首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Treatment of intact Swiss 3T3 cells with calyculin-A, an inhibitor of myosin light chain (MLC) phosphatase, induces tyrosine phosphorylation of p125(Fak) in a sharply concentration- and time-dependent manner. Maximal stimulation was 4.2 +/- 2.1-fold (n = 14). The stimulatory effect of calyculin-A was observed at low nanomolar concentrations (<10 nM); at higher concentrations (>10 nM) tyrosine phosphorylation of p125(Fak) was strikingly decreased. Calyculin-A induced tyrosine phosphorylation of p125(Fak) through a protein kinase C- and Ca(2+)-independent pathway. Exposure to either cytochalasin-D or latrunculin-A, which disrupt actin organization by different mechanisms, abolished tyrosine phosphorylation of p125(Fak) in response to calyculin-A. Treatment with high concentrations of platelet-derived growth factor (20 ng/ml) which also disrupt actin stress fibers, completely inhibited tyrosine phosphorylation of p125(Fak) in response to calyculin-A. This agent also induced tyrosine phosphorylation of the focal adhesion-associated proteins p130(Cas) and paxillin. These tyrosine phosphorylation events were associated with a striking increase in the assembly of focal adhesions. The Rho kinase (ROK) inhibitor HA1077 that blocked focal adhesion formation by bombesin, had no effect on the focal adhesion assembly induced by calyculin-A. Thus, calyculin-A induces transient focal adhesion assembly and tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin, acting downstream of ROK.  相似文献   

2.
Previous studies have shown that different agonists increase tyrosine phosphorylation of the focal adhesion related proteins p125(FAK), p130(Cas), and paxillin in different cell types and that tyrosine phosphorylation depends on the integrity of the actin cytoskeleton. Because phosphoinositides are important for the maintenance of the cytoskeleton, the role of phosphoinositides in the tyrosine phosphorylation of these proteins in response to occupancy of m3 muscarinic and CCK(A) receptors has been investigated in pancreatic acini. Addition of carbachol or CCK-8 to pancreatic acini resulted in rapid increases in the tyrosine phosphorylation of p125(FAK), p130(Cas), and paxillin. Pretreatment of pancreatic acini with LY294002 or wortmannin resulted in a concentration-dependent inhibition of tyrosine phosphorylation of p125(FAK), p130(Cas), and paxillin stimulated by carbachol or CCK-8. Carbachol- or CCK-8-stimulated tyrosine phosphorylation of these proteins was not inhibited by rapamycin, PD 98059 or SB 203580, and thus it was dissociated from the activation of p70 S6 or MAP kinases. These results indicate that m3 muscarinic and CCK(A) receptor-mediated increase in p125(FAK), p130(Cas), and paxillin tyrosine phosphorylation in pancreatic acini depends on the ability of these cells to synthesise phosphoinositides.  相似文献   

3.
Tyrosine phosphorylation plays a key role in transmembrane and cytoplasmic signal transduction mechanisms stimulated by oncogenes, integrins, growth factors, neuropeptides, and bioactive lipids. Moreover, recent studies show that stimulation of odd-numbered muscarinic receptors increases the tyrosine phosphorylation of several proteins in different cellular types. The present study was aimed at examining whether activation of m3 muscarinic receptors in rat pancreatic acini evokes tyrosine phosphorylation of p125(FAK), and its substrates, p130(cas) and paxillin. Results show that stimulation of pancreatic acini with carbachol resulted in a rapid and transient increase in tyrosine phosphorylation of p125(FAK), p130(cas), and paxillin. Tyrosine phosphorylation of these proteins occurred in a time- and concentration-dependent manner. Simultaneous blockage of both PKC activation and increases in [Ca(2+)](i) partially decreased p125(FAK), p130(cas), and paxillin tyrosine phosphorylation stimulated by carbachol. Pretreatment of pancreatic acini with Clostridium botulinum C3 transferase, which specifically inactivates p21(rho), partially inhibited carbachol-induced p125(FAK), p130(cas), and paxillin tyrosine phosphorylation. In contrast, this treatment had no effect on amylase release stimulated by carbachol. Cytochalasin D, which disrupts actin microfilaments network, completely inhibited carbachol stimulated tyrosine phosphorylation of these proteins without having significant effects in carbachol-stimulated amylase secretion. These results dissociate tyrosine phosphorylation of p125(FAK), p130(cas), and paxillin from amylase secretion after m3 muscarinic receptors occupation in rat pancreatic acini. Taken together, these data suggest that (a) activation of m3 muscarinic receptors in rat pancreatic acini increases tyrosine phosphorylation of p125(FAK) and its substrates, p130(cas) and paxillin by diacylglycerol-activated PKC- and calcium- dependent, and independent pathways, (b) these responses require activation of p21(rho) and an intact actin cytoskeleton, and (c) p125(FAK), p130(cas), and paxillin are unlikely related to secretion in rat pancreatic acinar cells.  相似文献   

