首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental, climate and historical factors are important to explain patterns of freshwater biodiversity and population dynamics in the Mediterranean area. This region is one of the most important areas for the maintenance of native lineages for brown trout. The aim of this study was the identification of the main drivers for the spread and the distribution of genetic introgression between alien brown trout and two native Mediterranean salmonids (brown and marble trout). Estimates of mitochondrial and nuclear introgression were from both the literature and original data and were used as dependent variables in a multivariate framework, correlating them to a suite of environmental and climate parameters. The last glacial maximum appeared as an important factor explaining the geographic pattern of alien brown trout genes throughout the Alps. Here, native populations of Mediterranean salmonids persisted in former refugia. Throughout the Italian Peninsula and major islands, geological setting of catchment and current climate conditions are key factors for securing the persistence of native trout populations. The reevaluation of genetic data regarding the spread of alien brown trout lineage into Mediterranean salmonids populations with a landscape approach allowed us to reveal the role of important factors implicated with the current pattern of distribution of remnant native populations of salmonids. This information provides new insights for improving conservation strategies and management of taxa threatened by the incipient global climate changes.  相似文献   

2.
The introduction of non‐native brook trout (Salvelinus fontinalis) in Europe has led to displacement and decreasing populations of native brown trout (Salmo trutta). Some studies have found that brown trout shift to a diet niche similar to brook trout when the two species live in sympatry, which conflicts with the competitive exclusion principle. A change in feeding niche may be a sign of early interspecific association and social learning, leading to behavioral changes. As a first step to address this possibility, it is essential to assess the interspecific association between the species during the early ontogenetic life stages. In this study, we therefore assess whether juvenile brown trout associate with non‐native juvenile brook trout to the same extent as with conspecifics by setting up two experiments: (i) a binomial choice test allowing visual and chemical cues to estimate the species specificity of group preference, and (ii) an association test without physical barriers to estimate the degree of association of a focal brown trout with a group of either conspecifics or heterospecifics. In experiment (1), we found that focal juvenile brown trout preferred to associate with the stimuli groups and did not discriminate either against conspecific or heterospecific groups. Furthermore, more active individuals showed stronger preference for the stimuli group than less active ones, regardless of species. In experiment (2), we found that brook trout groups had a tighter group structure than brown trout groups, and that focal brown trout showed stronger association with brook trout than with brown trout. These results indicate that brown trout may associate with brook trout at an early life stage, which would allow for interspecific social learning to occur. Future studies should look closer into causes and consequences of interspecific association and social learning, including potential effects on the phenotype selection in brown trout populations.  相似文献   

3.
The genetic diversity of Spanish brown trout is currently threatened by stocking with exogenous brown trout from Central and Northern Europe. In the Douro River basin 25% of the analysed populations in the present study showed introgression by genes of hatchery origin. The mean introgression estimated by the single locus approach ( S ) varied from 0 to 22% among populations, with a mean value of 3%. The hatchery allele markers were absent in populations where stocking ceased in 1993. However, the introgression effect was observed in all populations stocked until 1998. It seems that cessation of stocking is a good measure for restoring native populations. A thorough review of published and present data of genetic interactions between wild and stocked brown trout in Spanish rivers indicates different levels of introgression between basins. The absence of a clear geographical pattern in the introgression level suggests that ecological interactions and local stocking programmes may play an important role in stocking success. Finally, several guidelines are provided for conservation and management of native brown trout populations in Spanish rivers.  相似文献   

4.
Synopsis We examined the influence of biotic and abiotic factors on the distribution, abundance, and condition of salmonid fishes along a stream gradient. We observed a longitudinal change in fish distribution with native cutthroat trout, Oncorhynchus clarki utah, and introduced brown trout, Salmo trutta, demonstrating a distinct pattern of allopatry. Cutthroat trout dominated high elevation reaches, while reaches at lower elevations were dominated by brown trout. A transition zone between these populations was associated with lower total trout abundance, consistent changes in temperature and discharge, and differences in dietary preference. Variation in cutthroat trout abundance was best explained by a model including the abundance of brown trout and diel temperature, whereas variation in brown trout abundance was best explained by a model including the abundance of cutthroat trout and discharge. These results suggest the potential for condition-mediated competition between the two species. The results from our study can aid biologists in prioritizing conservation activities and in developing robust management strategies for cutthroat trout.  相似文献   

