首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We have molecularly cloned a feline leukemia virus (FeLV) (clone 33) from a domestic cat with acute myeloid leukemia (AML). The long terminal repeat (LTR) of this virus, like the LTRs present in FeLV proviruses from other cats with AML, contains an unusual structure in its U3 region upstream of the enhancer (URE) consisting of three tandem direct repeats of 47 bp. To test the disease potential and specificity of this unique FeLV LTR, we replaced the U3 region of the LTR of the erythroleukemia-inducing Friend murine leukemia virus (F-MuLV) with that of FeLV clone 33. When the resulting virus, F33V, was injected into newborn mice, almost all of the mice eventually developed hematopoietic malignancies, with a significant percentage being in the myeloid lineage. This is in contrast to mice injected with an F-MuLV recombinant containing the U3 region of another FeLV that lacks repetitive URE sequences, none of which developed myeloid malignancies. Examination of tumor proviruses from F33V-infected mice failed to detect any changes in FeLV U3 sequences other than that in the URE. Like F-MuLV-infected mice, those infected with the F-MuLV/FeLV recombinants were able to generate and replicate mink cell focus-inducing viruses. Our studies are consistent with the idea that the presence of repetitive sequences upstream of the enhancer in the LTR of FeLV may favor the activation of this promoter in myeloid cells and contribute to the development of malignancies in this hematopoietic lineage.  相似文献   

3.
4.
M Grez  M Zrnig  J Nowock    M Ziegler 《Journal of virology》1991,65(9):4691-4698
The expression of Moloney murine leukemia virus (Mo-MuLV) and Mo-MuLV-derived vectors is restricted in undifferentiated mouse embryonal carcinoma and embryonal stem (ES) cells. We have previously described the isolation of retroviral mutants with host range properties expanded to embryonal cell lines. One of these mutants, the murine embryonic stem cell virus (MESV), is expressed in ES cell lines. Expression of MESV in these cells relies on DNA sequence motifs within the enhancer region of the viral long terminal repeat (LTR). Here we show that replacement of the Mo-MuLV enhancer region by sequences derived from the MESV LTR results in the activation of the Mo-MuLV LTR in ES cells. The enhancer regions of MESV and Mo-MuLV differ by seven point mutations. Of these, a single point mutation at position -166 is sufficient to activate the Mo-MuLV LTR and to confer enhancer-dependent expression to Mo-MuLV-derived retroviral vectors in ES cells. This point mutation creates a recognition site for a sequence-specific DNA-binding factor present in nuclear extracts of ES cells. This factor was found by functional assays to be the murine equivalent to human Sp1.  相似文献   

5.
6.
7.
8.
Feline leukemia virus (FeLV) is a type-C retrovirus associated with lymphoid and hematopoietic malignancies in cats. The FeLV-induced tumors are thought to be caused, at least in part, by somatically acquired insertional mutagenesis in which the integrated provirus may activate a proto-oncogene or disrupt a tumor suppressor gene. This study was undertaken to enumerate and map the acquired proviral insertions in the genome of a feline thymic lymphoma cell line (FT-1) infected with FeLV. Fluorescence in situ hybridization (FISH) combined with tyramide signal amplification was applied on the chromosome specimen of FT-1 cells and normal cat lymphocytes, with an entire FeLV-A genome used as a probe. Specific hybridization signals were detected from only the metaphases of the FT-1 cells, not from those of normal cat lymphocytes. Statistically based on the Poisson's distribution, at least six loci of chromosomal regions, A2p23-p22, B2p15-p14, B4p15-p14, D4q23-q24, E1p14-p13, and E2p13-p12, appeared to be positive for FeLV integration. Consistently, Southern blot hybridization analysis using an FeLV LTR-U3 probe specific for exogenous FeLV showed the integration of at least six FeLV proviral genomes in FT-1 cells. The cytogenetic technique employed here will provide valuable molecular tags to reveal unidentified tumor-associated genes in FeLV-associated tumor cells.  相似文献   