4.
The pattern recognition receptor CD36 initiates a signaling cascade that promotes microglial activation and recruitment to beta-amyloid deposits in the brain. In the present study we identify the focal adhesion-associated proteins p130Cas, Pyk2, and paxillin as novel members of the tyrosine kinase signaling pathway downstream of CD36 and show that assembly of this complex is essential for microglial migration. In primary microglia and macrophages exposed to beta-amyloid, the scaffolding protein p130Cas is rapidly tyrosine-phosphorylated and co-localizes with CD36 to membrane ruffles contemporaneous with F-actin polymerization. These beta-amyloid-stimulated events are not detected in CD36 null cells and are dependent on CD36 activation of Src family tyrosine kinases. Fyn, a Src kinase known to interact with CD36, co-precipitates with p130Cas and is an essential upstream intermediate in the signaling pathways leading to phosphorylation of the p130Cas substrate domain. Furthermore, the p130Cas-interacting kinase Pyk2 and the cytoskeletal adapter protein paxillin also demonstrate CD36-dependent phosphorylation, identifying these focal adhesion molecules as additional members of this beta-amyloid signaling cascade. Disruption of this p130Cas complex by small interfering RNA silencing inhibits p44/42 mitogen-activated protein kinase phosphorylation and microglial migration, illustrating the importance of this pathway in microglial activation and recruitment. Together, these data are the first to identify the signaling cascade that directly links CD36 to the actin cytoskeleton and, thus, implicates it in diverse processes such as cellular migration, adhesion, and phagocytosis.  相似文献   

5.
The experiments presented here were designed to examine the contribution of p125 focal adhesion kinase (p125FAK) tyrosine phosphorylation to the activation of the mitogen-activated protein kinase cascade induced by bombesin, lysophosphatidic acid (LPA), and platelet-derived growth factor (PDGF) in Swiss 3T3 cells. We found that tyrosine phosphorylation of p125FAK in response to these growth factors is completely abolished in cells treated with cytochalasin D or in cells that were suspended in serum-free medium for 30 min. In marked contrast, the activation of p42mapk by these factors was independent of the integrity of the actin cytoskeleton and of the interaction of the cells with the extracellular matrix. The protein kinase C inhibitor GF 109203X and down-regulation of protein kinase C by prolonged pretreatment of cells with phorbol esters blocked bombesin-stimulated activation of p42mapk, p90rsk, and MAPK kinase-1 but did not prevent bombesin-induced tyrosine phosphorylation of p125FAK. Furthermore, LPA-induced p42mapk activation involved a pertussis toxin-sensitive guanylate nucleotide-binding protein, whereas tyrosine phosphorylation of p125FAK in response to LPA was not prevented by pretreatment with pertussis toxin. Finally, PDGF induced maximum p42mapk activation at concentrations (30 ng/ml) that failed to induce tyrosine phosphorylation of p125FAK. Thus, our results demonstrate that p42mapk activation in response to bombesin, LPA, and PDGF can be dissociated from p125FAK tyrosine phosphorylation in Swiss 3T3 cells.  相似文献   