5.
Synopsis Stocking of fish from other populations has been commonly employed for enhancement of wild brown trout, Salmo trutta, populations in north Spain. Young hatchery reared brown trout of central European origin were introduced into some Asturian rivers every year since 1984. Based on variation at the isozyme locus LDH-C1* and at the microsatellite locus BFRO 002, two genetic markers race-specific in Salmo trutta, we detected introgression of foreign genomes into native gene pools in some Spanish trout populations where only pure native individuals were present 10 years ago. We strongly suggest development of alternative management policies for conservation of Spanish natural brown trout populations without endangering the traditional recreational fisheries. Jorge I. Izquierdo, Ana G. F. Castillo: These two authors contributed equally to the article.  相似文献   

6.
The brown trout (Salmo trutta L.) is one of the best studied native salmonids of Europe. Genetic studies on this species suggest that a large proportion of the evolutionary diversity corresponds to southern European countries, including the Iberian Peninsula, where this study is focused. Stocking activities employing non-indigenous hatchery specimens together with the destruction and fragmentation of natural habitats are major factors causing a decrease of native brown trout populations, mostly in the Mediterranean basins of the Iberian Peninsula. The main aim of the present work is to examine the genetic structure of the brown trout populations of the East Cantabrian region, studying the consequences of the restocking activities with foreign hatchery brown trout specimens into the wild trout populations. We have based our study on the Polymerase Chain Reaction and Restriction Fragment Length Polymorphism technique conducted on a mitochondrial fragment of 2700 base pairs and on the lactate dehydrogenase locus of the nuclear DNA. Our results show higher introgression rates in the Ebro (Mediterranean) basin than in the Cantabrian rivers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Five qualitative and seven quantitative colouration and spotting pattern features were measured in 23 brown trout Salmo trutta populations and two hatchery stocks. Simultaneously, the LDH‐C1 *, a diagnostic locus fixed for *90 and *100 alleles in stocking and native populations from southern Europe, respectively, was analysed to classify the brown trout studied according to their origin: native, hatchery stock and hybrids. The three genotypes showed significant differences in the colouration and spotting features and a discriminant function analysis could correctly identify 79% of the individuals. The most discriminating variables were dorsal fin margin colour, number of opercular spots, presence of the preopercular mark and diameter of black spots. Given the low cost, ease and possibility of field identification of native fish, the results indicate great opportunities for the application of morphological‐based classification models on the conservation and management of native brown trout stocks.  相似文献   

8.
Morphological differentiation among local trout (Salmo trutta) populations   总被引:3,自引:0,他引:3  
The trout (Salmo trutta) has been divided into three forms: sea-run trout, lake-run brown trout, and resident brown trout. They differ in their living environment, migratory behaviour, growth and appearance. As local trout populations are often isolated, and gene flow between them is minimal, differentiation between populations can be expected. The morphology of 1-year-old trout from ten populations representing all three forms was studied in a common-garden experiment. The fish were reared under similar environmental conditions, and 20 morphometric characters were measured from each individual fish. Marked morphological differentiation was found, and differences between populations were greater than differences between forms. The results suggest that the differences have a genetic basis, and they are likely to indicate adaptation to local environmental conditions in the native habitat of the trout.  相似文献   

