首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypoacetylated histones are a hallmark of heterochromatin in organisms ranging from yeast to humans. Histone deacetylation is carried out by both NAD(+)-dependent and NAD(+)-independent enzymes. In the budding yeast Saccharomyces cerevisiae, deacetylation of histones in heterochromatic chromosomal domains requires Sir2, a phylogenetically conserved NAD(+)-dependent deacetylase. In the fission yeast Schizosaccharomyces pombe, NAD(+)-independent histone deacetylases are required for the formation of heterochromatin, but the role of Sir2-like deacetylases in this process has not been evaluated. Here, we show that spSir2, the S. pombe Sir2-like protein that is the most closely related to the S. cerevisiae Sir2, is an NAD(+)-dependent deacetylase that efficiently deacetylates histone H3 lysine 9 (K9) and histone H4 lysine 16 (K16) in vitro. In sir2 Delta cells, silencing at the donor mating-type loci, telomeres, and the inner centromeric repeats (imr) is abolished, while silencing at the outer centromeric repeats (otr) and rDNA is weakly reduced. Furthermore, Sir2 is required for hypoacetylation and methylation of H3-K9 and for the association of Swi6 with the above loci in vivo. Our findings suggest that the NAD(+)-dependent deacetylase Sir2 plays an important and conserved role in heterochromatin assembly in eukaryotes.  相似文献   

2.
3.
4.
Wang CY  Hua CY  Hsu HE  Hsu CL  Tseng HY  Wright DE  Hsu PH  Jen CH  Lin CY  Wu MY  Tsai MD  Kao CF 《PloS one》2011,6(7):e22209
Telomeric heterochromatin assembly in budding yeast propagates through the association of Silent Information Regulator (SIR) proteins with nucleosomes, and the nucleosome array has been assumed to fold into a compacted structure. It is believed that the level of compaction and gene repression within heterochromatic regions can be modulated by histone modifications, such as acetylation of H3 lysine 56 and H4 lysine 16, and monoubiquitylation of H2B lysine 123. However, it remains unclear as to whether or not gene silencing is a direct consequence of the compaction of chromatin. Here, by investigating the role of the carboxy-terminus of histone H2B in heterochromatin formation, we identify that the disorderly compaction of chromatin induced by a mutation at H2B T122 specifically hinders telomeric heterochromatin formation. H2B T122 is positioned within the highly conserved AVTKY motif of the αC helix of H2B. Heterochromatin containing the T122E substitution in H2B remains inaccessible to ectopic dam methylase with dramatically increased mobility in sucrose gradients, indicating a compacted chromatin structure. Genetic studies indicate that this unique phenotype is independent of H2B K123 ubiquitylation and Sir4. In addition, using ChIP analysis, we demonstrate that telomere structure in the mutant is further disrupted by a defect in Sir2/Sir3 binding and the resulting invasion of euchromatic histone marks. Thus, we have revealed that the compaction of chromatin per se is not sufficient for heterochromatin formation. Instead, these results suggest that an appropriately arrayed chromatin mediated by H2B C-terminus is required for SIR binding and the subsequent formation of telomeric chromatin in yeast, thereby identifying an intrinsic property of the nucleosome that is required for the establishment of telomeric heterochromatin. This requirement is also likely to exist in higher eukaryotes, as the AVTKY motif of H2B is evolutionarily conserved.  相似文献   

5.
BACKGROUND: Centromeric domains often consist of repetitive elements that are assembled in specialized chromatin, characterized by hypoacetylation of histones H3 and H4 and methylation of lysine 9 of histone H3 (K9-MeH3). Perturbation of this underacetylated state by transient treatment with histone deacetylase inhibitors leads to defective centromere function, correlating with delocalization of the heterochromatin protein Swi6/HP1. Likewise, deletion of the K9-MeH3 methyltransferase Clr4/Suvar39 causes defective chromosome segregation. Here, we create fission yeast strains retaining one histone H3 and H4 gene; the creation of these strains allows mutation of specific N-terminal tail residues and their role in centromeric silencing and chromosome stability to be investigated. RESULTS: Reduction of H3/H4 gene dosage to one-third does not affect cell viability or heterochromatin formation. Mutation of lysines 9 or 14 or serine 10 within the amino terminus of histone H3 impairs centromere function, leading to defective chromosome segregation and Swi6 delocalization. Surprisingly, silent centromeric chromatin does not require the conserved lysine 8 and 16 residues of histone H4. CONCLUSIONS: To date, mutation of conserved N-terminal residues in endogenous histone genes has only been performed in budding yeast, which lacks the Clr4/Suvar39 histone methyltransferase and Swi6/HP1. We demonstrate the importance of conserved residues within the histone H3 N terminus for the maintenance of centromeric heterochromatin in fission yeast. In sharp contrast, mutation of two conserved lysines within the histone H4 tail has no impact on the integrity of centromeric heterochromatin. Our data highlight the striking divergence between the histone tail requirements for the fission yeast and budding yeast silencing pathways.  相似文献   

