首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maternal recognition of pregnancy in the cow requires successful signaling by the conceptus to block luteolysis. Conceptus growth and function depend on an optimal uterine environment, regulated by luteal progesterone. The objective of this study was to test strategies to optimize luteal function, as well as prevent a dominant follicle from initiating luteolysis. Nelore (Bos taurus indicus) beef cows (n=40) were submitted to a GnRH/PGF(2alpha)/GnRH protocol. Cows that ovulated from a dominant ovarian follicle (ovulation=Day 0) were allocated to receive: no additional treatment (G(C); n=7); 3000IU of hCG on Day 5 (G(hCG); n=5); 5mg of estradiol-17beta on Day 12 (G(E2); n=6); or 3000IU of hCG on Day 5 and 5mg of estradiol-17beta on Day 12 (G(hCG/E2); n=5). Ultrasonographic imaging of the ovaries, assessment of plasma progesterone concentration, and detection of estrus were done daily from Day 5 to the day of subsequent ovulation. Treatment with hCG induced an accessory CL, increased CL volume, and plasma progesterone concentration throughout the luteal phase (P<0.01). Estradiol-17beta induced atresia and recruitment of a new wave of follicular growth; it eliminated a potentially estrogen-active, growing ovarian follicle within the critical period for maternal recognition of pregnancy, but it also hastened luteolysis (Days 16 or 17 vs. Days 18 or 19 in non-treated cows). In conclusion, the approaches tested enhanced luteal function (hCG) and altered ovarian follicular dynamics (estradiol-17beta), but were unable to extend the life-span of the CL in Nelore cows.  相似文献   

2.
Estrous cycles of 10 postpartum cyclic Holstein cows were synchronized using prostaglandin f(2alpha) (PGF(2alpha)) given twice 12 d apart to study the relationship of the onset of estrus, body temperature, milk yield, luteinizing hormone (LH) and progesterone concentration to ovulation. Blood samples and body temperatures (vaginal and rectal) were taken every 4 h until ovulation, starting 4 h prior to the second PGF(2alpha) treatment. All cows were observed for estrus following the second administration of PGF(2alpha). Ultrasound scanning of the ovaries commenced at standing estrus and thereafter every 2 h until the disappearance of the fluid filled preovulatory follicle (ovulation). Two cows failed to ovulate and became cystic following the second PGF(2alpha) treatment. The remaining eight cows exhibited a decline in progesterone to <1.0 ng/ml within 28 h, standing estrus and a measurable rise (> 1.0 degrees C) in vaginal but not rectal temperature, and ovulated 90 +/- 10 h after the second PGF(2alpha) treatment. Onset of standing estrus, LH peak and vaginal temperature were highly correlated (P<0.05) with time of ovulation (0.82, 0.81 and 0.74, respectively). Intervals to ovulation tended to depend upon parity. Pluriparous (n = 4) and biparous (n = 4) cows ovulated within 24 and 30 +/- 3 h from the onset of standing estrus; 22 and 31 +/- 2 h from the LH peak; and 22 and 27 +/- 3 h from peak vaginal temperature (mean +/- standard error of the mean), respectively. The results indicated that the onset of standing estrus and rise in vaginal temperature are good practical parameters for predicting ovulation time in dairy cattle.  相似文献   

3.
The present experiment was conducted to study the growth profile of the ovulatory follicle in relation to the expression of estrus following administration of PGF(2alpha) to subestrus buffaloes. After detection of a mature corpus luteum by examination per rectum, confirmed by ultrasound scanning, subestrus buffaloes (n=20) were treated (Day 0) with single dose of Dinoprost tromethamin (25 mg, i.m.). Blood samples were collected at 0, 24 and 48 h after treatment for estimation of plasma progesterone concentration. Growth profile of the ovulatory follicle was monitored daily through ultrasound scanning starting from Day 0 until ovulation and the regression profile of CL was monitored at 0, 24 and 48 h of treatment. Estrus was detected by exposure to a fertile buffalo bull three times a day until expression of overt estrus or ovulation. Behavioral estrus was recorded in 14 animals and 6 animals ovulated silently. Sixteen animals including six animals with silent estrus ovulated from the dominant follicle present at treatment (Group A) and remaining four animals ovulated from the dominant follicle of succeeding follicular wave (Group B). The intervals from treatment to estrus (6.5+/-0.25 versus 3.2+/-0.27 days, P<0.001) and treatment to ovulation (7.5+/-0.25 versus 5.4+/-0.46 days, P<0.005) were significantly longer in animals of Group B compared with animals of Group A. Significant differences were observed in growth profile of the ovulatory follicle between animals of Groups A and B with respect to size of the follicle on Day 0 (9.8+/-0.7 versus 5.3+/-0.45 mm, P<0.001), daily growth rate (0.97+/-0.07 versus 1.6+/-0.2 mm/day, P<0.01) and increase in diameter (4.1+/-0.6 versus 7.8+/-0.7 mm, P<0.01). The animals with silent estrus (subgroup A-2) had significantly smaller diameter of the ovulatory follicle on Day 0 (7.7+/-0.4 versus 11.0+/-0.7 mm, P<0.005), its daily growth rate was significantly slower (0.7+/-0.02 versus 1.1+/-0.1 mm/day, P<0.01) and they recorded significantly longer interval from treatment to ovulation (7.3+/-0.56 versus 4.2+/-0.27 days, P<0.001) compared with the animals that showed overt estrus (subgroup A-1). The corpus luteum area (CL area) and plasma progesterone (P(4)) concentration declined continuously from 0 to 48 h after PGF(2alpha) treatment in the animals of both the Groups A and B. Non-significant differences were observed in mean CL area and plasma P(4) concentration at 0, 24 and 48 h post-treatment between animals of Groups A and B and also between animals of subgroups A-1 and A-2. The small size and the slow growth rate of the ovulatory follicle were identified as the possible cause of silent estrus in subestrus buffaloes after PGF(2alpha) treatment.  相似文献   