9.
Increasing circumstantial evidence indicates that the introduction of brown trout ( Salmo trutta L.) to New Zealand has caused a widespread decline in native fish populations but few of the underlying mechanisms have been investigated. The possibility of spatial competition was investigated by comparing the microhabitat used by native Galaxias vulgaris Stokell (Family Galaxiidae) that were sympatric and allopatric with brown trout. A range of microhabitat variables was measured from random locations where G. vulgaris were present in the Shag River during the day. G. vulgaris preferred coarse substrates, using them as resting places, but showed no other microhabitat preferences. This pattern of microhabitat use did not change in the presence of brown trout although galaxiid densities were considerably lower. Experiments in in situ stream channels confirmed that competition for space does not occur during the day even at high galaxiid densities. This situation changed dramatically at night, however, with G. vulgaris spending significantly more time in slower areas when trout were present. G. vulgaris feeds on drifting invertebrates, so brown trout could affect the galaxiids deleteriously by forcing them to occupy less profitable feeding positions. Interspecific competition for space, perhaps combined with competition for food and predation by trout, could explain declines in G. vulgaris populations.  相似文献   

10.
1. Rivers in boreal forested areas were often dredged to facilitate the transport of timber resulting in channels with simplified bed structure and flow fields and reduced habitat suitability for stream organisms, especially lotic fishes. Currently, many streams are being restored to improve their physical habitat, by replacing boulders and gravel and removing constraining embankments. The most compelling justification behind stream restoration of former floatways has been the enhancement of native fish populations, specifically salmonids. 2. We examined the success of a stream management programme aimed at re‐building diminished brown trout (Salmo trutta) populations by monitoring densities of young‐of‐year and older trout in 18 managed and three reference streams during 2000–2005. Rehabilitation included in‐stream restoration combined with a 5‐year post‐restoration period of stocking young brown trout. Our space‐for‐time substitution design comprised four pre‐management, four under‐management, 10 post‐management and three reference streams. 3. Densities of young‐of‐year brown trout, indicating population establishment, were significantly higher in post‐ compared with pre‐management streams. However, density of young‐of‐year brown trout in post‐management streams was significantly lower compared with near‐pristine reference streams. Furthermore, success of managed brown trout population re‐building varied, indicating stream‐specific responses to management measures. Density of burbot (Lota lota), a native generalist predator, was associated with low recruitment of brown trout. 4. Stream‐specific responses imply that rehabilitation of brown trout populations cannot be precisely predicted thereby limiting application. Our findings support the importance of adaptive stream restoration and management, with focus on identifying factor(s) limiting the establishment of target fish populations.  相似文献   

11.
In the native range of the brown trout (Salmo trutta L.) in Europe, the hybridization of native populations by nonnative domesticated strains introduced by stocking is one of the most serious threats to the long-term conservation of diversity within this species. With the objective of conserving and restoring the native gene pool, fishery managers are beginning to implement various management strategies at the local scale. Nevertheless, few case studies have been published that investigate the effectiveness of the various different conservation strategies for native brown trout populations. In the Chevenne Creek, a small French mountain stream, we tested the strategy of removing nonnative individuals by multiple electrofishing carried out by fishery managers in order to evaluate its feasibility and effectiveness for eliminating a nonnative population threatening a native population. Electrofishing produced major reductions in the nonnative population between 2006 and 2009, with 82–100% of nonnative individuals being removed over a period of 4 years. Nevertheless, despite multiple-electrofishing campaigns, this nonnative population was not entirely eradicated, and some natural recruitment persisted. The young of the year and subadults were less effectively removed than the adults. The results suggest that repeated electrofishing campaigns can be used by managers to reduce the nonnative brown trout population with the objective of conserving the native gene pool, but the removal operation must be continued for at least 4 consecutive years. This strategy, which is feasible in small streams, has to be followed by complementary operations to allow the restoration of a new, native, self-sustainable brown trout population.  相似文献   

