首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Demenkov  P. S.  Aman  E. E.  Ivanisenko  V. A. 《Biophysics》2008,53(1):49-58
The functional (synthetic) activity of blood lymphocytes and bone marrow hematopoietic cells in ground squirrels was studied in different seasons and at different stages of the torpor-arousal cycle. The effect of γ-irradiation on animals in different physiological states was also studied. The synthetic activity of cells was estimated from the amount of active RNA per unit DNA in the cell (parameter α). The α values in lymphocytes were minimal in hibernating animals (January–March), reached a peak upon their complete awakening (April), slightly decreased in the summer activity period, and decreased further in the prehibernation autumn period (November). During winter arousals between torpor bouts, this parameter reached the same values as in summer. The dynamics of parameter α in bone marrow hematopoietic cells were generally similar: minimal values in November and higher between torpor bouts than in summer. The peak of synthetic activity of proliferating hematopoietic cells recorded upon awakening from hibernation in April was mainly due to the accumulation of cells in the G1 and G2 phases of the cell cycle, and its decrease in summer reflected prevalent transition from G2 to mitosis and then partly to G0. In the torpor-arousal-euthermia cycle, two stages of awakening were distinguished, differing considerably in most of the test parameters. The synthetic activity and the total number of blood and bone marrow cells in ground squirrels irradiated in the state of torpor did not differ significantly from those in nonirradiated torpid animals. The adverse effect of radiation in animals irradiated at the initial stage of awakening was lesser than in animals irradiated in the active state, whereas animals at the second stage of awakening proved more vulnerable to acute irradiation. The physiological state of ground squirrels exposed to ionizing radiation at different phases of the torpor-arousal-euthermia cycle plays a key role in the dynamics of qualitative and quantitative characteristics of blood system cells. The results of this study indicate that the hypometabolic state of ground squirrels during hibernation is a factor of protection from the impact of ionizing radiation on the whole body and on the immune system in particular.  相似文献   

2.
The role of the pineal gland in modulating the rhythmic bouts of hibernation in the golden-mantled ground squirrel (S. lateralis) was explored by comparing pineal melatonin content in hibernating animals with that of euthermic animals at the same time of year. Significant decreases in pineal melatonin content were found in hibernating versus euthermic animals. In addition, significantly lower values for pineal melatonin were observed in hibernating animals that were sacrificed in the late bout period, just prior to expected spontaneous arousal, as compared to hibernating animals that were sacrificed on the first day of their respective bouts. A strong correlation was evident between pineal melatonin content and the duration of the individual hibernation bout. These data suggest that pineal melatonin may be important in determining the duration of individual bouts of hibernation in this species.  相似文献   

3.
4.
Although hypoxia tolerance in heterothermic mammals is well established, it is unclear whether the adaptive significance stems from hypoxia or other cellular challenge associated with euthermy, hibernation, or arousal. In the present study, blood gases, hemoglobin O2 saturation (S(O2), and indexes of cellular and physiological stress were measured during hibernation and euthermy and after arousal thermogenesis. Results show that arterial O2 tension (Pa(O2)) and S(O2) are severely diminished during arousal and that hypoxia-inducible factor (HIF)-1alpha accumulates in brain. Despite evidence of hypoxia, neither cellular nor oxidative stress, as indicated by inducible nitric oxide synthase (iNOS) levels and oxidative modification of biomolecules, was observed during late arousal from hibernation. Compared with rats, hibernating Arctic ground squirrels (Spermophilus parryii) are well oxygenated with no evidence of cellular stress, inflammatory response, neuronal pathology, or oxidative modification following the period of high metabolic demand necessary for arousal. In contrast, euthermic Arctic ground squirrels experience mild, chronic hypoxia with low S(O2) and accumulation of HIF-1alpha and iNOS and demonstrate the greatest degree of cellular stress in brain. These results suggest that Arctic ground squirrels experience and tolerate endogenous hypoxia during euthermy and arousal.  相似文献   