6.
7.
8.
Dot1 is a non-SET domain protein that methylates histone H3 at lysine 79, a surface-exposed residue that lies within the globular domain. In the context of a nucleosome, H3 lysine 79 is located in close proximity with lysine 123 of histone H2B, a major site for ubiquitination by Rad6. Here we show that Rad6-mediated ubiquitination of H2B lysine 123 is important for efficient methylation of lysine 79, but not lysine 36, of histone H3. In contrast, lysine 79 methylation of H3 is not required for ubiquitination of H2B. Our study provides a new example of trans-histone regulation between modifications on different histones. In addition, it suggests that Rad6 affects telomeric silencing, at least in part, by influencing methylation of histone H3.  相似文献   

9.
10.
Mating-type silencing in Schizosaccharomyces pombe is brought about by cooperative interactions between cis-acting DNA sequences flanking mat2P and mat3M and the trans-acting factors, namely Swi6, Clr1-Clr4, Clr6, and Rik1. In addition, DNA repair gene rhp6, which plays a role in post-replication DNA repair and ubiquitination of proteins including histones, is also involved in silencing, albeit in a unique way; its effect on silencing and chromatin structure of the donor loci is dependent on their switching competence. Earlier, we hypothesized the existence of a mediator of Rhp6 that plays a role in reestablishment of the chromatin structure coincidentally with DNA replication associated with mating-type switching. Here we report the identification of a 22-kDa protein as an in vivo target and mediator of Rhp6 in mating-type silencing. The level of this protein is greatly elevated in sng1-1/rhp6(-) mutant and rhp6Delta as compared with wild type strain. Both the deletion and overexpression of the gene encoding this protein elicit switching-dependent loss of silencing. Furthermore, the 22-kDa protein undergoes Rhp6-dependent multiubiquitination and associates with mat2 locus during S phase in wild type cells. Interestingly, it contains a histone-fold motif similar to that of histone H2A, and like histone H2A, it interacts strongly with histone H2B in vitro. These results indicate that the 22-kDa protein, renamed as the ubiquitinated histone-like protein Uhp1, is an in vivo target/mediator of Rhp6 in silencing. Thus, regulation of association of Uhp1 with chromatin and ubiquitination followed by degradation may play a role in reestablishment of inactive chromatin structure at the silent mating-type loci.  相似文献   

11.
12.
Epigenetic changes in chromatin state are associated with aging. Notably, two histone modifications have recently been implicated in lifespan regulation, namely acetylation at H4 lysine 16 in yeast and methylation at H3 lysine 4 (H3K4) in nematodes. However, less is known about other histone modifications. Here, we report that cellular aging is associated with increased ubiquitylation of histone H2B in yeast telomeric heterochromatin. An increase in ubiquitylation at histone H2B lysine 123 and methylations at both H3K4 and H3 lysine 79 (H3K79) was observed at the telomere-proximal regions of replicatively aged cells, coincident with decreased Sir2 abundance. Moreover, deficiencies in the H2B ubiquitylase complex Rad6/Bre1 as well as the deubiquitylase Ubp10 reduced the lifespan by altering both H3K4 and H3K79 methylation and Sir2 recruitment. Thus, these results show that low levels of H2B ubiquitylation are a prerequisite for a normal lifespan and the trans-tail regulation of histone modifications regulates age-associated Sir2 recruitment through telomeric silencing.  相似文献   

