首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Banana mosaic disease (BMD) caused by Cucumber mosaic virus (CMV) has become an important threat to the banana industry. We collected and characterized 10 CMV isolates associated with BMD in Taiwan and compared their biological characteristics and coat protein sequences. The isolates fell into four pathotypes on the basis of the symptoms they induce on banana, Nicotiana glutinosa and Vigna unguiculata (cowpea). Double-stranded RNA analysis revealed that the different pathotypes are not related to the presence of CMV satellite RNA. Phylogenetic analysis of worldwide CMV coat protein sequences revealed that among the currently known CMV subgroups IA, IB and II, subgroup IB is phylogenetically unresolved. Our CMV isolates form a new subgroup, IT, within subgroup I. In addition, we resolved another new CMV subgroup, IS, within subgroup I. The analysis also revealed that isolates within different subgroups can infect the banana.  相似文献   

2.
In this article, we report studies on the evolutionary history of beta satellite repeats (BSR) in primates. In the orangutan genome, the bulk of BSR sequences was found organized as very short stretches of approximately 100 to 170 bp, embedded in a 60-kb to 80-kb duplicated DNA segment. The estimated copy number of the duplicon that carries BSR sequences ranges from 70 to 100 per orangutan haploid genome. In both macaque and gibbon, the duplicon mapped to a single chromosomal region at the boundary of the rDNA on the marker chromosome (chromosome 13 and 12, respectively). However, only in the gibbon, the duplicon comprised 100 bp of beta satellite. Thus, the ancestral copy of the duplicon appeared in Old World monkeys ( approximately 25 to approximately 35 MYA), whereas the prototype of beta satellite repeats took place in a gibbon ancestor, after apes/Old World monkeys divergence ( approximately 25 MYA). Subsequently, a burst in spreading of the duplicon that carries the beta satellite was observed in the orangutan, after lesser apes divergence from the great apes-humans lineage ( approximately 18 MYA). The analysis of the orangutan genome also indicated the existence of two variants of the duplication that differ for the length (100 or 170 bp) of beta satellite repeats. The latter organization was probably generated by nonhomologous recombination between two 100-bp repeated regions, and it likely led to the duplication of the single Sau3A site present in the 100-bp variant, which generated the prototype of Sau3A 68-bp beta satellite tandem organization. The two variants of the duplication, although with a different ratios, characterize the hominoid genomes from the orangutan to humans, preferentially involving acrocentric chromosomes. At variance to alpha satellite, which appeared before the divergence of New World and Old World monkeys, the beta satellite evolutionary history began in apes ancestor, where we have first documented a low-copy, nonduplicated BSR sequence. The first step of BSR amplification and spreading occurred, most likely, because the BSR was part of a large duplicon, which underwent a burst dispersal in great apes' ancestor after the lesser apes' branching. Then, after orangutan divergence, BSR acquired the clustered structural organization typical of satellite DNA.  相似文献   

3.
The location of satellite DNA sequences in metaphase chromosomes has been studied in the kangaroo rat by the in situ hybridization technique, staining techniques and phase contrast microscopy. The HS- satellite DNA is located at the kinetochores of all but three chromosome pairs. The HD satellite is located predominantly in the short arms of the chromosomes containing HS- and in the kinetochores of chromosome pairs that lack HS-. The regions that contain the satellite DNA sequences can also be identified by the Giemsa staining technique, and can be visualized with phase contrast microscopy or following Feulgen staining of fixed chromosome preparations.  相似文献   

4.
Pericentric inversions involving the secondary constriction (qh) region of chromosome 9 are considered to be normal variants. The evolutionary mechanisms and conservation of these inversions via Mendelian fashion have been investigated since the advent of banding techniques. Routine cytogenetic techniques cannot provide the fine characterization necessary to determine the type of genetic material involved in these rearrangements. Therefore, the fluorescence in situ hybridization technique with the human centromere-specific alpha satellite and the beta satellite (D9Z5) and classical satellite (D9Z1) human DNA probes were used to identify the breakpoints of chromosome 9 pericentric inversions. Four unique types of pericentric inversions involving the 9qh region were observed, and the mechanism may be due to breakage and reunion at the proposed breakpoints. They are: type A inversions consist of breakpoints within the alpha and beta satellite DNA regions; type B consist of breakpoints within the beta satellite DNA region and band 9q13; type C involve breakage within the beta and classical satellite DNA regions, and type D have breakpoints within the alpha and classical satellite DNA regions. Obviously, reshuffling of satellite DNA sequences has occurred, which has given rise to a variety of heteromorphisms whose clinical significance remains obscure. Received: 21 December 1995 / Revised: 30 May 1996  相似文献   