5.
In some hibernating species, an extended euthermic period before spring emergence has been reported during which testicular maturation occurred. In this study, we investigated whether male European ground squirrels Spermophilus citellus (Linnaeus, 1766) develop scrotal testes before or after the termination of hibernation. The course of testis development and testosterone concentrations were examined in young-of-year male ground squirrels (n = 4) before, during, and after their first hibernation. In the environmental chamber, all animals showed regular hibernation patterns with decreasing torpor bout lengths prior to the end of hibernation. Four weeks before hibernation ended, testosterone levels were elevated during spontaneous arousals. Testosterone concentrations peaked during the first 2 months post heterothermy and decreased thereafter. In 2 experimental males, testes descended from the inguinal region into the scrotum shortly before the end of heterothermy. The state of testis development and testosterone secretion corresponded to that found in semi-free-living males at spring emergence. Testis size increased in active animals to maximum widths during weeks 3 and 4 post heterothermy. Scrotal skin pigmentation was absent until heterothermy ended and developed during the first month thereafter. The data suggest that male S. citellus do not need a pre-emergence euthermic period for reproductive development.  相似文献   

6.
The golden-mantled ground squirrel, Spermophilus lateralis, undergoes a profound winter hibernation that represents, among other changes, a prolonged period of starvation. In addition to dramatic metabolic and other physiological adaptations during hibernation which serve to reduce fuel energy expenditure, we have hypothesized that there may also be significant changes in the endocrine axis that regulates energetically-expensive somatic growth. As compared with euthermic, non-hibernating controls, hibernating S. lateralis were found to have 75%-reduced serum concentrations of insulin-like growth factor-I (IGF-I; from approximately 625 to approximately 150 ng/ml in both females and males, P < 0.05). While IGFBP-3 was the predominant IGFBP in serum of the euthermic controls, its levels were reduced to a similar degree in serum from the hibernating animals. IGFBP-4 was present at relatively low levels in the euthermic controls, and was reduced to undetectable levels in hibernating animals. Surprisingly, there was no IGFBP detectable in the 30 kDa range in either euthermic or hibernating S. lateralis, suggesting that IGFBP-1 does not play a role in hibernation-related changes in the IGF axis. In accordance with these endocrine changes, when serum from hibernating S. lateralis was added to cartilage explant cultures (at a 5% v/v concentration), it exhibited no ability to alter (35)S-proteoglycan synthetic rate, whereas serum from the euthermic squirrels significantly stimulated synthetic activity by 2-fold. These results suggest that part of hibernation adaptation in S. lateralis includes down-regulation in the growth-regulatory IGF axis. J. Exp. Zool. 289:66-73, 2001.  相似文献   

7.
Hibernating animals transiently reduce renal function during their hypothermic periods (torpor), while completely restoring it during their periodical rewarming to euthermia (arousal). Moreover, structural integrity of the kidney is preserved throughout the hibernation. Nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) is a crucial vasodilatory mediator and a protective factor in the kidney. We investigated renal NOS expression in hibernating European ground squirrels after 1 day and 7 days of torpor (torpor short, TS, and torpor long, TL, respectively), at 1.5 and at 10 h of rewarming (arousal short, AS, and arousal long, AL, respectively), and in continuously euthermic animals after hibernation (EU). For that purpose, we performed NOS activity assay, immunohistochemistry and real-time PCR analysis. Immunohistochemistry revealed a decreased glomerular eNOS expression in hibernating animals (TS, TL, AS, and AL) compared to non-hibernating animals (EU, p < 0.05), whereas no difference was found in the expression of interstitial eNOS. Expression of iNOS and nNOS did not differ between all groups. The reduced glomerular eNOS was associated with a significantly lower eNOS mRNA levels and NOS activity of whole kidney during torpor and arousal (TS, TL, AS, and AL) compared to EU. In all methods used, torpid and aroused squirrels did not differ. These results demonstrate differential regulation of eNOS in glomeruli and interstitium of hibernating animals, which is unaffected during arousal. The differential regulation of eNOS may serve to reduce ultrafiltration without jeopardizing tubular structures during hibernation.  相似文献   

8.
9.
S P Rosser  D S Bruce 《Cryobiology》1978,15(1):113-116
The induction of summer hibernation in the 13-lined ground squirrel (Citellus tridecemlineatus) by intravenous injection of plasma obtained from winter hibernating ground squirrels was confirmed. Hibernation was also induced by injection of urine from arousing winter ground squirrels. Results support the “trigger” theory of hibernation proposed by Dawe and Spurrier (3) and also suggest that tissues are set free from “trigger” influence during winter arousal by the excretion of “trigger.”  相似文献   

10.
Respiration of liver mitochondria of ground squirrels changes with physiological state. The inhibition of respiration at the level of dehydrogenases occurs during hibernation which is spontaneously removed during arousal. The main mechanism causing a decrease in respiration during hibernation seems to be the inhibition of succinate oxidation, induced by oxaloacetic acid. This is evidenced by the removal of the inhibition by glutamic and isocitric acids. A close correlation between the changes of K+ transport in mitochondria and of the physiological state of hibernator is observed. During hibernation the K+ transport rate decreases 3 times and during arousal it increases 1.5-fold in comparison with the active animals. The K+ content in mitochondria of hibernating and active ground squirrels is the same, whereas during arousal it increases 2-fold.  相似文献   