4.
A linear-array ultrasound instrument was used to monitor the dynamics of follicular cyst formation following estradiol valerate (EV) administration in postpartum dairy cattle. Twelve cyclic cows were given two intramuscular (i.m.) injections of prostaglandin and F(2alpha) (PGF(2alpha)) 12 d apart to synchronize estrus. On Day 16 (Day 0 = day of estrus) six cows received 10 mg of EV in 1 ml sesame oil; the remaining six cows were treated with 1 ml sesame oil. The ovaries of all cows were scanned rectally each morning from Day 9 until 14 or 30 d post treatment. Plasma concentrations of luteinizing hormone (LH) and progesterone (P(4)) were also determined as objective indices of treatment effects. Day 0 to 16 ultrasound pictures of the ovaries of both control and treated cows were characterized by the presence of a corpus luteum (CL; 19 to 38 mm), several small follicles (<5 mm) and a medium-sized follicle (6 to 28 mm). Following treatment in control cows, the CL regressed gradually, and a preovulatory follicle was identifiable by Day 17 to 18, it increased in size and reached a maximum of 28 to 30 mm by Day 20 after ovulation and was identifiable throughout the rest of the cycle. Administration of 0 mg of EV resulted in a rapid reduction in the size of the CL. Growth of a large follicle was observed in all treated animals around Days 16 to 20, but having reached a maximum diameter of 12 to 24 mm it regressed without resulting in ovulation. Subsequent ultrasound pictures of EV-treated cows were characterized by the absence of a new CL and the presence of medium-sized persistent follicles. Estradiol valerate treatment induced early luteolysis (43 +/- 05 h post EV vs 101 +/- 22 h) and an LH surge (41 +/- 11 h vs 125 +/- 17 h).  相似文献   

5.
Estrous behavior and the estrus-to-ovulation interval are essential for estimating the best time to artificially inseminate cattle. Because these parameters are not well characterized in the Nelore breed (Bos indicus), the main purpose of the this study was to determine the estrus-to-ovulation interval in Nelore heifers and cows with natural estrus or with estrus induced by treatments with PGF2 alpha or norgestomet and estradiol valerate (NEV). The cows and heifers were observed continuously (24 h a day) to determine the onset of estrus and to study estrous behavior in the cows. Ten hours after the start of estrus the ovaries were scanned every 2 h by ultrasonography to monitor the dominant follicle until ovulation. Blood samples were collected periodically to determine progesterone levels by RIA. Administration of PGF2 alpha (2 injections, 11 days apart) did not induce estrus in most Nelore females in spite of the presence of functional CL, indicated by progesterone concentrations above 6.0 ng/ml in 25 of 28 animals. Treatment with NEV induced high sexual receptivity in cows (10/11), but only 66% ovulated. Cows with natural or induced estrus exhibited behavioral estrus of 10.9 +/- 1.4 h, and ovulation occurred 26.6 +/- 0.44 h (n = 26) after the onset of estrus. In most of the cows (53.8%) estrus began at night (between 1801 and 600 h), and 34.6% it started and finished during the night. It is concluded that in Nelore females ovulation occurs approximately 26 h after the onset of estrus. Additionally, estrous behavior is shorter than in European breeds, and there is a high incidence of estrus at night, which makes it difficult to detect and, consequently, impairs Al in Nelore cattle. The observation that a high percentage of Nelore females with an active CL did not respond to usual dosages of PGF2 alpha warrants further investigation.  相似文献   

