding that all identified lineage-specific SINE elements show a strong tendency to insert within or in very close proximity to the preexisting MIRs for their efficient integrations, suggesting that the MIR element is a hot spot for successive insertions of other SINEs. The unexpected MIR excision as a result of a random deletion in the rat intron locus and the non-random site targeting detected by this study indicate that SINEs actually have a greater insertional flexibility and regional specificity than had previously been recognized. Implications for SINE sequence evolution upon and following integration, as well as the fascinating interactions between retroposons and the host genomes are discussed.  相似文献   

20.
Constitutional chromosomal translocations are relatively common causes of human morbidity, yet the DNA double-strand break (DSB) repair mechanisms that generate them are incompletely understood. We cloned, sequenced and analyzed the breakpoint junctions of a familial constitutional reciprocal translocation t(9;11)(p24;q23). Within the 10-kb region flanking the breakpoints, chromosome 11 had 25% repeat elements, whereas chromosome 9 had 98% repeats, 95% of which were L1-type LINE elements. The breakpoints occurred within an L1-type repeat element at 9p24 and at the 3'-end of an Alu sequence at 11q23. At the breakpoint junction of derivative chromosome 9, we discovered an unusually large 41-bp insertion, which showed 100% identity to 12S mitochondrial DNA (mtDNA) between nucleotides 896 and 936 of the mtDNA sequence. Analysis of the human genome failed to show the preexistence of the inserted sequence at normal chromosomes 9 and 11 breakpoint junctions or elsewhere in the genome, strongly suggesting that the insertion was derived from human mtDNA and captured into the junction during the DSB repair process. To our knowledge, these findings represent the first observation of spontaneous germ line insertion of modern human mtDNA sequences and suggest that DSB repair may play a role in inter-organellar gene transfer in vivo. Our findings also provide evidence for a previously unrecognized insertional mechanism in human, by which non-mobile extra-chromosomal fragments can be inserted into the genome at DSB repair junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号