9.
10.
11.
12.
Gammaretrovirus receptors have been suggested to contain the necessary determinants to mediate virus binding and entry. Here, we show that murine NIH 3T3 and baby hamster kidney (BHK) cells overexpressing receptors for subgroup A, B, and C feline leukemia viruses (FeLVs) are weakly susceptible (10(1) to 10(2) CFU/ml) to FeLV pseudotype viruses containing murine leukemia virus (MLV) core (Gag-Pol) proteins, whereas FeLV receptor-expressing murine Mus dunni tail fibroblast (MDTF) cells are highly susceptible (10(4) to 10(6) CFU/ml). However, NIH 3T3 cells expressing the FeLV subgroup B receptor PiT1 are highly susceptible to gibbon ape leukemia virus pseudotype virus, which differs from the FeLV pseudotype viruses only in the envelope protein. FeLV resistance is not caused by a defect in envelope binding, low receptor expression levels, or N-linked glycosylation. Resistance is not alleviated by substitution of the MLV core in the FeLV pseudotype virus with FeLV core proteins. Interestingly, FeLV resistance is alleviated by fusion of receptor-expressing NIH 3T3 and BHK cells with MDTF or human TE671 cells, suggesting the absence of an additional cellular component in NIH 3T3 and BHK cells that is required for FeLV infection. The putative FeLV-specific cellular component is not a secreted factor, as MDTF conditioned medium does not alleviate the block to FeLV infection. Together, our findings suggest that FeLV infection requires an additional envelope-dependent cellular component that is absent in NIH 3T3 and BHK cells but that is present in MDTF and TE671 cells.  相似文献   

13.
We tested the ability of sequences in the long terminal repeat (LTR) of a mink cell focus-forming (MCF) murine leukemia virus to function as an enhancer in a cell-type-specific manner. In a stable transformation assay, the MCF or Akv LTR and the simian virus 40 enhancer had similar activities in murine fibroblasts. In contrast, the MCF LTR had a significantly greater activity in murine T lymphoid cells than did either the simian virus 40 enhancer or the Akv LTR.  相似文献   

14.
Humoral and cellular cytotoxic immune mechanisms of cats were compared against feline leukemia virus (FeLV)- and feline sarcoma virus (FeSV)-transformed cells. The groups of animals studied were nonexposed control cats; FeLV-infected immune or viremic tumor-bearing cats; FeSV-inoculated tumor progressor or regressor cats, and cats immunized with FeSV-transformed autochthonous fibroblasts (ATF). Sera containing complement-dependent antibodies (CDA), which lysed FeLV-producer lymphoma lines, had no cytotoxic effects when tested against FeLV-producer FeSV-transformed fibroblasts. Sera with lytic CDA activity were also tested for antibody-dependent cellular cytotoxic (ADCC) effects with peripheral blood lymphocytes (PBL) from nonimmune cats. No ADCC activity was detected against either lymphoid or fibroblast target lines. To demonstrate that cat PBL contained ADCC effector cells, antibody-coated murine target cells were employed and positive results obtained. Natural killer (NK) assays were performed using PBL from normal and tumor-bearing cats. Cytotoxic effects were only detectable to FeLV-producer lymphomas, and comparable levels of NK activity were found in normal and lymphoid tumor-bearing animals. In cats immunized with ATF, a population of effector cells was found in peripheral blood which had functional characteristics of cytotoxic T lymphocytes (CTL). The killing of ATF by CTL-like cells was not inhibited by FeLV/FeSV immune sera or by sera from autochthonous immune cats. The comparative importance of humoral and cellular cytotoxic mechanisms against FeLV- and FeSV-induced tumors is discussed.  相似文献   

15.
Feline leukemia virus (FeLV) is a horizontally transmitted virus that causes a variety of proliferative and immunosuppressive diseases in cats. There are four subgroups of FeLV, A, B, C, and T, each of which has a distinct receptor requirement. The receptors for all but the FeLV-A subgroup have been defined previously. Here, we report the identification of the cellular receptor for FeLV-A, which is the most transmissible form of FeLV. The receptor cDNA was isolated using a gene transfer approach, which involved introducing sequences from a feline cell line permissive to FeLV-A into a murine cell line that was not permissive. The feline cDNA identified by this method was approximately 3.5 kb, and included an open reading frame predicted to encode a protein of 490 amino acids. This feline cDNA conferred susceptibility to FeLV-A when reintroduced into nonpermissive cells, but it did not render these cells permissive to any other FeLV subgroup. Moreover, these cells specifically bound FeLV-A-pseudotyped virus particles, indicating that the cDNA encodes a binding receptor for FeLV-A. The feline cDNA shares approximately 93% amino acid sequence identity with the human thiamine transport protein 1 (THTR1). The human THTR1 receptor was also functional as a receptor for FeLV-A, albeit with reduced efficiency compared to the feline orthologue. On the basis of these data, which strongly suggest the feline protein is the orthologue of human THTR1, we have named the feline receptor feTHTR1. Identification of this receptor will allow more detailed studies of the early events in FeLV transmission and may provide insights into FeLV pathogenesis.  相似文献   