6.
A GnRH analogue was used to synchronize ovarian follicular development prior to an injection of PGF(2alpha) for the synchronization of estrus in lactating Holstein cows. On Day 12 (estrus = Day 0) of the experimental cycle, cows (n = 8) were injected with 8 mug Buserelin (BUS group), followed by 25 mg PGF(2alpha) 7 d later (Day 19). Control cows (n = 7) received PGF(2alpha) on Day 12 (PGF group). Ovaries were scanned daily via ultrasonography, and plasma progesterone and estradiol concentrations were determined. Sizes of all visible follicles were recorded. Follicles were classified as small (3 to 5 mm), medium (6 to 9 mm), or large (>/= 10 mm). Between Days 12 and 16 of the cycle, the number of large follicles in PGF cows remained unchanged (1.2), whereas in the BUS group, the number of large follicles decreased from 1.3 on Day 12 to 0.5 on Day 15. Only 4 of 7 PGF cows ovulated a second-wave dominant follicle. In the BUS group, 7 of 8 cows ovulated a GnRH analogue induced dominant follicle that was first identified on Day 15. During the follicular phase (last 5 d prior to estrus), plasma progesterone declined in association with CL regression in both groups, and estradiol concentrations increased, reaching higher (P<.0.05) preovulatory peak concentration in BUS cows than in PGF cows (14.0 +/- 1.0 vs 10.4 +/- 1.1 pg/ml). The number of medium-size follicles was smaller and the number of small-size follicles tended to be higher in BUS cows than in the PGF-treated group. On the day of estrus, the size of the ovulatory follicle (16.1 vs 13.3 mm) and the size difference between the ovulatory and second largest follicle (11.4 vs 6.2 mm) were both larger in BUS cows than in PGF-treated cows, suggesting a more potent dominance effect of the ovulatory follicle in the BUS cows. This study suggests that a GnRH analogue can alter follicular development prior to synchronization of estrus with an injection of PGF(2alpha) in lactating dairy cows.  相似文献   

7.
Simultaneous injections of PGF and FSH or saline were given to 32 Holstein cows to test their combined ability to improve estrous and ovulation synchrony beyond that of PGF alone. All the cows were randomly assigned to receive PGF on either Day 8 or Day 10 of the estrous cycle (estrus = Day 0), and all the cows in each group were further assigned to simultaneous injection of either FSH or saline. Regression of the corpus luteum (CL), return to estrus and follicular activity were monitored by plasma progesterone assay, twice-daily estrous detection and ultrasonographic examination, respectively. Plasma progesterone concentrations declined to <1.0 ng/ml at 24 hours after PGF treatment in all the cows and FSH did not affect this decline. Return to estrus was not affected by FSH treatment in cows treated on Day 8 or Day 10; however, FSH disrupted normal follicular activity and either delayed normal ovulation following estrus or induced premature ovulation or cyst formation in 4 of 8 PGF/FSH (Day 8) cows and 5 of 8 PGF/FSH (Day 10) cows. These data indicate that exogenous FSH administered simultaneously with a luteolytic does of PGF does not maintain viability of large, dominant follicles and, therefore, is not an effective method for the synchronization of estrus and ovulation.  相似文献   

8.
The influence of Buserelin injection and Deslorelin (a GnRH analogue) implants administered on Day 5 of the estrous cycle on plasma concentrations of LH and progesterone (P4), accessory CL formation, and follicle and CL dynamics was examined in nonlactating Holstein cows. On Day 5 (Day 1 = ovulation) following a synchronized estrus, 24 cows were assigned randomly (n = 4 per group) to receive 2 mL saline, i.m. (control), 8 micrograms, i.m. Buserelin or a subcutaneous Deslorelin (DES) implant in concentrations of 75 micrograms, 150 micrograms, 700 micrograms or 2100 micrograms. Blood samples were collected (for LH assay) at 30-min intervals for 2 h before and 12 h after GnRH-treatment from cows assigned to Buserelin, DES-700 micrograms and DES-2100 micrograms treatments and thereafter at 4-h intervals for 48 h. Beginning 24 h after treatment, ovaries were examined by ultrasound at 2-h intervals until ovulation was confirmed. Thereafter, ultrasonography and blood sampling (for P4 assay) was performed daily until a spontaneous ovulation before Day 45. A greater release of LH occurred in response to Deslorelin implants than to Buserelin injection (P < 0.01). Basal levels of LH between 12 and 48 h were higher in DES-700 micrograms group than in DES-2100 micrograms and Buserelin (P < 0.05). The first wave dominant follicle ovulated in all cows following GnRH treatment. Days to CL regression did not differ between treatments, but return to estrus was delayed (44.2 vs 27.2 d; P < 0.01) in cows of DES-2100 micrograms group. All GnRH treatments elevated plasma P4 concentrations, and the highest P4 responses were observed in the DES-700 micrograms and DES-2100 micrograms groups. The second follicular wave emerged earlier in GnRH-treated than in control cows (9.9 vs 12.8 d; P < 0.01). However, emergence of the third dominant follicle was delayed in cows of DES-2100 micrograms treatment (37.0 d) compared with DES-700 micrograms (22.2 d), Buserelin (17.8 d) or control (19.0 d). In conclusion, Deslorelin implants of 700 micrograms increased plasma P4 and LH concentrations and slightly delayed the emergence of the third dominant follicle. On the contrary, Deslorelin implants of 2100 micrograms drastically altered the P4 profiles and follicle dynamics.  相似文献   