5.
He-T DNA is a complex set of repeated DNA sequences with sharply defined locations in the polytene chromosomes of Drosophila melanogaster. He-T sequences are found only in the chromocenter and in the terminal (telomere) band on each chromosome arm. Both of these regions appear to be heterochromatic and He-T sequences are never detected in the euchromatic arms of the chromosomes (Young et al. 1983). In the study reported here, in situ hybridization to metaphase chromosomes was used to study the association of He-T DNA with heterochromatic regions that are under-replicated in polytene chromosomes. Although the metaphase Y chromosome appears to be uniformly heterochromatic, He-T DNA hybridization is concentrated in the pericentric region of both normal and deleted Y chromosomes. He-T DNA hybridization is also concentrated in the pericentric regions of the autosomes. Much lower levels of He-T sequences were found in pericentric regions of normal X chromosomes; however compound X chromosomes, constructed by exchanges involving Y chromosomes, had large amounts of He-T DNA, presumably residual Y sequences. The apparent co-localization of He-T sequences with satellite DNAs in pericentric heterochromatin of metaphase chromosomes contrasts with the segregation of satellite DNA to alpha heterochromatin while He-T sequences hybridize to beta heterochromatin in polytene nuclei. This comparison suggests that satellite sequences do not exist as a single block within each chromosome but have interspersed regions of other sequences, including He-T DNA. If this is so, we assume that the satellite DNA blocks must associate during polytenization, leaving the interspersed sequences looped out to form beta heterochromatin. DNA from D. melanogaster has many restriction fragments with homology to He-T sequences. Some of these fragments are found only on the Y. Two of the repeated He-T family restriction fragments are found entirely on the short arm of the Y, predominantly in the pericentric region. Under conditions of moderate stringency, a subset of He-T DNA sequences cross-hybridizes with DNA from D. simulans and D. miranda. In each species, a large fraction of the cross-hybridizing sequences is on the Y chromosome.  相似文献   

6.
G M Greig  H F Willard 《Genomics》1992,12(3):573-580
beta satellite is a repetitive DNA family that consists of approximately 68-bp monomers tandemly repeated in arrays of at least several hundred kilobases. In this report we describe and characterize two subfamilies located exclusively on the human acrocentric chromosomes. The first subfamily is defined by a homogeneous approximately 2.0-kb higher-order repeat unit and is located primarily distal to the ribosomal RNA gene cluster, based both on fluorescence in situ hybridization to metaphase chromosomes and on filter hybridization analysis of translocation chromosomes isolated in somatic cell hybrids. In contrast, the second subfamily is located both distal and proximal to the ribosomal RNA gene cluster on the same acrocentric chromosomes. The DNA sequences of a number of monomers from these two subfamilies are compared to each other and to other beta satellite monomers to assess both inter- and intrasubfamily sequence relationships for these monomers.  相似文献   

7.
Cytologically, the centromere is found at the very end of most Mus musculus chromosomes, co-localizing with an array of minor satellite sequences. It is separated from the euchromatin of the long arm by a large domain of heterochromatin, composed in part of arrays of major satellite sequences. We used oligonucleotide probes that specifically detect regions of sequence variation found in certain cloned minor satellite sequences. They detect a limited subset of the minor satellite arrays in the mouse genome, based on both pulsed-field gel electrophoresis and in situ hybridization data, and provide direct molecular genetic markers for individual centromeres in some inbred mouse strains. Array size polymorphisms detected by these probes map to positions consisten with the centromeres of chromosomes 1 and 14 in the BXD recombinant inbred (RI) strains. The genetic distances between these minor satellite arrays and loci on the long arms of chromosomes 1 and 14 are consistent with repression of meiotic recombination in the heterochromatic domains separating them. The existence of chromosome-specific minor satellite sequences implies that the rate of sequence exchange between non-homologous chromosomes relative to the rate between homologous chromosomes is much lower than has previously been postulated. We suggest that the high degree of sequence homogeneity of mouse satellite sequences may instead reflect recent common ancestry.  相似文献   

