首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1993,120(6):1393-1403
We have identified, characterized and cloned a novel mammalian myosin-I motor-molecule, called myr 1 (myosin-I from rat). Myr 1 exists in three alternative splice forms: myr 1a, myr 1b, and myr 1c. These splice forms differ in their numbers of putative calmodulin/light chain binding sites. Myr 1a-c were selectively released by ATP, bound in a nucleotide-dependent manner to F-actin and exhibited amino acid sequences characteristic of myosin-I motor domains. In addition to the motor domain, they contained a regulatory domain with up to six putative calmodulin/light chain binding sites and a tail domain. The tail domain exhibited 47% amino acid sequence identity to the brush border myosin-I tail domain, demonstrating that myr 1 is related to the only other mammalian myosin-I motor molecule that has been characterized so far. In contrast to brush border myosin-I which is expressed in mature enterocytes, myr 1 splice forms were differentially expressed in all tested tissues. Therefore, myr 1 is the first mammalian myosin-I motor molecule with a widespread tissue distribution in neonatal and adult tissues. The myr 1a splice form was preferentially expressed in neuronal tissues. Its expression was developmentally regulated during rat forebrain ontogeny and subcellular fractionation revealed an enrichment in purified growth cone particles, data consistent with a role for myr 1a in neuronal development.  相似文献   

2.
We report the identification and characterization of myr 4 (myosin from rat), the first mammalian myosin I that is not closely related to brush border myosin I. Myr 4 contains a myosin head (motor) domain, a regulatory domain with light chain binding sites and a tail domain. Sequence analysis of myosin I head (motor) domains suggested that myr 4 defines a novel subclass of myosin I''s. This subclass is clearly different from the vertebrate brush border myosin I subclass (which includes myr 1) and the myosin I subclass(es) identified from Acanthamoeba castellanii and Dictyostelium discoideum. In accordance with this notion, a detailed sequence analysis of all myosin I tail domains revealed that the myr 4 tail is unique, except for a newly identified myosin I tail homology motif detected in all myosin I tail sequences. The Ca(2+)-binding protein calmodulin was demonstrated to be associated with myr 4. Calmodulin binding activity of myr 4 was mapped by gel overlay assays to the two consecutive light chain binding motifs (IQ motifs) present in the regulatory domain. These two binding sites differed in their Ca2+ requirements for optimal calmodulin binding. The NH2-terminal IQ motif bound calmodulin in the absence of free Ca2+, whereas the COOH-terminal IQ motif bound calmodulin in the presence of free Ca2+. A further Ca(2+)-dependent calmodulin binding site was mapped to amino acids 776-874 in the myr 4 tail domain. These results demonstrate a differential Ca2+ sensitivity for calmodulin binding by IQ motifs, and they suggest that myr 4 activity might be regulated by Ca2+/calmodulin. Myr 4 was demonstrated to be expressed in many cell lines and rat tissues with the highest level of expression in adult brain tissue. Its expression was developmentally regulated during rat brain ontogeny, rising 2-3 wk postnatally, and being maximal in adult brain. Immunofluorescence localization demonstrated that myr 4 is expressed in subpopulations of neurons. In these neurons, prominent punctate staining was detected in cell bodies and apical dendrites. A punctate staining that did not obviously colocalize with the bulk of F- actin was also observed in C6 rat glioma cells. The observed punctate staining for myr 4 is reminiscent of a membranous localization.  相似文献   

3.
Mehta N  Loria PM  Hobert O 《Genetics》2004,166(3):1253-1267
Axon pathfinding and target recognition are highly dynamic and tightly regulated cellular processes. One of the mechanisms involved in regulating protein activity levels during axonal and synaptic development is protein ubiquitination. We describe here the isolation of several Caenorhabditis elegans mutants, termed eno (ectopic/erratic neurite outgrowth) mutants, that display defects in axon outgrowth of specific neuron classes. One retrieved mutant is characterized by abnormal termination of axon outgrowth in a subset of several distinct neuron classes, including ventral nerve cord motor neurons, head motor neurons, and mechanosensory neurons. This mutant is allelic to lin-23, which codes for an F-box-containing component of an SCF E3 ubiquitin ligase complex that was previously shown to negatively regulate postembryonic cell divisions. We demonstrate that LIN-23 is a broadly expressed cytoplasmically localized protein that is required autonomously in neurons to affect axon outgrowth. Our newly isolated allele of lin-23, a point mutation in the C-terminal tail of the protein, displays axonal outgrowth defects similar to those observed in null alleles of this gene, but does not display defects in cell cycle regulation. We have thus defined separable activities of LIN-23 in two distinct processes, cell cycle control and axon patterning. We propose that LIN-23 targets distinct substrates for ubiquitination within each process.  相似文献   