6.
Tyrosine phosphorylation of the nonreceptor tyrosine kinase p125 focal adhesion kinase (FAK) and the adapter protein paxillin is rapidly increased by multiple agonists, including bombesin (BOM) and lysophosphatidic acid (LPA), through heptahelical G protein-coupled receptors (GPCRs). The pathways involved remain incompletely understood. The experiments presented here were designed to test the role of epidermal growth factor receptor (EGFR) transactivation in the rapid increase of tyrosine phosphorylation of FAK and paxillin induced by GPCR agonists. Our results show that treatment with the selective EGFR tyrosine kinase inhibitor AG 1478, at concentrations that completely blocked the increase in tyrosine phosphorylation of these proteins induced by EGF, did not affect the stimulation of tyrosine phosphorylation of either FAK or paxillin induced by multiple GPCR agonists including LPA, BOM, vasopressin, bradykinin, and endothelin. Similar results were obtained when Swiss 3T3 cells were treated with another highly specific inhibitor of the EGF receptor kinase activity, PD-158780. Collectively, our results clearly dissociate EGFR transactivation from the tyrosine phosphorylation of FAK and paxillin induced by multiple GPCR agonists.  相似文献   

7.
Muscarinic receptor-mediated changes in protein tyrosine phosphorylation were examined in differentiated human neuroblastoma SH-SY5Y cells. Treatment of differentiated cells with 1 mM carbachol caused rapid increases in the tyrosine phosphorylation of focal adhesion kinase (FAK), Cas, and paxillin. The src family kinase-selective inhibitor PP1 reduced carbachol-stimulated tyrosine phosphorylation of FAK, Cas, and paxillin by 50 to 75%. In contrast, carbachol-stimulated activation of ERK1/2 was unaffected by PP1. Src family kinase activation by carbachol was further demonstrated by increased carbachol-induced tyrosine phosphorylation of the src-substrate, p120, and tyrosine phosphorylation of the src family kinase activation-associated autophosphorylation site. Site-specific FAK phosphotyrosine antibodies were used to determine that the carbachol-stimulated increase in the autophosphorylation of FAK was unaffected by pretreatment with PP1, whereas the carbachol-stimulated increase in the src family kinase-mediated phosphotyrosine of FAK was completely blocked by pretreatment with PP1. In SH-SY5Y cell lines stably overexpressing Fyn, the phosphotyrosine immunoreactivity of FAK was 625% that of control cells. Thus, muscarinic receptors activate protein tyrosine phosphorylation in differentiated cells, and the tyrosine phosphorylation of FAK, Cas, and paxillin, but not ERK1/2, is mediated by a src family tyrosine kinase activated in response to stimulation of muscarinic receptors.  相似文献   

8.
The non-receptor tyrosine kinase PYK2 appears to function at a point of convergence of integrins and certain G protein-coupled receptor (GPCR) signaling cascades. In this study, we provide evidence that translocation of PYK2 to focal adhesions is triggered both by cell adhesion to extracellular matrix proteins and by activation of the histamine GPCR. By using different mutants of PYK2 as green fluorescent fusion proteins, we show that the translocation of PYK2 to focal adhesions is not dependent on its catalytic activity but rather is mediated by its carboxyl-terminal domain. Translocation of PYK2 to focal adhesions was attributed to enhanced tyrosine phosphorylation of PYK2 and its association with the focal adhesion proteins paxillin and p130(Cas). Translocation of PYK2 to focal adhesions, as well as its tyrosine phosphorylation in response to histamine treatment, was abolished in the presence of protein kinase C inhibitors or cytochalasin D treatment, whereas activation of protein kinase C by phorbol ester resulted in focal adhesion targeting of PYK2 and its tyrosine phosphorylation in an integrin-clustering dependent manner. Overexpression of a wild-type PYK2 enhanced ERK activation in response to histamine, whereas a kinase-deficient mutant substantially inhibited this response. Furthermore, inhibition of PYK2 translocation to focal adhesions abolished ERK activation in response to histamine treatment. These results suggest that PYK2 apparently links between GPCRs and focal adhesion-dependent ERK activation and can provide the molecular basis underlying PYK2 function at a point of convergence between signaling pathways triggered by extracellular matrix proteins and certain GPCR agonists.  相似文献   