11.
Studies have been made on the ultrastructure of cardiomyocytes during hibernation and arousal of the ground squirrel C. undulatus. It was found that the number of elements of the rough endoplasmic reticulum, Golgi complex, vesicles and ribosomes increases in the perinuclear areas of cardiomyocytes during arousal of animals. These areas are saturated with lipid inclusions and mitochondria. Numerous vesicles and fringed bubbles were found near the plasma membrane which has many caveolae. These findings may indicate the intense metabolism of the membrane material between plasmalemma and cytoplasmic vesicles. Possible mode of rapid reorganization of the sarcolemma and changes in its functional properties during hibernation-arousal stages are suggested. It is concluded that apart from structural and functional properties which are acquired by cells during preparation of animals to hibernation and which exhibit only small changes during the whole period of hibernation, cyclic changes in plasmalemma structure and function occur during arousal of the ground squirrels.  相似文献   

12.
The content of myoglobin (Mb) in skeletal muscles of Arctic Yakutian ground squirrel (Citellus undulatus Pallas) was measured in the active euthermic summer and prehibernating autumn animals as well as in hibernating and awake animals in winter. The myoglobin content in winter, irrespective of the state of the animal, was found to be about three times higher than in summer. The content of myoglobin in autumn was also two-fold increased compared to summer, suggesting that high myoglobin level is necessary for hibernation. Analysis of biochemical data available suggests that the increase in myoglobin content in winter is probably related to a high oxygen demand of muscles at the first stage of arousal (non-shivering thermogenesis) when rectal temperature rises from 0 to 10-12 degrees C. At this stage, the oxygen-dependent processes in muscles proceed under the conditions when peripheral blood flow is blocked and anaerobic glycolysis is switched off.  相似文献   

13.
Glutathione (GSH) is the major thiol-disulfide redox buffer in cells and is a critical component of antioxidant defense. Here we examined GSH redox balance in the intestinal mucosa during the annual cycle of 13-lined ground squirrels (Spermophilus tridecemlineatus). The ratio of reduced GSH to its oxidized form (glutathione disulfide, GSSG), which is an index of oxidative stress, was five-fold lower in hibernating compared with summer-active squirrels, an effect due primarily to elevated GSSG concentration in hibernators. During hibernation the total pool of GSH equivalents was lowest in squirrels undergoing arousal and highest in squirrels during interbout arousals. Hibernation decreased intestinal GSSG reductase activity by approximately 50%, but had no effect on activities of glutathione peroxidase or glucose-6-phosphate dehydrogenase. Within the hibernation season, expression of the stress protein HSP70 in intestinal mucosa was highest in squirrels entering torpor and early in a torpor bout, and lowest in squirrels arousing from torpor and during interbout euthermia. The results suggest that hibernation in ground squirrels is associated with a shift in intestinal GSH redox balance to a more oxidized state. Higher levels of HSP70 during the early phases of torpor may reflect induction of the stress response due to aberrations in protein folding or may be a mechanism to increase enterocyte tolerance to subsequent stress imposed by extended torpor or the arousal process.  相似文献   

14.
1. Serum cortisol levels were measured throughout an annual cycle in male European ground squirrels, Citellus citellus L. 2. A circannual rhythm of these levels in euthermic animals was found: the highest being in late October, November and December, the lowest in May, early October and March. 3. The levels varied in the hibernating period as well: strongly reduced during the first part (October-December) and significantly elevated in the second one (January-March). 4. A significant elevation of the cortisol levels was marked 18-20 hr after full arousal from hibernation in October.  相似文献   