9.
Simultaneous injections of prostaglandin F2alpha (PGF) and gonadotropin releasing hormone (GnRH) or saline were given to 32 diestrous dairy cows to test the ability of GnRH to improve estrous and ovulation synchrony beyond that of PGF alone. Cows were randomly assigned to receive PGF on Day 8 or Day 10 of the estrous cycle (estrus = Day 0), and all cows were further assigned to simultaneous injection of GnRH or saline. Corpus luteum (CL) regression, return to estrus and follicular activity were monitored by plasma progesterone assay, twice-daily estrous detection and ultrasonographic examination, respectively. Plasma progesterone concentrations declined to <1.0 ng/ml at 24 hours after PGF in all cows and were not affected by GnRH. Gonadotropin releasing hormone inducted premature ovulation or delayed return to estrus in 7 of 8 cows treated with PGF/GnRH on Day 8 and 3 of 8 cows treated with PGF/GnRH on Day 10. Further, cows with premature GnRH-induced ovulations failed to develop and maintain a fully functional CL, and all returned to estrus 7 to 13 days after the induced ovulation. These data indicate that GnRH administered simultaneously with a luteolytic dose of PGF disrupts follicular dynamics and induces premature ovulation or delays normal return to estrus and, therefore, does not improve the synchrony of estrus and ovulation achieved with PGF alone.  相似文献   

10.
At calving forty-eight Holstein and Guernsey cows were assigned according to age and breed to one of six postpartum periods (1 or 2, 3 or 4, 5 or 6, 7 or 8, 12 or 13 and 18 or 19 days postpartum). Thirty-six of the cows (6 cows per postpartum period) received a single intramuscular injection of 100 μg GnRH. The other twelve cows (2 cows per postpartum period) served as controls and received a single intramuscular injection of the carrier vehicle for GnRH.Four of 36 cows administered GnRH and three of the 12 control cows ovulated by the day following treatment. Four of the cows were 12 or 13 days postpartum (1 control and 3 GnRH treated) and three were 18 or 19 days postpartum (2 controls and 1 GnRH treated). Six of the seven cows that ovulated the day following treatment had a follicle > 1.0 cm the day prior to treatment. Follicular growth was detected in the earlier postpartum periods but ovulation the following day was not detected for either control or GnRH treated cows. Following estrus or silent estrus, plasma progesterone concentrations increased to about 4 ng/ml on day 13. However, in cows ovulating the day following GnRH treatment, plasma progesterone declined from about 3 ng/ml on day 9 to approximately 1 ng/ml on day 13 postestrus. In addition, LH in plasma was higher (P < .01) ? through 13 days following estrus or silent estrus in cows ovulating the day after GnRH treatment in comparison to cows during the first or subsequent postpartum estrous cycles.In summary, in addition to days postpartum other factors including follicular development and maturity are probably involved in GnRH induced ovulation.  相似文献   

11.
Treatments designed to synchronize luteolysis, preovulatory follicular development, and ovulation, and resynchronize estrus after a first AI have improved responses to synchronization treatments. Protocols based only on the use of PGF result in variable onset of estrus. Concentrations of progesterone prior to administering PGF have affected submission rates and fertility while administration of estradiol benzoate (EB) after inducing luteolysis has improved the synchrony of estrus and ovulation in some studies. In pasture-based dairy cows, GnRH-based protocols have generally resulted in one-third of both anestrous and cycling cows conceiving following synchronization of ovulation and timed AI. Protocols which use intravaginal progesterone releasing inserts (IVP4) are effective in inducing estrus in over 90% of treated dairy cows. Resynchronization of estrus after reinsertion of an IVP4 also improves the synchrony of returns to estrus, but pregnancy rates to the first AI have been reduced in some studies, and submission rates at a resynchronized estrus are less than at the first synchronized estrus. Administration of EB can be used to synchronize follicle wave emergence in resynchronized cows with intervals to new wave emergence comparable to that in cows synchronized for a first AI, but plasma concentrations of progesterone following treatment may be reduced. Synchronization of estrus and ovulation can be enhanced by administration of EB or GnRH during proestrus, but dose, timing and stage of follicular development at the time of treatment can affect outcomes.  相似文献   

12.
The objective of this study was to determine whether plasma concentrations of progesterone (P4) from a controlled internal drug releasing (CIDR) device (approximately 2 ng/ml) were adequate to sustain a persistent first wave dominant follicle (FWDF) in low body condition (LBC, body condition score [BCS] 1 = lean, 5 = fat [2.3 +/- 0.72, n = 4]) compared with high body condition (HBC, BCS = 4.4 +/- 0.12, n = 4) nonlactating dairy cows. On Day 7 of the estrous cycle (Day 0 = estrus), cows were treated with PGF2 alpha (25 mg i.m. Lutalyse, P.M., and Day 8 A.M.) and a used CIDR device containing P4 (1.2 g) was inserted into the vagina until ovulation or Day 16. Plasma was collected for P4 and estradiol (E2) analyses from Day 5 to Day 18 (or ovulation), and ovarian follicles were monitored daily by ultrasonography. Mean concentrations of plasma P4 were greater in HBC than LBC cows between Days 5 and 7 (4.6 > 3.4 +/- 0.37 ng/ml; P < 0.04). All LBC cows maintained the first wave dominant follicle and ovulated after removal of the CIDR device (18.3 +/- 0.3 d, n = 3; Cow 4 lost the CIDR device on Day 11 and ovulated on Day 15), whereas in the HBC cows ovulation occurred during the period of CIDR exposure (11.3 +/- 0.3 d; n = 3; a fourth cow developed a luteinized first wave dominant follicle that did not ovulate during the experimental protocol on Day 19). Mean day of estrus was 17 +/- 0.4 for LBC (n = 3) and 10 +/- 0.4 for HBC (n = 3) cows. Sustained concentrations of plasma E2 (12.9 +/- 2.8 pg/ml; Days 8 to 17) in LBC cows reflected presence of an active persistent first wave dominant follicle. The differential effect of BCS on concentrations of plasma P4 (y = ng/ml) was reflected by the difference (P < 0.01) in regressions: yLBC = 19.9 - 3.49x + 0.166x2 vs yHBC = 37.3 - 7.04x + 0.340x2 (x = day of cycle, Days 7 to 12). Although P4 concentration was greater for HBC cows prior to Day 8, a greater clearance of plasma P4 released from the CIDR device in the absence of a CL altered follicular dynamics, leading to premature ovulation in the HBC cows. A greater basal concentration of P4 was sustained in LBC cows that permitted maintenance of a persistent first wave dominant follicle.  相似文献   