8.
9.
Restriction endonuclease cleavage of satellite DNA in intact bovine nuclei   总被引:1,自引:0,他引:1  
Lolya Lipchitz  Richard Axel 《Cell》1976,9(2):355-364
We have analyzed the efficiency with which specific nucleotide sequences within nucleosomes are recognized and cleaved by DNA restriction endonucleases. A system amenable to this sort of analysis is the cleavage of the bovine genome with the restriction endonuclease EcoRI. Bovine satellite I comprises 7% of the genome and is tandemly repetitious with an EcoRI site at 1400 base pair (bp) intervals within this sequence. The ease with which this restriction fragment can be measured permits an analysis of the accessibility of this sequence when organized in a nucleosomal array.Initial studies indicated that satellite I sequences are organized in a nucleosomal structure in a manner analogous to that observed for total genomic DNA. We then examined the accessibility of the EcoRI cleavage sites in satellite to endonucleolytic cleavage in intact nuclei. We find that whereas virtually all the satellite I sequences from naked DNA are cleaved into discrete 1400 bp fragments, only 33% of the satellite I DNA is liberated as this fragment from intact nuclei. These data indicate that 57% of the EcoRI sites in nuclei are accessible to cleavage and that cleavage can occur within the core of at least half the nucleosomal subunits. Analysis of the products of digestion suggests a random distribution of nucleosomes about the EcoRI sites of satellite I DNA.Finally, the observation that satellite sequences can be cleaved from nuclei to 1400 bp length fragments with their associated proteins provides a method for the isolation of specific sequences as chromatin. Using sucrose gradient velocity centrifugation, we have isolated a 70% pure fraction of satellite I chromatin. Nuclease digestion of this chromatin fraction reveals the presence of nucleosomal subunits and indicates that specific sequences can be isolated in this manner without gross disorganization of their subunit structure.  相似文献   

10.
Global reduction of DNA methylation, a part of genome reprogramming processes, occurs in a gradual manner until before implantation and is recognized as a conserved process in mammals. Here, we reported that in bovine, satellite regions exhibited varied patterns of methylation changes when one-cell egg advanced to the blastocyst; a maintenance methylation was observed in satellite I sequences, a decrease in alpha satellites, and an increase in satellite II regions. Cloned embryos exhibited similar changes for DNA methylation in the satellite I and alpha. We also observed that the satellite I and alpha sequences were methylated more in inner cell mass region of the blastocyst whereas the satellite II showed selective demethylation in this region. Together, these findings point that individual satellite sequences carry their own methylation patterns under the pressure of global demethylation, suggesting that local methylation control system acts on the satellite regions in early bovine embryos.  相似文献   

11.
DNA was isolated from a chinese hamster/mouse hybrid cell line containing a single mouse chromosome, the X-chromosome, and digested with a variety of restriction endonucleases known to cut mouse satellite DNA. After agarose gel electrophoresis and transfer to nitrocellulose, hybridisation was carried out to a radioactive mouse satellite DNA probe. In this manner the organisation of satellite sequences at an individual chromosome was determined. We have found that the organisation of centromeric satellite DNA sequences on the mouse X-chromosome differs from that of other chromosomes in the complement. The nature of the differences suggests features of evolution of highly repeated sequences within a karyotype.  相似文献   

12.
Satellite DNA sequences are known to be highly variable and to have been subjected to concerted evolution that homogenizes member sequences within species. We have analyzed the mode of evolution of satellite DNA sequences in four fishes from the genusDiplodus by calculating the nucleotide frequency of the sequence array and the phylogenetic distances between member sequences. Calculation of nucleotide frequency and pairwise sequence comparison enabled us to characterize the divergence among member sequences in this satellite DNA family. The results suggest that the evolutionary rate of satellite DNA inD. bellottii is about two-fold greater than the average of the other three fishes, and that the sequence homogenization event occurred inD. puntazzo more recently than in the others. The procedures described here are effective to characterize mode of evolution of satellite DNA. Published: March 4, 2003  相似文献   

13.
We previously reported the cloning and detailed analysis of the integrated hepatitis B virus sequences in a human hepatoma cell line. We report here the integration of at least one of hepatitis B virus at human satellite DNA sequences. The majority of the cellular sequences identified by this satellite DNA were organized as a multimeric composition of a 0.6-kilobase EcoRI fragment. This clone hybridized in situ almost exclusively to the centromeric heterochromatin of chromosomes 1 and 16 and to a lower extent to chromosome 2 and to the heterochromatic region of the Y chromosome. The immediate flanking host sequence appeared as a hierarchy of repeating units which were almost identical to a previously reported human satellite III DNA sequence.  相似文献   

14.
We studied the organization of telomeric, major and minor satellite DNA sequences located in the pericentromeric regions of mouse telocentric and Robertsonian metacentric chromosomes by high-resolution fluorescence in situ hybridization. Molecular data have already proved that in telocentrics, from the physical chromosome end, telomeric sequences are followed by minor and then by major satellite DNA. We showed that the three families of repetitive DNA are organized as uninterrupted long-range cluster repeats and that there is no intermingling between telomeric and minor satellite DNA or between the major and the minor tandem repeats or with non-satellite DNA. The pericentromeric region of metacentric chromosomes consists of a small block of minor satellite DNA sandwiched between two blocks of major satellite DNA.  相似文献   