12.
Introduced mammalian predators may pose a high risk for native and naïve prey populations, but little is known about how native fish species may recognize and respond to scents from introduced mammalian predators. We investigated the role of diet‐released chemical cues in facilitating predator recognition, hypothesizing that native brown trout (Salmo trutta) would exhibit antipredator behaviours to faeces scents from the introduced American mink (Neovision vison) fed conspecifics, but not to non‐trout diets. In treatments‐control and replicate stream tank experiments, brown trout showed significant antipredator responses to faeces scent from mink fed conspecifics, but not to faeces scent from mink fed a non‐trout diet (chicken), or the non‐predator food control, Eurasian beaver (Castor fiber). We conclude that native and naïve brown trout show relevant antipredator behaviours to an introduced mammalian predator, presumably based on diet‐released conspecific alarm cues and thereby estimate the predation risk.  相似文献   

13.
Three salmonid species introduced in Patagonian national parks in Argentine have experienced different degrees of expansion. Atlantic salmon Salmo salar is restricted to a few river-lake systems and its populations have been declining over recent years. Both rainbow Oncorhynchus mykiss and brown trout Salmo trutta populations have expanded from their introduction sites and now occupy a wide range of freshwater ecosystems. Genetic variation at the same neutral markers (microsatellite loci) was examined for different populations of the three species acclimatized to the same areas, and compared with that of native populations. Founder effects denoted as reduced variability and great differentiation with respect to the native populations were detected. Significant reduction in variability has not been an obstacle for successful adaptation of rainbow and brown trout, indicating that genetic variability per se cannot be claimed as the reason for their different outcomes in the new habitats.  相似文献   

14.
The phenetic variability (types of life strategy, age and sex structure of population, biological peculiarities), the anthropogenic pressure, and the genetic diversity were studied by five microsatellite loci for several minor populations of brown trout Salmo trutta inhabiting the waterbodies of Velikaya Salma Strait watershed area (Kandalaksha Bay, the White Sea). The level of genetic and phenetic diversity in small populations was comparable to those representing large water systems. Significant spatial dissimilarity of the populations located in less than 15-km distance was found. Low allelic and genetic diversity was observed for the studied populations. Variability of some studied loci through the time period was observed for the fish sampled from different populations. We assume that minor populations of brown trout may be treated as the standards of native populations for the monitoring activities on the brown trout populations and its environment both in short-term and long-term perspective.  相似文献   

15.
This study focuses on genetic variation of brown trout Salmo trutta populations of the Adriatic and Danubian drainages in Switzerland. The allozyme and other protein loci data show a major replacement of native stocks from the Adriatic drainages by introduced hatchery trout of Atlantic basin origin. In most samples, diagnostic alleles for the Adriatic form of Salmo trutta f. fario and for the marbled trout Salmo trutta marmoratus are found at very low frequencies (f<0.15). Taking into account previous genetic studies on brown trout of this basin, the Danubian samples are not heavily contaminated with foreign alleles. The results are consistent with records of local stocking activities which account in part for the high introgression rates of Atlantic alleles into local populations of the Adriatic drainages. In addition, introgression is enhanced by a decrease of natural reproduction which is caused by a deterioration of trout habitats through human activities. Furthermore, a third mechanism is proposed that may contribute to the high introgression rates observed: if Atlantic trout are introduced, the reproductive barriers between the two native forms, marbled trout and Adriatic fario respectively, break down. Atlantic trout apparently hybridize with both native forms and generate gene flow between them. In some parts of Adriatic drainages in Switzerland, the patterns of introgression and hybridization are further complicated by introduction of trout from the Danubian system. Alleles of the marbled trout are also found in the samples of the Danubian drainage system. These are due to stocking activities across the watershed.  相似文献   

