首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In bacterial extracts streptomycin is known not only to inhibit ribosomal activity but also to cause gradual release of ribosomes from polysomes. Nevertheless, we now find that after streptomycin has virtually halted protein synthesis in cells of Escherichia coli K12 a substantial (though reduced) level of polysomes persists. These polysomes are evidently maintained by turnover rather than by static blockade, for in streptomycin-treated cells [3H]uracil pulses are rapidly incorporated in the polysomal messenger RNA; moreover, if the synthesis of RNA or the formylation of methionyl-transfer RNA is blocked the polysome level decreases rapidly. Streptomycin thus appears to cause a cycle of ribosomal initiation, blockage of chain extension, gradual release, and reinitiation.The resulting cyclic blockade of initiation sites can account for the dominance of streptomycin sensitivity over resistance in strsstrr2 heterozygotes. In confirmation of this model, the inactive resistant ribosomes in treated heterozygotes were found to resume activity if the cells were lysed and excess messenger was provided. These findings further suggest that in sensitive cells damage to only a fraction of the ribosomal population by streptomycin may be sufficient to block protein synthesis.  相似文献   

3.
4.
Neutron small-angle scattering of the 70 S Escherichia coli ribosomes and of its smaller 30 S subunit has been measured in H2O2H2O mixtures. A linear dependence of the square of the radius of gyration on the reciprocal of the contrast is found, which is qualitatively similar to the results from contrast variation with the larger 50 S subunit. The slope α in this plot is a measure of radial segregation of RNA and proteins. It is most pronounced with the 50 S subunit. The 30 S particle appears to be more homogeneous, whereas the 70 S ribosome assumes an intermediate value of α. Neither the 30 S and 50 S subunits nor the 70 S ribosome show a significant separation of the centres of mass of their RNA part and proteins. A quantitative comparison of the parameters obtained suggest that the interaction between the two subunits and the 70 S ribosomes does not involve any major change in the latter.  相似文献   

5.
Binding of the structural protein soc to the head shell of bacteriophage T4   总被引:5,自引:0,他引:5  
Qβ plus strands with a 70 S ribosome bound to the coat cistron initiation site were used as template for Qβ replicase. Minus strand synthesis proceeded until the replicase reached the ribosome. The ribosome was removed and elongation was continued in a substrate-controlled, stepwise fashion. The nucleotide analog N4-hydroxyCMP was introduced into the positions complementary to the third and fourth nucleotides of the coat cistron. The minus strands were elongated to completion, purified and used as template for Qβ replicase. The final plus strand preparation consisted of four species, with the sequences -A-U-G-G- (wild type), -A-U-A-G- (mutant C3), -A-U-G-A- (mutant C4) and -A-U-A-A- (mutant C3C4) at the coat initiation site. The ribosome binding capacity of the mutant RNAs relative to wild type was <0.1 (C3), 3.2 (C4) and 0.3 (C3C4). The finding that mutant C3 no longer formed an initiation complex suggests that the interaction of the ribosome binding site with fMet-tRNA plays an essential role in the formation of the 70 S initiation complex. The fact that mutant C4 RNA bound more efficiently than wild type, and that mutant C3C4 RNA showed substantial ribosome binding capacity whereas the single mutant C3 did not, can be explained by assuming that an A residue following the A-U-G triplet interacts with a complementary U residue in the anticodon loop sequence. In the case of C3C4 this additional base-pair may offset the reduced codon-anticodon interaction resulting from the modification of the A-U-G codon.  相似文献   