16.
17.
18.
An effective candidate subunit vaccine consisting of the gp 70/85 of feline leukemia virus (FeLV) was prepared by using the immunostimulating complex (iscom) method for the presentation of membrane proteins of enveloped viruses. Two 32-wk-old specific pathogen-free (SPF) cats were immunized with a FeLV iscom vaccine prepared from the supernatant fluid of the FL74 tumor cell line without adjuvant. Both cats developed FeLV serum antibodies, as measured in an enzyme-linked immunosorbent assay (ELISA) and in a virus neutralization test. A proportion of the antibodies were directed to an epitope located on gp70/85, which was shown in competition ELISA with a peroxidase-labeled virus-neutralizing monoclonal antibody to be shared by all three subtypes of FeLV. The protective effect of FeLV iscom was studied by vaccinating six 8-wk-old SPF cats with iscom prepared from cell culture supernatant of another tumor cell line F422, followed by oronasal challenge with 10(6) ffu FeLV-A (strain Glasgow-1). Six unvaccinated cats were also challenged with the same dose of FeLV. The vaccinated cats developed FeLV serum antibodies, some of which were directed to the shared epitope on gp70/85. At 10 wk after challenge, none was viremic, whereas three of the control cats had developed FeLV viremia. The potential of FeLV iscom as a vaccine against FeLV-associated disease in cats, and of iscom vaccines for protection against mammalian retrovirus infections, is discussed.  相似文献   

19.
A naturally occurring feline thymic lymphosarcoma (T17) provided the unique observation of a T-cell antigen receptor beta-chain gene (v-tcr) transduced by a retrovirus. The primary tumor contained three classes of feline leukemia virus (FeLV) provirus, which have now been characterized in more detail as (i) v-tcr-containing recombinant proviruses, (ii) v-myc-containing recombinant proviruses, and (iii) apparently full-length helper FeLV proviruses. The two transductions appear to have been independent events, with distinct recombinational junctions and no sequence overlap in the host-derived inserts. The T17 tumor cell line releases large numbers of FeLV particles of low infectivity; all three genomes are encapsidated, but passage of FeLV-T17 on feline fibroblast and lymphoma cells led to selective loss of the recombinant viruses. The oncogenic potential of the T17 virus complex was, therefore, tested by infection of neonatal cats with virus harvested directly from the primary T17 tumor cell line. A single inoculation of FeLV-T17 caused persistent low-grade infection culminating in thymic lymphosarcoma and acute thymic atrophy, which was accelerated by coinfection with the weakly pathogenic FeLV subgroup A (FeLV-A)/Glasgow-1 helper. Molecularly cloned FeLV-tcr virus (T-31) rescued for replication by a weakly pathogenic FeLV-A/Glasgow-1 helper virus was similarly tested in vivo and induced thymic atrophy and thymic lymphosarcomas. Most FeLV-T17-induced tumors manifested either v-myc or an activated c-myc allele and had undergone rearrangement of endogenous T-cell antigen receptor beta-chain genes, supporting the proposition that the oncogenic effects of c-myc linked to the FeLV long terminal repeat are targeted to a specific window in T-cell differentiation. However, neither the FeLV-T17-induced tumors nor the T-31 + FeLV-A-induced tumors contained clonally represented v-tcr sequences. Only one of the FeLV-T17-induced tumors contained detectable v-tcr proviruses, at a low copy number. While v-tcr does not have a readily transmissible oncogenic function, a more restricted role is not excluded, perhaps involving antigenic peptide-major histocompatibility complex recognition by the T-cell receptor complex. Such a function could be obscured by the genetic diversity of the outbred domestic cat host.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号