4.
In an effort to determine diversity and function of mammalian myosin I molecules, we report here the cloning and characterization of myr 3 (third unconventional myosin from rat), a novel mammalian myosin I from rat tissues that is related to myosin I molecules from protozoa. Like the protozoan myosin I molecules, myr 3 consists of a myosin head domain, a single light chain binding motif, and a tail region that includes a COOH-terminal SH3 domain. However, myr 3 lacks the regulatory phosphorylation site present in the head domain of protozoan myosin I molecules. Evidence was obtained that the COOH terminus of the tail domain is involved in regulating F-actin binding activity of the NH2-terminal head domain. The light chain of myr 3 was identified as the Ca(2+)-binding protein calmodulin. Northern blot and immunoblot analyses revealed that myr 3 is expressed in many tissues and cell lines. Immunofluorescence studies with anti-myr 3 antibodies in NRK cells demonstrated that myr 3 is localized in the cytoplasm and in elongated structures at regions of cell-cell contact. These elongated structures contained F-actin and alpha-actinin but were devoid of vinculin. Incubation of NRK cells with Con A stimulated the formation of myr 3-containing structures along cell-cell contacts. These results suggest for myr 3 a function mediated by cell-cell contact.  相似文献   

5.
Regulation of axon growth, guidance, and branching is essential for constructing a correct neuronal network. R-Ras, a Ras-family small GTPase, has essential roles in axon formation and guidance. During axon formation, R-Ras activates a series of phosphatidylinositol 3-kinase signaling, inducing activation of a microtubule-assembly promoter-collapsin response mediator protein-2. However, signaling molecules linking R-Ras to actin cytoskeleton-regulating axonal morphology remain obscure. Here we identify afadin, an actin-binding protein harboring Ras association (RA) domains, as an effector of R-Ras inducing axon branching through F-actin reorganization. We observe endogenous interaction of afadin with R-Ras in cortical neurons during the stage of axonal development. Ectopic expression of afadin increases axon branch number, and the RA domains and the carboxyl-terminal F-actin binding domain are required for this action. RNA interference knockdown experiments reveal that knockdown of endogenous afadin suppressed both basal and R-Ras-mediated axon branching in cultured cortical neurons. Subcellular localization analysis shows that active R-Ras-induced translocation of afadin and its RA domains is responsible for afadin localizing to the membrane and inducing neurite development in Neuro2a cells. Overall, our findings demonstrate a novel signaling pathway downstream of R-Ras that controls axon branching.  相似文献   

6.
The hindbrain of the chick embryo contains three classes of motor neurons: somatic, visceral, and branchial motor. During development, somata of neurons in the last two classes undergo a laterally directed migration within the neuroepithelium; somata translocate towards the nerve exit points, through which motor axons are beginning to extend into the periphery. All classes of motor neuron are immunopositive for the SC1/DM-GRASP cell surface glycoprotein. We have examined the relationship between patterns of motor neuron migration, axon outgrowth, and expression of the SC1/DM-GRASP mRNA and protein, using anterograde or retrograde axonal tracing, immunohistochemistry, and in situ hybridization. We find that as motor neurons migrate laterally, SC1/DM-GRASP is down-regulated, both on neuronal somata and axonal surfaces. Within individual motor nuclei, these lateral, more mature neurons are found to possess longer axons than the young, medial cells of the population. Labelling of sensory or motor axons growing into the second branchial arch also shows that motor axons reach the muscle plate first, and that SC1/DM-GRASP is expressed on the muscle at the time growth cones arrive. 1994 John Wiley & Sons, Inc.  相似文献   

7.
RE Huettl  T Haehl  AB Huber 《PloS one》2012,7(7):e41095
During development, fibroblast growth factors (FGF) are essential for early patterning events along the anterior-posterior axis, conferring positional identity to spinal motor neurons by activation of different Hox codes. In the periphery, signaling through one of four fibroblast growth factor receptors supports the development of the skeleton, as well as induction and maintenance of extremities. In previous studies, FGF receptor 2 (FGFR2) was found to interact with axon bound molecules involved in axon fasciculation and extension, thus rendering this receptor an interesting candidate for the promotion of proper peripheral innervation. However, while the involvement of FGFR2 in limb bud induction has been extensively studied, its role during axon elongation and formation of distinct nervous projections has not been addressed so far. We show here that motor neurons in the spinal cord express FGFR2 and other family members during the establishment of motor connections to the forelimb and axial musculature. Employing a conditional genetic approach to selectively ablate FGFR2 from motor neurons we found that the patterning of motor columns and the expression patterns of other FGF receptors and Sema3A in the motor columns of mutant embryos are not altered. In the absence of FGFR2 signaling, pathfinding of motor axons is intact, and also fasciculation, distal advancement of motor nerves and gross morphology and positioning of axonal projections are not altered. Our findings therefore show that FGFR2 is not required cell-autonomously in motor neurons during the formation of initial motor projections towards limb and axial musculature.  相似文献   