13.
The objectives of this study were to investigate the effect of a synthetic GnRH-agonist (Deslorelin) implant on CL function and follicle dynamics when administered 48 h after PGF2 alpha, in a timed-insemination protocol, and to determine if the incorporation of a Deslorelin implant into a timed-insemination protocol to synchronize ovulation would be beneficial to the establishment of pregnancy. In Experiment 1, 15 non lactating cyclic Holstein cows received Buserelin (8 micrograms, i.m.) on Day-9, Lutalyse (25 mg, i.m.) on Day-2, and then on Day 0 received either a Deslorelin implant (700 micrograms, s.c.; n = 5), Buserelin (8 micrograms, i.m.; n = 5), or no treatment (control; n = 5). Blood samples were collected on Days-9, -2, 0 and thereafter daily until the next ovulation. Ovaries were scanned by ultrasound on Days-9, -2, 0, 1 (day of ovulation) and 3 times a week thereafter until a subsequent ovulation. From Days 0 to 15, the rate of increase of plasma progesterone (P4) was greater (P < 0.01) for Deslorelin than for control and Buserelin. Establishment of the first-wave dominant follicle (FWDF) as a Class 3 (> 9 mm) follicle was delayed (P < 0.01) with Deslorelin (14.2 +/- 1.3 d) compared with the control (4.6 +/- 1.3 d) and Buserelin (5.0 +/- 1.5 d) treatments. The FWDF resumed growth after Day 13 in all 5 Deslorelin-treated cows, and 2 cows ovulated spontaneously. In 1 Deslorelin-treated cow, the FWDF regressed, and a second-wave dominant follicle ovulated, while 2 other Deslorelin cows failed to ovulate until after Day 36. The cumulative numbers of Class 2 and 3 follicles was lowest in the Deslorelin group (P < 0.01), while the cumulative number of Class 1 follicles was highest (Deslorelin > Buserelin > Control; P < 0.01). The number of days to CL-regression and days to subsequent estrus did not differ (P > 0.05) among treatments. In Experiment II, 16 lactating potentially subfertile (body condition score 2.25) cows received Cystorelin (100 micrograms, i.m.; Day-9), Lutalyse (25 mg, i.m.; Day-2), and either a Cystorelin injection (100 micrograms, i.m.; n = 8) or Deslorelin implant (700 micrograms, s.c.; n = 8) on Day 0 and inseminated 16 h later. Deslorelin-treated cows had a higher plasma P4 concentration between Days 0 and 16 (P < 0.05) than the 2 other groups, and 5 of the 8 cows in this group were pregnant (Day 45, palpation) compared with 1 of 8 cows in the Cystorelin group (P < 0.05). Incorporation of a Deslorelin implant into a timed-insemination protocol enhanced the pregnancy rate in cows of poor body condition. The results support the hypothesis that enhanced CL function and delayed establishment of the first-wave dominant follicle may enhance embryo survival.  相似文献   

14.
In the ewe, a rise in circulating concentrations of FSH preceding follicular wave emergence begins in the presence of growing follicles from a previous wave. We hypothesized that prostaglandin F(2alpha) (PGF(2alpha)) given at the time of an endogenous FSH peak in cyclic ewes would result in synchronous ovulation of follicles from two consecutive waves, increasing ovulation rate. Twelve Western White Face (WWF) ewes received a single i.m. injection of PGF(2alpha) (15 mg/ewe) at the expected time of a peak in FSH secretion, from Days 9 to 12 after ovulation. The mean ovulation rate after PGF(2alpha) treatment (2.3+/-0.3) did not differ (P>0.05) from the pre-treatment ovulation rate (1.7+/-0.1). Five ewes ovulated follicles from follicular waves emerging before and after PGF(2alpha) injection (3.0+/-0.6 ovulations/ewe) and seven ewes ovulated follicles only from a wave(s) emerging before PGF(2alpha) treatment (2.0+/-0.3 ovulations/ewe; P>0.05). The mean interval from PGF(2alpha) to emergence of the next follicular wave (1.0+/-0.4 and 4.0+/-0.0 d, respectively; P<0.001) and the interval from PGF(2alpha) treatment to the next FSH peak (0 and 3.5+/-0.4d, respectively; P<0.05) differed between the two groups. Six ewes ovulated after the onset of behavioral estrus, with a mean ovulation rate of 1.7+/-0.2, and six ewes ovulated both before and after the onset of estrus (3.0+/-0.5 ovulations/ewe; P<0.05). None of the ovulations that occurred before estrus resulted in corpora lutea (CL) with a full life span. At 24h before ovulation, follicles ovulating before or after the onset of estrus differed in size (4.1+/-0.3 or 5.5+/-0.4mm, respectively; P<0.05) and had distinctive echotextural characteristics. In conclusion, the administration of PGF(2alpha) at the expected time of an FSH peak at mid-cycle in ewes may alter the endogenous rhythm of FSH secretion and was not consistently followed by ovulation of follicles from two follicular waves. In non-prolific WWF ewes, PGF(2alpha)-induced luteolysis disrupted the normal distribution of the source of ovulatory follicles and may be associated with untimely follicular rupture and luteal inadequacy.  相似文献   