9.
A rapid increase in tyrosine phosphorylation of focal adhesion kinase (FAK), paxillin, and Crk-associated substrate (CAS) are prominent early events triggered by many G protein-coupled receptors (GPCRs), but the mechanisms involved remain unclear. Here, we examined whether the Rho-associated protein serine/threonine kinase family (ROCK) is a critical Rho effector in the pathway that links GPCR activation to the tyrosine phosphorylation of FAK, CAS, and paxillin. Treatment of Swiss 3T3 cells with Y-27632, a preferential inhibitor of ROCK, dramatically inhibited the formation of actin stress fibers, the assembly of focal contacts, and the increase in tyrosine phosphorylation of FAK and paxillin induced by bombesin in these cells. Surprisingly, we found that treatment with Y-27632 did not produce any detectable effect on bombesin-elicited CAS tyrosine phosphorylation even at the highest concentrations of Y-27632 tested. HA-1077, a preferential inhibitor of ROCK activity structurally unrelated to Y-27632, also attenuated the increase in the tyrosine phosphorylation of FAK and paxillin but did not affect the tyrosine phosphorylation of CAS induced by bombesin in Swiss 3T3 cells. The results demonstrate that ROCK-dependent tyrosine phosphorylation of FAK and paxillin can be dissociated from a ROCK-independent pathway leading to tyrosine phosphorylation of CAS.  相似文献   

10.
A rapid increase in tyrosine phosphorylation of focal adhesion kinase (FAK), paxillin, and Crk-associated substrate (CAS) are prominent early events triggered by many G protein-coupled receptors (GPCRs), but the mechanisms involved remain unclear. Here, we examined whether the Rho-associated protein serine/threonine kinase family (ROCK) is a critical Rho effector in the pathway that links GPCR activation to the tyrosine phosphorylation of FAK, CAS, and paxillin. Treatment of Swiss 3T3 cells with Y-27632, a preferential inhibitor of ROCK, dramatically inhibited the formation of actin stress fibers, the assembly of focal contacts, and the increase in tyrosine phosphorylation of FAK and paxillin induced by bombesin in these cells. Surprisingly, we found that treatment with Y-27632 did not produce any detectable effect on bombesin-elicited CAS tyrosine phosphorylation even at the highest concentrations of Y-27632 tested. HA-1077, a preferential inhibitor of ROCK activity structurally unrelated to Y-27632, also attenuated the increase in the tyrosine phosphorylation of FAK and paxillin but did not affect the tyrosine phosphorylation of CAS induced by bombesin in Swiss 3T3 cells. The results demonstrate that ROCK-dependent tyrosine phosphorylation of FAK and paxillin can be dissociated from a ROCK-independent pathway leading to tyrosine phosphorylation of CAS.  相似文献   

11.
The signals involved in restitution during mucosal healing are poorly understood. We compared focal adhesion kinase (FAK) and paxillin protein and phosphorylation, extracellular signal-regulated kinase (ERK) 1, ERK2, and p38 activation, as well as FAK and paxillin organization in static and migrating human intestinal Caco-2 cells on matrix proteins and anionically derivatized polystyrene dishes (tissue culture plastic). We also studied effects of FAK, ERK, and p38 blockade in a monolayer-wounding model. Compared with static cells, cells migrating across matrix proteins matrix-dependently decreased membrane/cytoskeletal FAK and paxillin and cytosolic FAK. Tyrosine phosphorylated FAK and paxillin changed proportionately to FAK and paxillin protein. Conversely, cells migrating on plastic increased FAK and paxillin protein and phosphorylation. Migration matrix-dependently activated p38 and inactivated ERK1 and ERK2. Total p38, ERK1, and ERK2 did not change. Caco-2 motility was inhibited by transfection of FRNK (the COOH-terminal region of FAK) and PD-98059, a mitogen-activated protein kinase-ERK kinase inhibitor, but not by SB-203580, a p38 inhibitor, suggesting that FAK and ERK modulate Caco-2 migration. In contrast to adhesion-induced phosphorylation, matrix may regulate motile intestinal epithelial cells by altering amounts and distribution of focal adhesion plaque proteins available for phosphorylation as well as by p38 activation and ERK inactivation. Motility across plastic differs from migration across matrix.  相似文献   