6.
The maximum slope of the plot, appearing in the paper of Watari & Isogai (1976), was derived algebraically as a function of allosteric constants c and αmor βm (= m), and the relation between L, c, and αmor βm, was also obtained, where L = ToRo, c = KRKT, αm = FmKR, βm = FmKT, Roand To are concentrations of unligated R and T states respectively, KRand KT are microscopic dissociation constants, and Fm is the ligand concentration at the maximum slope of the plot. When the maximum slope is increased by one, the value becomes Hill constant, n. Nomographs which enable easier estimation of allosteric constants, L and c, were constructed from the two given values, the maximum slope of the plot, n ? 1, and αmor βm, in the cases where the maximum number of ligands, N, was 2 and 4. In the nomograph, log c is plotted against log L2cN keeping the value of the maximum slope of the plot and that of αmor βm constant. These nomographs show that the representation is symmetrical in the cases of L2cN > 1 and L2cN < 1.  相似文献   

7.
The cost of assays using one or two coupling enzymes is optimized by using equations to calculate the minimum amount(s) of enzyme(s) which should be used to obtain a given time (t99) in which 99% of the rate V0 of the first reaction is obtained. Using two coupling enzymes and given a value of t99, the induction period L = L1 + L2 fulfills the requirement t99 2124.6 ≥ L ≥ t994.6, allowing one to choose a cost lower than that derived from the until-now generally applied assumption of t99 = 4.6L. Being α = L1L2, in optimized assays the values α, t99, and L are related by T99=4.6(1+α)121+αL, thus allowing (graphical) calculation of the amounts of coupling enzymes which will minimize the cost for every chosen t99 or L. Maximum practical rates, allowed in some supposed interesting cases, have been calculated.  相似文献   

8.
Growing mouse oocytes were labeled in vitro with [3H]uridine and chased for 2 or for 7 days to estimate the relative amounts of RNA appearing in different fractions and to follow their turnover. Oocytes were lysed and thoroughly dispersed in the presence of 1% DOC, and centrifuged on sucrose gradients to separate polysomes from smaller components not engaged in translation. After the short chase, one-third of the labeled ribosomes appeared in EDTA-sensitive polysomes. The proportion of ribosomes in both fractions remained stable during the long chase, demonstrating no net flow from one fraction to the other. When gradient fractions were analyzed by poly(U) Sepharose chromatography, it was found that about 20% of the labeled poly(A)+ RNA appeared in polysomes after the short chase. The half-lives of stored and translated mRNA were followed relative to stable rRNA during the long chase. Stored mRNA was completely stable, but translated mRNA turned over with a t12 of about 6 days. Other methods for separating stored from translated components were not successful, including sedimentation of putative large complexes (fibrillar lattices) containing stored components, or chromatography of lysates on oligo(dT)-cellulose. Results presented here combined with our previous results demonstrate that, during meiotic maturation, the percent of labeled stable RNA which is polyadenylated declines from 19 to 10%, suggesting deadenylation or degradation of half of the accumulated maternal mRNA.  相似文献   

9.
10.
The magnesium ion-dependent equilibrium of vacant ribosome couples with their subunits
70 S?k?1k150 S+30S
has been studied quantitatively with a novel equilibrium displacement labeling method which is more sensitive and precise than light-scattering. At a concentration of 10?7m, tight couples (ribosomes most active in protein synthesis) dissociate between 1 and 3 mm-Mg2+ at 37 °C with a 50% point at 1.9 mm. The corresponding association constants Ka′ are 5.1 × 105m?1 (1 mm-Mg2+), 3.5 × 107m?1 (2 mm), and 1.2 × 109m?1 (3 mm), about five orders of magnitude higher than the Ka′ value of loose couples studied by Spirin et al. (1971) and Zitomer & Flaks (1972).In this range of Mg2+ concentrations (37 °C, 50 mm-NH4+) the rate constants depend exponentially and in opposite ways on the Mg2+ concentration: k1 = 2.2 × 10?3s?1, k?1 = 7.7 × 104m?1s?1 (2mm-Mg2+); k1 = 1.5 × 10?4s?1, k?1 = 1.7 × 107m?1s?1 (5 mm-Mg2+). Under physiological conditions (Mg2+ ~- 4 mm, ribosome concn ~- 10?7m), the equilibrium strongly favors association and the rate of exchange is slow (t12 ~- 10 min). In the range of dissociation (2 mm-Mg2+), association of subunits proceeds without measurable entropy change and hence ΔGO = ΔHO. The negative enthalpy change of ΔHO = ? 10 kcal suggests that association of subunits involves a shape change.Below a critical Mg2+ concentration (~- 2 mm), the 50 S subunits are converted irreversibly into the b-form responsible for the transition to loose couples. The results are compatible with two classes of binding sites, one class binding Mg2+ non-co-operatively and contributing to the free energy of association by reduction of electrostatic repulsion, and another class probably consisting of hydrogen bonds between components at opposite interfaces whose critical spatial alignment rapidly denatures in the absence of stabilizing magnesium ions.  相似文献   