15.
One of the postulated main luteolytic actions of prostaglandin (PG) F(2 alpha) is to decrease ovarian blood flow. However, before Day 5 of the normal cycle, the corpus luteum (CL) is refractory to the luteolytic action of PGF(2 alpha). Therefore, we aimed to determine in detail the real-time changes in intraluteal blood flow after PGF(2 alpha) injection at the early and middle stages of the estrous cycle in the cow. Normally cycling cows at Day 4 (early CL, n = 5) or Days 10--12 (mid CL, n = 5) of the estrous cycle (estrus = Day 0) were examined by transrectal color and pulsed Doppler ultrasonography to determine the blood flow area, the time-averaged maximum velocity (TAMXV), and the volume of the CL after an i.m. injection of a PGF(2 alpha) analogue. Ultrasonographic examinations were carried out just before PG injection (0 h) and then at 0.5, 1, 2, 4, 8, 12, 24, and 48 h after the injection. Blood samples were collected at each of these times for progesterone (P) determination. The ratio of the colored area to a sectional plane at the maximum diameter of the CL was used as a quantitative index of the changes in blood flow within the luteal tissue. Blood flow within the midcycle CL initially increased (P < 0.05) at 0.5-2 h, decreased at 4 h to the same levels observed at 0 h, and then further decreased to a lower level from 8 h (P < 0.05) to 48 h (P < 0.001). Plasma P concentrations decreased (P < 0.05) from 4.7 +/- 0.5 ng/ml (0 h) to 0.6 +/- 0.2 ng/ml (24 h). The TAMXV and CL volume decreased at 8 h (P < 0.05) and further decreased (P < 0.001) from 12 to 24 h after PG injection, indicating structural luteolysis. These changes were not detected in the early CL, in which luteolysis did not occur. In the early CL, the blood flow gradually increased in parallel with the CL volume, plasma P concentration, and TAMXV from Day 4 to Day 6. The present results indicate that PGF(2 alpha) induces an acute blood flow increase followed by a decrease in the midcycle CL but not in the early CL. This transitory increase may trigger the luteolytic cascade. The lack of intraluteal vascular response to PG injection in the early CL appears to be directly correlated with the ability to be resistant to PG.  相似文献   