16.
Brown trout and food web interactions in a Minnesota stream   总被引:1,自引:0,他引:1  
1. We examined indirect, community‐level interactions in a stream that contained non‐native brown trout (Salmo trutta Linnaeus), native brook trout (Salvelinus fontinalis Mitchill) and native slimy sculpin (Cottus cognatus Richardson). Our objectives were to examine benthic invertebrate composition and prey selection of fishes (measured by total invertebrate dry mass, dry mass of individual invertebrate taxa and relative proportion of invertebrate taxa in the benthos and diet) among treatments (no fish, juvenile brook trout alone, juvenile brown trout alone, sculpin with brook trout and sculpin with brown trout). 2. We assigned treatments to 1 m2 enclosures/exclosures placed in riffles in Valley Creek, Minnesota, and conducted six experimental trials. We used three designs of fish densities (addition of trout to a constant number of sculpin with unequal numbers of trout and sculpin; addition of trout to a constant number of sculpin with equal numbers of trout and sculpin; and replacement of half the sculpin with an equal number of trout) to investigate the relative strength of interspecific versus intraspecific interactions. 3. Presence of fish (all three species, alone or in combined‐species treatments) was not associated with changes in total dry mass of benthic invertebrates or shifts in relative abundance of benthic invertebrate taxa, regardless of fish density design. 4. Brook trout and sculpin diets did not change when each species was alone compared with treatments of both species together. Likewise, we did not find evidence for shifts in brown trout or sculpin diets when each species was alone or together. 5. We suggest that native brook trout and non‐native brown trout fill similar niches in Valley Creek. We did not find evidence that either species had an effect on stream communities, potentially due to high invertebrate productivity in Valley Creek.  相似文献   

17.
Hydrobiologia - Competition with invasive species and a warming climate have threatened brook charr (Salvelinus fontinalis) populations throughout their native range. In particular, brown trout...  相似文献   

18.
Ichthyological Research - The Mediterranean brown trout (Salmo trutta complex) is native to basins draining to the Western Mediterranean Sea, and natural populations are currently declining in...  相似文献   

19.
Comparisons of the genetic composition of brown trout Salmo trutta captured by anglers and by electrofishing based on three diagnostic microsatellite loci provided strong evidence that angling is selective in a stocked brown trout population. At two sites, anglers caught significantly younger trout and proportionally more introduced hatchery trout and hybrids than were observed in electrofishing surveys. Selective angling, in combination with a small legal catch size, may have considerably eliminated introduced trout and hybrids before spawning at the study sites, and thus may have reduced the introgression of alien genes into the local gene pool. Angling can be an important factor influencing the genetic structure of fish populations and should be taken into account in studies of introgressive hybridization in stocked fish populations and their management. In this study, demographic consequences of stocking were not assessed. Thus, even though the genetic consequences of stocking may be minimal or largely reversible through angling, resource competition between native and introduced trout, until they reach legal catch size, is expected to have a negative effect on the productivity of the indigenous trout population.  相似文献   

20.
Brown trout Salmo trutta is a potent global invader and its establishments have progressively altered physiologies, life-histories and niche-availabilities for native fish species. River impoundments further escalate its invasion potential. The Himalayan rivers however, stay uncharted for the effects of brown trout interactions with the native fish fauna. Snow trout Schizothorax richardsonii a Himalayan cold-water native, concerningly overlaps its range with brown trout. To understand its responses to invasion pressures, we investigated brown trout effects on the age and growth of snow trout populations in three rivers with varying levels of perturbation: (a) a dammed and (b) an undammed river with the invasive brown trout in comparison to (c) an undammed river without invasion pressures. We found sympatric snow trout in the undammed river to respond to brown trout invasion with fast life history responses, showing an early age-at-maturity (A50 = 1.2 years) and fast growth with a higher growth constant (K = 0.40 yr−1) and specific rate of linear growth across life. On the contrary, sympatric snow trout in the dammed river showed an explicitly slow life-history by maturing at a higher age (A50 = 2.9 years) and a slow growth, with a lower growth constant (K = 0.26 yr−1) and specific linear growth rates. Our findings suggest that, the snow trout appear to present stronger response to brown trout invasions when the river is unaltered and free from hydropower operations and damming. Further research is strongly warranted from other high-altitude Himalayan basins to delineate the variation in growth strategies exhibited by snow trout in sympatry with the invasives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号