11.
(1) H+/electron acceptor ratios have been determined with the oxidant pulse method for cells of denitrifying Paracoccus denitrificans oxidizing endogenous substrates during reduction of O2, NO?2 or N2O. Under optimal H+-translocation conditions, the ratios H+O, H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were 6.0–6.3, 4.02, 5.79 and 3.37, respectively. (2) With ascorbate/N,N,N′,N′-tetramethyl-p-phenylenediamine as exogenous substrate, addition of NO?2 or N2O to an anaerobic cell suspension resulted in rapid alkalinization of the outer bulk medium. H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were ?0.84, ?2.33 and ?1.90, respectively. (3) The H+oxidant ratios, mentioned in item 2, were not altered in the presence of valinomycinK+ and the triphenylmethylphosphonium cation. (4) A simplified scheme of electron transport to O2, NO?2 and N2O is presented which shows a periplasmic orientation of the nitrite reductase as well as the nitrous oxide reductase. Electrons destined for NO?2, N2O or O2 pass two H+-translocating sites. The H+electron acceptor ratios predicted by this scheme are in good agreement with the experimental values.  相似文献   

12.
Kinetic constants for SO42? transport by upper and lower rat ileum in vitro have been determined by computer fitting of rate vs concentration data obtained using the everted sac technique. MoO42? inhibition of this transport is competitive, and kinetic constants for the inhibition were similarly determined. Transport is also inhibited by the anions WO42?, S2O32? and SeO42?, in the order S2O32? > SeO42? ≧ MoO42? > WO42?. These anions have no effect on the transport of l-valine. Low SO42? transport rates were observed in sacs from animals fed a high-molybdenum diet. The significance of the results with respect to the problem of molybdate toxicity in animals is discussed, and related to the known protective effect of SO42?.  相似文献   

13.
14N-ENDOR evidence for imidazole coordination in copper proteins   总被引:1,自引:0,他引:1  
14N-ENDOR studies of simple nitrogen-coordinated copper(II) complexes in frozen aqueous solutions show that the nitrogen hyperfine constants, A and A, of imidazole are much more isotropic (R = AA = 1.05) than those of the other biologically-related ligand nitrogens. From this result, combined with 14N-ENDOR results of some copper proteins containing imidazoles as ligands, it is concluded that R < 1.10 for nitrogen hyperfine constants can be employed as an empirical criterion for demonstration of the existence of imidazole coordination in copper proteins.  相似文献   