13.
Methylation of histone H3 has been linked to the assembly of higher-order chromatin structures. Very recently, several examples, including the Schizosaccharomyces pombe mating-type region, chicken beta-globin locus, and inactive X-chromosome, revealed that H3-Lys9-methyl (Me) is associated with silent chromatin while H3-Lys4-Me is prominent in active chromatin. Surprisingly, it was shown that homologs of Drosophila Su(var)3-9 specifically methylate the Lys9 residue of histone H3. Here, to identify putative enzymes responsible for destabilization of heterochromatin, we screened genes whose overexpressions disrupt silencing at the silent mat3 locus in fission yeast. Interestingly, we identified two genes, rhp6(+) and ubcX(+) (ubiquitin-conjugating enzyme participating in silencing), both of which encode ubiquitin-conjugating enzymes. Their overexpression disrupted silencing at centromeres and telomeres as well as at mat3. Additionally, the overexpression interfered with centromeric function, as confirmed by elevated minichromosome loss and antimicrotubule drug sensitivity. On the contrary, deletion of rhp6(+) or ubcX(+) enhanced silencing at all heterochromatic regions tested, indicating that they are negative regulators of silencing. More importantly, chromatin immunoprecipitation showed that their overexpression alleviated the level of H3-Lys9-Me while enhancing the level of H3-Lys4-Me at the silent regions. On the contrary, their deletions enhanced the level of H3-Lys9-Me while alleviating that of H3-Lys4-Me. Taken together, the data suggest that two ubiquitin-conjugating enzymes, Rhp6 and UbcX, affect methylation of histone H3 at silent chromatin, which then reconfigures silencing.  相似文献   

14.
15.
16.
17.
18.
BACKGROUND: Metazoan centromeres are generally composed of large repetitive DNA structures packaged in heterochromatin. Similarly, fission yeast centromeres contain large inverted repeats and two distinct silenced domains that are both required for centromere function. The central domain is flanked by outer repetitive elements coated in histone H3 methylated on lysine 9 and bound by conserved heterochromatin proteins. This centromeric heterochromatin is required for cohesion between sister centromeres. Defective heterochromatin causes premature sister chromatid separation and chromosome missegregation. The role of cis-acting DNA sequences in the formation of centromeric heterochromatin has not been established. RESULTS: A deletion strategy was used to identify centromeric sequences that allow heterochromatin formation in fission yeast. Fragments from the outer repeats are sufficient to cause silencing of an adjacent gene when inserted at a euchromatic chromosomal locus. This silencing is accompanied by the local de novo methylation of histone H3 on lysine 9, recruitment of known heterochromatin components, Swi6 and Chp1, and the provision of a new strong cohesin binding site. In addition, we demonstrate that the chromodomain of Chp1 binds to MeK9-H3 and that Chp1 itself is required for methylation of histone H3 on lysine 9. CONCLUSIONS: A short sequence, reiterated at fission yeast centromeres, can direct silent chromatin assembly and cohesin recruitment in a dominant manner. The heterochromatin formed at the euchromatic locus is indistinguishable from that found at endogenous centromeres. Recruitment of Rad21-cohesin underscores the link between heterochromatin and chromatid cohesion and indicates that these centromeric elements act independently of kinetochore activity to recruit cohesin.  相似文献   

19.
作为一种重要的组蛋白修饰形式,H2B的单泛素化(uH2B)广泛地参与DNA复制、基因的表达与转录、DNA损伤修复及异染色质维持等生物学事件.在裂殖酵母中,H2B的单泛素化发生在其羧基端的119位赖氨酸(K119),并依赖于Rhp6/Bre1泛素连接酶复合体.研究表明,uH2B通过破坏H2A/H2B二聚体的结构促进mRNA在转录过程中的延伸,同时促进H3K4的三甲基化激活基因的表达及参与DNA损伤修复.本研究发现,Rhp6能够对核糖核苷酸还原酶抑制基因(Spd1)位点进行活跃的染色质修饰,促进H2B的单泛素化并抑制基因表达,从而促进dNTP的合成并调控DNA复制及损伤修复.重要的是,本研究发现,该过程不依赖于H3K4而决定于H3K9的三甲基化.同时uH2B直接在DNA双链断裂位点富集,通过改变染色质的结构参与DNA损伤修复,该过程中可能存在其他更为复杂的分子机制.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号