15.
Ultraviolet circular dichroism spectra have been obtained for native and heat-denatured Drosophila virilis satellite DNAs I, II and III. Gall &; Atherton (1974) have found that these DNAs have simple, unique sequences. We compare here the circular dichroism spectra of these satellite sequences with the circular dichroism spectra of synthetic DNAs of simple sequences which are combined in first-neighbor calculations. We also apply an analytical procedure for determining nearest-neighbor frequencies from the DNA spectra (Allen et al., 1972). The results are an indication of the potential usefulness and present limitations of circular dichroism measurements in confirming or determining the nearestneighbor frequencies of satellite DNAs of simple sequences.  相似文献   

16.
Type 1 serine/threonine protein phosphatases (PP1s) play key roles in many cellular processes. To understand the evolutionary relationships among PP1s from various kingdoms and to provide a valid basis to evaluate the structure-function relationships of these phosphatases, 44 PP1 sequences were aligned, revealing a high sequence similarity among PP1 homologs. About one-third of the total amino acids are conserved in all the sequences studied. Most of these conserved amino acids are located within a 270-amino-acid core region. They include most sites critical to the activity and regulation of PP1s based on three-dimensional structural studies of mammalian PP1s. Positional variation analysis using a sliding window approach revealed two variable blocks in the 270-amino-acid core region. The major variable block corresponds to a subdomain composed of three alpha-helices (alphaG, alphaH, and alphaI) and three beta-sheets (beta7, beta8, and beta9). Phylogenetic analyses suggested that plant and animal PP1s form distinct monophyletic groups. The plant PP1 family contains several subgroups that may be older than the monocot-dicot divergence. In the animal PP1 family, different vertebrate isoforms appear to form distinct subgroups. Relative substitution rate studies indicated that plant PP1s are more diverse than animal PP1s, with an average substitution rate 1.5 times as large as that of animal PP1s. The possible involvement of PP1s in the establishment of multicellularity is discussed.  相似文献   

17.
18.
Centromeres are composed of long arrays of satellite repeats in most multicellular eukaryotes investigated to date. The satellite repeat–based centromeres are believed to have evolved from “neocentromeres” that originally contained only single- or low-copy sequences. However, the emergence and evolution of the satellite repeats in centromeres has been elusive. Potato (Solanum tuberosum) provides a model system for studying centromere evolution because each of its 12 centromeres contains distinct DNA sequences, allowing comparative analysis of homoeologous centromeres from related species. We conducted genome-wide analysis of the centromeric sequences in Solanum verrucosum, a wild species closely related to potato. Unambiguous homoeologous centromeric sequences were detected in only a single centromere (Cen9) between the two species. Four centromeres (Cen2, Cen4, Cen7, and Cen10) in S. verrucosum contained distinct satellite repeats that were amplified from retrotransposon-related sequences. Strikingly, the same four centromeres in potato contain either different satellite repeats (Cen2 and Cen7) or exclusively single- and low-copy sequences (Cen4 and Cen10). Our sequence comparison of five homoeologous centromeres in two Solanum species reveals rapid divergence of centromeric sequences among closely related species. We propose that centromeric satellite repeats undergo boom-bust cycles before a favorable repeat is fixed in the population.  相似文献   

19.
We investigated relationships among alpha satellite DNA families in the human, gorilla, chimpanzee, and orangutan genomes by filter hybridization with cloned probes which correspond to chromosome-specific alpha satellite DNAs from at least 12 different human chromosomes. These include representatives of both the dimer-based and pentamer-based subfamilies, the two major subfamilies of human alpha satellite. In addition, we evaluated several high-copy dimer-based probes isolated from gorilla genomic DNA. Under low stringency conditions, all human probes tested hybridized extensively with gorilla and chimpanzee alpha satellite sequences. However, only pentameric and other non-dimeric human alphoid probes hybridized with orangutan alpha satellite sequences; probes belonging to the dimer subfamily did not cross-hybridize detectably with orangutan DNA. Moreover, under high stringency conditions, each of the human probes hybridized extensively only with human genomic DNA; none of the probes cross-hybridized effectively with other primate DNAs. Dimer-based gorilla alpha satellite probes hybridized with human and chimpanzee, but not orangutan, sequences under low stringency hybridization conditions, yet were specific for gorilla DNA under high stringency conditions. These results indicate that the alpha satellite DNA family has evolved in a concerted manner, such that considerable sequence divergence is now evident among the alphoid sequences of closely related primate species.  相似文献   

20.
Five members of the human CEA gene family [human pregnancy-specific beta 1-glycoprotein (PS beta G); hsCGM1, 2, 3 and 4] have been isolated and identified through sequencing the exons containing their N-terminal domains. Sequence comparisons with published data for CEA and related molecules reveal the existence of highly-conserved gene subgroups within the CEA family. Together with published data eleven CEA family members have so far been determined. Apart from the highly conserved coding sequences, these genes also show strong sequence conservation in their introns, indicating a duplication of whole gene units during the evolution of the CEA gene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号