14.
A thermodynamic characterization of the Na+-H+ exchange system in Halobacterium halobium was carried out by evaluating the relevant phenomenological parameters derived from potential-jump measurements. The experiments were performed with sub-bacterial particles devoid of the purple membrane, in 1 M NaCl, 2 M KCl, and at pH 6.5–7.0. Jumps in either pH or pNa were brought about in the external medium, at zero electric potential difference across the membrane, and the resulting relaxation kinetics of protons and sodium flows were measured. It was found that the relaxation kinetics of the proton flow caused by a pH-jump follow a single exponential decay, and that the relaxation kinetics of both the proton and the sodium flows caused by a pNa-jump also follow single exponential decay patterns. In addition, it was found that the decay constants for the proton flow caused by a pH-jump and a pNa-jump have the same numerical value. The physical meaning of the decay constants has been elucidated in terms of the phenomenological coefficients (mobilities) and the buffering capacities of the system. The phenomenological coefficients for the Na+-H+ flows were determined as differential quantities. The value obtained for the total proton permeability through the particle membrane via all available channels, LH = (?JH +pH)Δψ,ΔpNa, was in the range of 850–1150 nmol H+·(mg protein)?1·h?1·(pH unit)?1 for four different preparations; for the total Na+ permeability, LNa = (?JNa+pNa)Δψ,ΔpH, it was 1620–2500 nmol Na+·(mg protein)?1·h?1·(pNa unit)?1; and for the proton ‘cross-permeability’, LHNa = (?JH+pNa)Δψ,ΔpH, it was 220–580 nmol H+·(mg protein)?1·h?1·(pNa unit)?1, for different preparations. From the above phenomenological parameters, the following quantities have been calculated: the degree of coupling (q), the maximal efficiency of Na+-H+ exchange (ηmax), the flow and force efficacies (?) of the above exchange, and the admissible range for the values of the molecular stoichiometry parameter (r). We found q ? 0.4; ηmax ? 5%; 0.36 ? r ? 2; ?JNa+ ? 1.3 · 105μmol · (RT unit)?1 at JNa = 1 μmolNa+ · (mgprotein)?1 · h?1; and ?ΔpNa ? 5 · 104 ΔpNa · (mg protein) · h · (RT unit)?1 at ΔpNa = 1 unit, for different preparations.  相似文献   

15.
We have applied the technique of saturation transfer electron paramagnetic resonance to study the rotational diffusion of spin labeled membrane bound cholinergic receptors from Torpedo marmorata. Two different spin labels were used: a spin labeled maleimide derivative which binds covalently to proteins and a long chain spin labeled acylcholine which binds reversibly with a high affinity to the receptor protein. The maleimide spin label has a motion whose rotational correlation time is τ2 > 10?3 sec. The long chain spin labeled acylcholine indicates slightly more motion (τ2 ? 10?4sec), but the nitroxide in this latter case is probably more loosely bound.  相似文献   

16.
Using thoroughly dark-adapted thylakoids and an unmodulated Joliot-type oxygen electrode, the following results were obtained. (i) At high flash frequency (4 Hz), the oxygen yield at the fourth flash (Y4) is lower compared to Y3 than at lower flash frequency. At 4 Hz, the calculated S0 concentration after thorough dark adaptation is found to approach zero, whereas at 0.5 Hz the apparent S0(S0 + S1) ratio increases to about 0.2. This is explained by a relatively fast donation (t12 = 1.0–1.5 s) of one electron by an electron donor to S2 and S3 in 15–25% of the Photosystem II reaction chains. The one-electron donor to S2 and S3 appears to be rereduced very slowly, and may be identical to the component that, after oxidation, gives rise to ESR signal IIs. (ii) The probability for the fast one-electron donation to S2 and S3 has nearly been the same in triazine-resistant and triazine-susceptible thylakoids. However, most of the slow phase of the S2 decay becomes 10-fold faster (t12 = 5–6 s) in the triazine-resistant ones. In a small part of the Photosystem II reaction chains, the S2 decay was extremely slow. The S3 decay in the triazine-resistant thylakoids was not significantly different from that in triazine-susceptible thylakoids. This supports the hypothesis that S2 is reduced mainly by Q?A, whereas S3 is not. (iii) In the absence of CO2/HCO?A and in the presence of formate, the fast one-electron donation to S2 and S3 does not occur. Addition of HCO?3 restores the fast decay of part of S2 and S3 to almost the same extent as in control thylakoids. The slow phase of S2 and S3 decay is not influenced significantly by CO2/HCO?3. The chlorophyll a fluorescence decay kinetics in the presence of DCMU, however, monitoring the Q?A oxidation without interference of QB, were 2.3-fold slower in the absence of CO2/HCO?3 than in its presence. (iv) An almost 3-fold decrease in decay rate of S2 is observed upon lowering the pH from 7.6 to 6.0. The kinetics of chlorophyll a fluorescence decay in the presence of DCMU are slightly accelerated by a pH change from 7.6 to 6.0. This indicates that the equilibrium Q?A concentration after one flash is decreased (by about a factor of 4) upon changing the pH from 7.6 to 6.0. When direct or indirect protonation of Q?B is responsible for this shift of equilibrium Q?A concentration, these data would suggest that the pKa value for Q?B protonation is somewhat higher than 7.6, assuming that the protonated form of Q?B cannot reduce QA.  相似文献   