8.
Phosphatidylinositol 3-kinase (PI3K) activity is known to be required for the extension of embryonic sensory axons. Inhibition of PI3K has also been shown to mediate axon retraction and growth cone collapse in response to semaphorin 3A. However, the effects of inhibiting PI3K on the neuronal cytoskeleton are not well characterized. We have previously reported that semaphorin 3A-induced axon retraction involves activation of myosin II, the formation of an intra-axonal F-actin bundle cytoskeleton, and blocks the formation of F-actin patches that serve as precursors to filopodial formation in axons. We now report that inhibition of PI3K results in activation of myosin II in axons. Inhibition of myosin II activity, or its upstream regulatory kinase RhoA-kinase, blocked axon retraction induced by inhibition of PI3K. In addition, inhibition of PI3K also induced intra-axonal F-actin bundles, which likely serve as a substratum for myosin II-based force generation during axon retraction. In axons, filopodia are formed from axonal F-actin patch precursors. Analysis of axonal F-actin patch formation in eYFP-actin expressing neurons revealed that inhibition of PI3K blocked formation of axonal F-actin patches, and thus filopodial formation. These data provide insights into the regulation of the neuronal cytoskeleton by PI3K and are consistent with the notion that decreased levels of PI3K activity mediate axon retraction and growth cone collapse in response to semaphorin 3A.  相似文献   

9.
Zhang C  Li D  Ma Y  Yan J  Yang B  Li P  Yu A  Lu C  Ma X 《Journal of cellular biochemistry》2012,113(7):2296-2307
Hereditary spastic paraplegia (HSP) is a neurodegenerative disorder characterized by retrograde axonal degeneration that primarily affects long spinal neurons. The gene encoding spastin has a well-established association with HSP, and protrudin is a known binding partner of spastin. Here, we demonstrate that the N-terminal domain of protrudin mediates the interaction with spastin, which is responsible for neurite outgrowth. We show that spastin promotes protrudin-dependent neurite outgrowth in PC12 cells. To further confirm these physiological functions in vivo, we microinjected zebrafish embryos with various protrudin/spastin mRNA and morpholinos. The results suggest that the spinal cord motor neuron axon outgrowth of zebrafish is regulated by the interaction between spastin and protrudin. In addition, the putative HSP-associated protrudinG191V mutation was shown to alter the subcellular distribution and impair the yolk sac extension of zebrafish, but without significant defects in neurite outgrowth both in PC12 cells and zebrafish. Taken together, our findings indicate that protrudin interacts with spastin and induces axon formation through its N-terminal domain. Moreover, protrudin and spastin may work together to play an indispensable role in motor axon outgrowth.  相似文献   

10.
The actin filament (F-actin) cytoskeleton is thought to be required for normal axon extension during embryonic development. Whether this is true of axon regeneration in the mature nervous system is not known, but a progressive simplification of growth cones during development has been described and where specifically investigated, mature spinal cord axons appear to regenerate without growth cones. We have studied the cytoskeletal mechanisms of axon regeneration in developmentally early and late chicken sensory neurons, at embryonic day (E) 7 and 14 respectively. Depletion of F-actin blocked the regeneration of E7 but not E14 sensory axons in vitro. The differential sensitivity of axon regeneration to the loss of F-actin and growth cones correlated with endogenous levels of F-actin and growth cone morphology. The growth cones of E7 axons contained more F-actin and were more elaborate than those of E14 axons. The ability of E14 axons to regenerate in the absence of F-actin and growth cones was dependent on microtubule tip polymerization. Importantly, while the regeneration of E7 axons was strictly dependent on F-actin, regeneration of E14 axons was more dependent on microtubule tip polymerization. Furthermore, E14 axons exhibited altered microtubule polymerization relative to E7, as determined by imaging of microtubule tip polymerization in living neurons. These data indicate that the mechanism of axon regeneration undergoes a developmental switch between E7 and E14 from strict dependence on F-actin to a greater dependence on microtubule polymerization. Collectively, these experiments indicate that microtubule polymerization may be a therapeutic target for promoting regeneration of mature neurons.  相似文献   