16.
Three experiments evaluated the effects of estradiol valerate (EV) on ovarian follicular and CL dynamics, intervals to estrus and ovulation, and superovulatory response in cattle. Experiment 1 compared the efficacy of two norgestomet ear implants (Crestar and Syncro-Mate B; SMB) for 9 d (with PGF at implant removal), combined with either 5 mg estradiol-17beta and 100 mg progesterone (EP) or 5 mg EV and 3mg norgestomet (EN) im at the time of implant insertion on CL diameter and follicular wave dynamics. Ovaries were monitored by ultrasonography. There was no effect of norgestomet implant. Diameter of the CL decreased following EN treatment (P < 0.01). Mean (+/- S.D.) day of follicular wave emergence (FWE) was earlier (P < 0.0001) and less variable (P < 0.0001) in EP- (3.6 +/- 0.5 d) than in EN- (5.7 +/- 1.5 d) treated heifers. Intervals from implant removal to estrus (P < 0.001) and ovulation (P < 0.01) were shorter in EN- (45.7 +/- 11.7 and 74.3 +/- 12.6 h, respectively) than in EP- (56.4 +/- 14.1 and 83.3 +/- 17.0 h, respectively) treated heifers. Experiment 2 compared the efficacy of EP versus EN in synchronizing FWE for superovulation in SMB-implanted cows. At random stages of the estrous cycle, Holstein cows (n = 78) received two SMB implants (Day 0) and were randomly assigned to receive EN on Day 0 or EP on Day 1. Folltropin-V treatments were initiated on the evening of Day 5, with PGF in the morning and evening of Day 8, when SMB were removed. Cows were inseminated after the onset of estrus and embryos were recovered 7 d later. Non-lactating cows had more CL (16.7 +/- 11.3 versus 8.3 +/- 4.9) and total ova/embryos (14.7 +/- 9.5 versus 7.9 +/- 4.6) than lactating cows (P < 0.05). EP-treated cows tended (P = 0.09) to yield more transferable embryos (5.6 +/- 5.2) than EN-treated cows (4.0 +/- 3.7). Experiment 3 compared the effect of dose of EV on ovarian follicle and CL growth profiles and synchrony of estrus and ovulation in CIDR-treated beef cows (n = 43). At random stages of the estrous cycle (Day 0), cows received a CIDR and no further treatment (Control), or an injection of 1, 2, or 5 mg im of EV. On Day 7, CIDR were removed and cows received PGF. Follicular wave emergence occurred within 7 d in 7/10 Control cows and 31/32 EV-treated cows (P < 0.05). In responding cows, interval from treatment to FWE was longer (P < 0.05) in those treated with 5 mg EV (4.8 +/- 1.2 d) than in those treated with 1 mg (3.2 +/- 0.9 d) or 2 mg (3.4 +/- 0.8 d) EV, while Control cows were intermediate (3.8 +/- 2.0 d). Diameter of the dominant follicle was smaller (P < 0.05) at CIDR removal and tended (P = 0.08) to be smaller just prior to ovulation in the 5 mg EV group (8.5 +/- 2.2 and 13.2 +/- 0.6 mm, respectively) than in the Control (11.8 +/- 4.6 and 15.5 +/- 2.9 mm, respectively) or 1mg EV (11.7 +/- 2.5 and 15.1 +/- 2.2 mm, respectively) groups, with the 2mg EV group (10.7 +/- 1.5 and 14.3 +/- 1.7 mm, respectively) intermediate. Diameter of the dominant follicle at CIDR removal was less variable (P < 0.01) in the 2 and 5mg EV groups than in the Control group, and intermediate in the 1mg EV group. In summary, treatment with 5mg EV resulted in a longer and more variable interval to follicular wave emergence than treatment with 5mg estradiol-17beta, which affected preovulatory dominant follicle size following progestin removal, and may have also affected superstimulatory response in Holstein cows. Additionally, 5 mg EV appeared to induce luteolysis in heifers, reducing the interval to ovulation following norgestomet removal. Conversely, intervals to, and synchrony of, follicular wave emergence, estrus and ovulation following treatment with 1 or 2 mg EV suggested that reduced doses of EV may be more useful for the synchronization of follicular wave emergence in progestogen-treated cattle.  相似文献   

17.
Kim IH  Son DS  Yeon SH  Choi SH  Park SB  Ryu IS  Suh GH  Lee DW  Lee CS  Lee HJ  Yoon JT 《Theriogenology》2001,55(4):937-945
This study was to investigate whether removing the dominant follicle 48 h before superstimulation influences follicular growth, ovulation and embryo production in Holstein cows. After synchronization, ovaries were scanned to assess the presence of a dominant follicle by ultrasonography with a real-time linear scanning ultrasound system on Days 4, 6 and 8 of the estrus cycle (Day 0 = day of estrus). Twenty-six Holstein cows with a dominant follicle were divided into 2 groups in which the dominant follicle was either removed (DFR group, n=13) by ultrasound-guided follicular aspiration or left intact (control group, n=13) on Day 8 of the estrus cycle. Superovulation treatment was initiated on Day 10. All donors were superovulated with injections of porcine FSH (Folltropin) twice daily with constant doses (total: 400 mg) over 4 d. On the 6th and 7th injections of Folltropin, 30 mg and 15 mg of PGF2alpha (Lutalyse) were given. Donors were inseminated twice at 12 h and 24 h after the onset of estrus. Embryos were recovered on Day 6 or 7 after AI. During superstimulation, the number of follicles 2 to 5 mm (small), 6 to 9 mm (medium) and > or = 10 mm (large) was determined by ultrasonography on a daily basis. At embryo recovery, the number of corpora lutea (CL) was also determined by ultrasonography and blood samples were collected for analysis of progesterone concentration. Follicular growth during superstimulation was earlier in the DFR group than in the control group. The number of medium and large follicles was greater (P < 0.01) in the DFR group than in the control group on Days 1 to 2 and Days 3 to 4 of superstimulation, respectively. The numbers of CL (9.6+/-1.1 vs 6.1+/-0.9) and progesterone concentration (30.9+/-5.4 vs 18.6+/-3.5 ng/mL) were greater (P < 0.05) in the DFR group than in the control group, respectively. The numbers of total ova (7.7+/-1.3 vs 3.9+/-1.0) and transferable embryos (4.6+/-0.9 vs 2.3+/-0.8) were also greater (P < 0.05) in the DFR group than in the control group, respectively. It is concluded that the removal of the dominant follicle 48 h before superstimulation promoted follicular growth, and increased ovulation and embryo production in Holstein cows.  相似文献   