17.
Reversible flbrinogen polymer formation was examined at pH 6.6 and Γ/2 0.3. The equilibrium fraction of fibrinogen present as polymer, (Pmf)e, was determined by gel filtration for fibrinogen concentrations, FO, from 48 to 166 μm. Using FO in molarity, the experimental relation is ln [FO(Pmf)e] = 3.53 ln[FO(1 ? (Pmf)e)] + 23.73. This relation and attendant confidence limits are examined assuming, during filtration, that the original polymer population is either stable or selected polymer species dissociate to monomer. The possibility that all polymers are open is excluded since the calculated microscopic association constant would then increase with FO. Acceptable models are based on the assumptions that polymers are open, with association constant Ka, until restricted by closure, with association constant Kr, at an integral degree of polymerization, n. Values are selected on the basis that interaction parameters are independent of FO and that the required molar decrease in free energy is a minimum. Assuming polymer stability, the experimental relation at 273 °K gives n = 4, KrKa = 1.2 m, and Ka = 736 m?1. Temperature dependence gives ΔH= ?16.9 kcal/mol and ΔSOa = ?48.8 e.u. KrKa indicates a relation between changes in entropy. The probability is >0.90 that KrKa ? 56 m, which indicates a greater loss of degrees of freedom on closure than on association. Conclusions are not altered by the assumption that only the closed polymer species is stable. As ionic strength is decreased at pH 6.6, Ka increases. The clotting time of an otherwise constant system decreases as system Pmf is increased.  相似文献   

18.
Using the adsorption theory of chemical kinetics, a new equation concerning the growth of single populations is presented:
dXdt =μcX(1 ?)XXm1?XXm
or in its integral form:
lnXXo?lnXm?XXm?Xo+XmXmXm?XXm?Xoc(t?to)
This equation attempts to explain the relationship between population increment and limiting resources. It can be reduced to either the logistic or exponential equation under two extreme conditions. The new equation has three parameters, Xm, Xm and μc, each of which has ecological significance. XmX′m concerns the efficiency of nutrient utilization by an organism. Its value is between zero and one. With ratios approaching unity, the efficiency is high; lower ratios indicate that population increment is quickly restricted by limiting resources. μc, is a velocity parameter lying between μe, (exponential growth) and μL (logistic growth), and is dependent on the value of solXmX′m. From μc we can predict the time course of population incremental velocity (dXdt), and can observe that it is not symmetrical, unlike that derived from the logistic equation. At XmX′m = 1 the maximum velocity of the population increment predicted from the new equation is twice that of the logistic equation.Population growth in nature seems to support the new equation rather than the logistic equation, and it can be successfully fitted by means of a least square method.  相似文献   

19.
An optimal economic harvesting policy, which maximizes the present value of an animal population, capable of renewing itself, is discussed. It is assumed that, unhindered, the successive population levels, Xn, form a Markov chain, with transitions
Xn+1=?(Xn) + ?n?(Xn)
, where f is the recruitment function, and {?n} is an iid sequence of random shocks. When a positive set-up cost is present an optimal policy is of the (S,s) type. The optimal population level is compared with that of an equivalent deterministic model. Bioeconomic conditions, which imply the optimality of conservation, or extinction are investigated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号