15.
Mammalian hibernation requires an extensive reorganization of metabolism that typically includes a greater than 95% reduction in metabolic rate, selective inhibition of many ATP-consuming metabolic activities and a change in fuel use to a primary dependence on the oxidation of lipid reserves. We investigated whether the AMP-activated protein kinase (AMPK) could play a regulatory role in this reorganization. AMPK activity and the phosphorylation state of multiple downstream targets were assessed in five organs of thirteen-lined ground squirrels (Spermophilus tridecemlineatus) comparing euthermic animals with squirrels in deep torpor. AMPK activity was increased 3-fold in white adipose tissue from hibernating ground squirrels compared with euthermic controls, but activation was not seen in liver, skeletal muscle, brown adipose tissue or brain. Immunoblotting with phospho-specific antibodies revealed an increase in phosphorylation of eukaryotic elongation factor-2 at the inactivating Thr56 site in white adipose tissue, liver and brain of hibernators, but not in other tissues. Acetyl-CoA carboxylase phosphorylation at the inactivating Ser79 site was markedly increased in brown adipose tissue from hibernators, but no change was seen in white adipose tissue. No change was seen in the level of phosphorylation of the Ser565 AMPK site of hormone-sensitive lipase in adipose tissues of hibernating animals. In conclusion, AMPK does not appear to participate in the metabolic re-organization and/or the metabolic rate depression that occurs during ground squirrel hibernation.  相似文献   

16.
TNF production has been studied in peritoneal macrophages and splenic T cells of Arctic Yakutian ground squirrel (Citellus Undulatus Pallas) in hibernating and awake animals in winter and in prehibernating autumn as well as in active euthermic spring-summer animals. A high level of TNF production in macrophages of ground squirrel is observed over the active period and during arousals in winter. There are no significant season variations in TNF production in splenic T lymphocytes of ground squirrels. This suggests the major role of activated macrophages in the arousals of hibernating animals. T lymphocyte proliferation in ground squirrels in the active period is higher than in winter, and the most significant seasonal variations are found in T cell mitogenic response, which increases in spring-summer period. Evidence is presented that functional activity of macrophages of squirrel in autumn has much in common with that in winter rather than in spring-summer period.  相似文献   

17.
Akt (or protein kinase B) plays a central role in coordinating growth, survival and anti-apoptotic responses in cells and we hypothesized that changes in Akt activity and properties would aid the reprioritization of metabolic functions that occurs during mammalian hibernation. Akt was analyzed in skeletal muscle and liver of Richardson's ground squirrels, Spermophilus richardsonii, comparing the enzyme from euthermic and hibernating states. Akt activity, measured with a synthetic peptide substrate, decreased by 60-65% in both organs during hibernation. Western blotting showed that total Akt protein did not change in hibernation but active, phosphorylated Akt (Ser 473) was reduced by 40% in muscle compared with euthermic controls and was almost undetectable in liver. Kinetic analysis of muscle Akt showed that S(0.5) values for Akt peptide were 28% lower during hibernation, compared with the euthermic enzyme, whereas S(0.5) ATP increased by 330%. Assay at 10 degrees C also elevated S(0.5) ATP of euthermic Akt by 350%. Changes in ATP affinity would limit Akt function in the hibernator since the muscle adenylate pool size is also strongly suppressed during cold torpor. Other parameters of euthermic and hibernator Akt were the same including activation energy calculated from Arrhenius plots and sensitivity to urea denaturation. DEAE Sephadex chromatography of muscle extracts revealed three peaks of Akt activity in euthermia but only two during hibernation suggesting isozymes are differentially dephosphorylated during torpor. Altered enzyme properties and suppression of Akt activity would contribute to the coordinated suppression of energy-expensive anabolic and growth processes that is needed to maintain viability during over weeks of winter torpor.  相似文献   

18.
19.
冬眠周期长短不同的蒙古黄鼠(Citellus dauricus)...   总被引:1,自引:0,他引:1  
Adult Mongolian ground squirrels (Citellus dauricus) were kept at 5 degrees C in winter and divided into four experimental groups according to the bout length. The first group was not hibernating until decapitation. The bout length of the second group was between 4-10 days, the third group 11-17 days and the fourth group longer than 20 days. All pineals were sampled at the end of January. Morphometric analytical procedures were used to study the ultrastructure of the distal part of the pineal gland. The statistical results demonstrated that 1) the euthermic animals have larger cross areas of pinealocyte, longer and narrower Golgi apparatus and more number of saccules of each Golgi apparatus (P less than 0.01). But they also have smaller volume density of vaculoes, less lipid droplets and associated vesicles around Golgi apparatus (P less than 0.01). 2) the hibernating animals with variety of bout length had no significant differences in the number of mitochondria, lipid droplets, lysosomes, the size of Golgi apparatus and the cross areas of nucleus and cytoplasm (P greater than 0.05). However, the number and the cross areas of vacuoles were significantly increased with the bout length (P less than 0.01). This might suggest that the bout length was not related to the metabolic activity of pinealocytes in Citellus dauricus and vacuoles might play some important roles in maintenance of individual bout of hibernation in this species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号