18.
A single treatment with PGF2α is assumed to have no luteolytic effect on cows with corpora lutea < 5 days old. The objective of this study was to determine the effect of a single high dose of PGF2α administered to dairy cattle on the morphology and function of the early CL. The study followed a crossover design with a treatment cycle in which 50 mg of dinoprost were administered 3.5 days postovulation and a control untreated cycle. Ultrasound examination and blood samples were performed during the two consecutive cycles. Corpus luteum (CL) diameter, progesterone concentration, and follicular dynamics characteristics were compared between control and treated cycles. Two of nine cows (22%) developed full luteolysis. The remaining seven cows (78%) had partial luteolysis with a decrease (P < 0.05) in progesterone concentration and CL diameter for two and 12 days post-treatment, respectively. The interovulatory interval of treated cycles (19.7 ± 2.4 days) was not different (P > 0.05) from that of controls (23.8 ± 0.9 days). The transient reduction in progesterone of cows with partial luteolysis had no effect on the proportion of cows with two or three follicular waves, follicle growth rate, or preovulatory diameter (P > 0.05). Two cows developed ovarian cystic degeneration during the PGF2α-induced cycle. In conclusion, the treatment of cows with a high dose of PGF2α 3.5 days postovulation induced some degree of luteolysis in all treated cows. This resulted in partial luteolysis in 78% of treated animals and in full luteolysis in the remaining 22%.  相似文献   

19.
A previous study showed that noncyclic dairy cows treated with 10 microg of GnRH and a progesterone-releasing CIDR insert on Day 0, 25 mg of PGF2alpha and CIDR removal on Day 7, followed by 1 mg estradiol benzoate on Day 9 for those cows that still had not shown estrus (CGPE program) had higher conception rate (47% vs. 29%) than cows treated only with CIDR and estradiol benzoate as above (CE program). This study was to investigate the mechanisms by which the CGPE program improved conception rate compared with the CE program. Sixteen noncyclic Holstein-Friesian cows were randomly assigned to 2 groups balanced for the size and growth pattern of the dominant follicles, which were determined by ultrasonography over a 3-d period. One group received the above CGPE treatment, and the other group received the CE treatment. Follicular and luteal development were monitored by daily ultrasonography. Blood samples were collected daily from Day -2 to Day 11, and thereafter milk samples were collected thrice weekly for a further 24 d. Blood and milk samples were analyzed for progesterone. The GnRH treatment induced ovulation in 7 of 8 cows, resulting in elevated (P<0.05) progesterone concentrations between Days 4 and 7 for cows in the CGPE group. All induced CL underwent luteolysis by 24 h after PGF2alpha treatment. Within 5 d of CIDR removal, 7 of 8 cows in both the CE and CGPE groups ovulated. The interval from emergence of the ovulatory follicle to ovulation was similar (P=0.32) but less (P<0.05) variable for the CGPE group (9.0+/-0.3 d) compared with the CE group (10.3+/-1.2 d). Progesterone concentration in milk samples was similar between the two groups up to 10 d after ovulation. In summary, the GnRH treatment induced ovulation or turnover of dominant follicles, induced a synchronized initiation of a new follicular wave, and increased the progesterone concentration from 4 d after treatment. These could be the reasons for the increased conception rate of cows treated with the CGPE program.  相似文献   

20.
《Theriogenology》2015,83(9):1241-1245
A single dose of PGF2α does not consistently induce luteolysis in the equine CL until at least 5 days after ovulation, leading to the erroneous assumption that the early CL is refractory to the luteolytic effects of PGF2α. We hypothesized that serial administration of PGF2α in early diestrus would induce a return to estrus similar to mares treated with a single injection in mid-diestrus, and fertility of the induced estrus would not differ. The objectives of the study were to evaluate the effects of the 2 approaches as reflected by: (1) concentrations of plasma progesterone; (2) interovulatory and treatment-to-ovulation intervals; (3) the proportion of mares pregnant after artificial insemination. The study consisted of a balanced crossover design in which 10 reproductively normal Quarter Horse Mares were exposed to 2 treatments on 2 consecutive reproductive cycles. At detected ovulation (Day 0), mares were randomly allotted to 1 of 2 treatment groups: I, mid-diestrus treatment, administration of a single 10-mg dose of dinoprost tromethamine (PGF2α) im on Day 10; II, early diestrus treatment, administration of 10-mg PGF2α im twice daily on Days 0, 1, and 2 and once daily on Days 3 and 4. Mares in estrus and with a follicle 35 mm or greater in diameter were artificially inseminated with at least 2 billion motile sperm from a fertile stallion. Pregnancy was defined as detection of a growing embryonic vesicle on 2 consecutive examinations approximately 14 days after ovulation. Serial plasma samples were collected throughout the study period, and concentration of plasma progesterone was determined by RIA. A mixed-model ANOVA for repeated measures was used to analyze hormonal data. Interovulatory and treatment-to-ovulation intervals were compared by a paired t test and fertility by a McNemar chi-square analysis. All mares in group I underwent luteolysis after PGF2α administration denoted by mean (±SD) concentration of plasma progesterone of 0.25 ± 0.21 ng/mL detected 2 days after treatment. In group II, mean concentration of plasma progesterone remained below 1.0 ng/mL during treatment and until the onset of the next estrus. The mean interovulatory interval in group I was 18.5 ± 2.0 days compared with 13.1 ± 3.7 days in group II (P < 0.01). Treatment-to-ovulation intervals were 8.5 ± 2.0 days and 13.1 ± 3.7 days for groups I and II, respectively (P < 0.05). In both groups, 9 of 10 mares were pregnant (P = 1.0). Serial PGF2α administration beginning at ovulation consistently prevented luteal function in 10 of 10 mares in the present study without adversely affecting pregnancy rate of post-treatment cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号