11.
12.
13.
The sea lamprey has been used as a model for the study of axonal regeneration after spinal cord injury. Previous studies have suggested that, unlike developing axons in mammal, the tips of regenerating axons in lamprey spinal cord are simple in shape, packed with neurofilaments (NFs), and contain very little F-actin. Thus it has been proposed that regeneration of axons in the central nervous system of mature vertebrates is not based on the canonical actin-dependent pulling mechanism of growth cones, but involves an internal protrusive force, perhaps generated by the transport or assembly of NFs in the distal axon. In order to assess this hypothesis, expression of NFs was manipulated by antisense morpholino oligonucleotides (MO). A standard, company-supplied MO was used as control. Axon retraction and regeneration were assessed at 2, 4 and 9 weeks after MOs were applied to a spinal cord transection (TX) site. Antisense MO inhibited NF180 expression compared to control MO. The effect of inhibiting NF expression on axon retraction and regeneration was studied by measuring the distance of axon tips from the TX site at 2 and 4 weeks post-TX, and counting the number of reticulospinal neurons (RNs) retrogradely labeled by fluorescently-tagged dextran injected caudal to the injury at 9 weeks post-TX. There was no statistically significant effect of MO on axon retraction at 2 weeks post-TX. However, at both 4 and 9 weeks post-TX, inhibition of NF expression inhibited axon regeneration.  相似文献   

14.
We have analysed the axonal sorting signals of amyloid precursor protein (APP). Wild-type and mutant versions of human APP were expressed in hippocampal neurons using the Semliki forest virus system. We show that wild-type APP and mutations implicated in Alzheimer's disease and another brain beta-amyloidosis are sorted to the axon. By analysis of deletion mutants we found that the membrane-inserted APP ectodomain but not the cytoplasmic tail is required for axonal sorting. Systematic deletions of the APP ectodomain identified two regions required for axonal delivery: one encoded by exons 11-15 in the carbohydrate domain, the other encoded by exons 16-17 in the juxtamembraneous beta-amyloid domain. Treatment of the cells with the N-glycosylation inhibitor tunicamycin induced missorting of wild-type APP, supporting the importance of glycosylation in axonal sorting of APP. The data revealed a hierarchy of sorting signals on APP: the beta-amyloid-dependent membrane proximal signal was the major contributor to axonal sorting, while N-glycosylation had a weaker effect. Furthermore, recessive somatodendritic signals, most likely in the cytoplasmic tail, directed the protein to the dendrites when the ectodomain was deleted. Analysis of detergent solubility of APP and another axonally delivered protein, hemagglutinin, demonstrated that only hemagglutinin formed CHAPS-insoluble complexes, suggesting distinct mechanisms of axonal sorting for these two proteins. This study is the first delineation of sorting requirements of an axonally targeted protein in polarized neurons and indicates that the beta-amyloid domain plays a major role in axonal delivery of APP.  相似文献   

15.
16.
Neuropilin (Nrp), a cell surface receptor for class 3 semaphorins and for certain heparin forms of vascular endothelial growth factors, functions in many biological processes including axon guidance, neural cell migration and angiogenesis in the development of the nervous system and the cardiovascular system. To understand the role of neuropilins in zebrafish embryogenesis, we have cloned three zebrafish neuropilin homologues, nrp1b, nrp2a and nrp2b. Based on synteny, zebrafish nrp1b and the previously cloned nrp1a are orthologous to human nrp1, and zebrafish nrp2a and 2b orthologous to human nrp2. We have characterized the expression patterns of these four zebrafish neuropilin genes in wild type embryos from the beginning of somitogenesis to 48 h post-fertilization. Zebrafish nrp1a is expressed in the neural tube including telencephalon, epithalamus, cells along the axonal trajectory of the posterior commissure and the medial longitudinal fascicle, hindbrain neurons, vagus motor neurons and spinal motoneurons. Zebrafish nrp1b is expressed in the nose, the cranial neural crest cell (NCC) derived tissue underlying the hypothalamus, endothelial precursors and the trunk and tail vasculature. Zebrafish nrp2a is expressed in telencephalon, anterior pituitary, oculomotor and trochlear motor neurons, cells along the supra-optic and posterior commissures, hindbrain rhombomere 1, hindbrain neurons, cranial NCCs and sclerotome. Zebrafish nrp2b is expressed in telencephalon, thalamus, hypothalamus, epiphysis, cells along the anterior and posterior commissures, post-optic and supra-optic commissures and the olfactory axonal trajectory, hindbrain neurons, cranial NCCs, somites and spinal cord neurons.  相似文献   

17.
18.
The axonal survival of motor neuron (a-SMN) protein is a truncated isoform of SMN1, the spinal muscular atrophy (SMA) disease gene. a-SMN is selectively localized in axons and endowed with remarkable axonogenic properties. At present, the role of a-SMN in SMA is unknown. As a first step to verify a link between a-SMN and SMA, we investigated by means of over-expression experiments in neuroblastoma-spinal cord hybrid cell line (NSC34) whether SMA pathogenic mutations located in the N-terminal part of the protein affected a-SMN function. We demonstrated here that either SMN1 missense mutations or small intragenic re-arrangements located in the Tudor domain consistently altered the a-SMN capability of inducing axonal elongation in vitro. Mutated human a-SMN proteins determined in almost all NSC34 motor neurons the growth of short axons with prominent morphologic abnormalities. Our data indicate that the Tudor domain is critical in dictating a-SMN function possibly because it is an association domain for proteins involved in axon growth. They also indicate that Tudor domain mutations are functionally relevant not only for FL-SMN but also for a-SMN, raising the possibility that also a-SMN loss of function may contribute to the pathogenic steps leading to SMA.  相似文献   

19.
Upon arrival at their synaptic targets, axons slow down their growth and extensively remodel before the assembly of presynaptic boutons. Wnt proteins are target-derived secreted factors that promote axonal remodelling and synaptic assembly. In the developing spinal cord, Wnts secreted by motor neurons promote axonal remodelling of NT-3 responsive dorsal root ganglia neurons. Axon remodelling induced by Wnts is characterised by growth cone pausing and enlargement, processes that depend on the re-organisation of microtubules. However, the contribution of the actin cytoskeleton has remained unexplored. Here, we demonstrate that Wnt3a regulates the actin cytoskeleton by rapidly inducing F-actin accumulation in growth cones from rodent DRG neurons through the scaffold protein Dishevelled-1 (Dvl1) and the serine-threonine kinase Gsk3β. Importantly, these changes in actin cytoskeleton occurs before enlargement of the growth cones is evident. Time-lapse imaging shows that Wnt3a increases lamellar protrusion and filopodia velocity. In addition, pharmacological inhibition of actin assembly demonstrates that Wnt3a increases actin dynamics. Through a yeast-two hybrid screen, we identified the actin-binding protein Eps8 as a direct interactor of Dvl1, a scaffold protein crucial for the Wnt signalling pathway. Gain of function of Eps8 mimics Wnt-mediated axon remodelling, whereas Eps8 silencing blocks the axon remodelling activity of Wnt3a. Importantly, blockade of the Dvl1-Eps8 interaction completely abolishes Wnt3a-mediated axonal remodelling. These findings demonstrate a novel role for Wnt-Dvl1 signalling through Eps8 in the regulation of axonal remodeling.  相似文献   

20.
Astroglial cells participate in a variety of developmental events during neuronal morphogenesis. We have shown that axonal, but not dendritic, outgrowth of spinal cord neurons can be promoted by a diffusible factor or factors secreted from target region-derived cerebellar astroglia in vitro in comparison with spinal astroglia. In the present study, we examined the involvement of protein kinase C (PKC) in the axon-promoting effect by astroglia. The inhibition of PKC by sphingosine or by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) at high concentration greatly reduced the mean axonal length of spinal neurons cultured in medium conditioned by cerebellar astroglia (SCn-CBg), while activation of PKC by TPA at low concentration, or by retinoic acid, was not additive to the glial effect. The activation of PKC by TPA or retinoic acid promoted axon growth of spinal neurons cultured in medium conditioned by spinal astroglia (SCn-SCg), which otherwise would not be as supportive for axon growth as cerebellar astroglia. Western blotting and PKC activity assays showed that there was a trend for increased PKC activity and protein levels (in particular, PKCβ) in SCn-CBg cultures, which correlated with enhanced axon growth. Inhibition of PKC by sphingosine appeared to decrease protein levels, especially PKCβ, which correlated with suppressed axon outgrowth. In SCn-SCg cultures, phorbol ester activation of PKC increased both activity and protein levels of both PKCα and PKCβ. This activation correlated with stimulated axonal outgrowth. These results suggest that the glial signaling that regulates specific axonal outgrowth by target astroglia is mediated in part by the PKC second messenger system. © 1994 John Wiley & Sons, Inc. 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号