12.
Substance P (SP) analogues including [d-Arg(1),d-Trp(5,7,9), Leu(11)]SP are broad spectrum neuropeptide antagonists and potential anticancer agents, but their mechanism of action is not fully understood. Here, we examined the mechanism of action of [d-Arg(1), d-Trp(5,7,9),Leu(11)]SP as an inhibitor of G protein-coupled receptor (GPCR)-mediated signal transduction and cellular DNA synthesis in Swiss 3T3 cells. Addition of [d-Arg(1),d-Trp(5,7,9), Leu(11)]SP, at 10 micrometer, caused a striking rightward shift in the dose-response curves of DNA synthesis induced by bombesin, bradykinin, or vasopressin and markedly inhibited the activation of p42(mapk) (ERK-2) and p44(mapk) (ERK-1) induced by these GPCR agonists. In addition, this SP analogue also prevented the protein kinase C-dependent activation of protein kinase D induced by these agonists. [d-Arg(1),d-Trp(5,7,9),Leu(11)]SP, at a concentration (10 micrometer) that inhibited these G(q)-mediated events, also prevented GPCR agonist-induced responses mediated through the G proteins of the G(12) subfamily. These include bombesin-induced assembly of focal adhesions, formation of parallel arrays of actin stress fibers, increase in the tyrosine phosphorylation of focal adhesion kinase (FAK), p130(Cas), and paxillin, and formation of a complex between FAK and Src. We conclude that [d-Arg(1),d-Trp(5,7,9),Leu(11)]SP acts as a mitogenic antagonist of neuropeptide GPCRs blocking signal transduction via both G(q) and G(12).  相似文献   

13.
Mass spectrometry analysis of immunoprecipitates from serum-treated GD3-expressing melanoma cells with PY20 (anti-phosphotyrosine antibody) revealed that focal adhesion kinase (FAK) is more strongly activated in GD3-expressing cells than in GD3-negative cells. Involvement of FAK in the increased proliferation and invasion in GD3-expressing melanomas was demonstrated by siRNA-mediated knockdown. Also, it was shown that FAK is located up-stream of p130Cas and paxillin in the enhanced signaling pathway. GD3 expression enhanced the association of FAK with p130Cas after treatment with fetal calf serum. Thus, focal adhesion kinase as well as p130Cas and paxillin should be a crucial molecule undergoing stronger tyrosine phosphorylation in GD3-expressing melanoma cells. Molecules linking GD3 and FAK such as integrins in the enhanced signaling pathway remain to be investigated.  相似文献   

14.
Integrin-initiated extracellular signal-regulated kinase (ERK) activation by matrix adhesion may require focal adhesion kinase (FAK) or be FAK-independent via caveolin and Shc. This remains controversial for fibroblast and endothelial cell adhesion to fibronectin and is less understood for other matrix proteins and cells. We investigated Caco-2 intestinal epithelial cell ERK activation by collagen I and IV, laminin, and fibronectin. Collagens or laminin, but not fibronectin, stimulated tyrosine phosphorylation of FAK, paxillin, and p130(cas) and activated ERK1/2. Shc, tyrosine-phosphorylated by matrix adhesion in many cells, was not phosphorylated in Caco-2 cells in response to any matrix. Caveolin expression did not affect Caco-2 Shc phosphorylation in response to fibronectin. FAK, ERK, and p130(cas) tyrosine phosphorylation were activated after 10-min adhesion to collagen IV. FAK activity increased for 45 min after collagen IV adhesion and persisted for 2 h, while p130(cas) phosphorylation increased only slightly after 10 min. ERK activity peaked at 10 min, declined after 30 min, and returned to base line after 1 h. Transfection with FAK-related nonkinase, but not substrate domain deleted p130(cas), strongly inhibited ERK2 activation in response to collagen IV, indicating Caco-2 ERK activation is at least partly regulated by FAK.  相似文献   

15.
We previously reported that hypoxia caused rapid activation of RAS/mitogen-activated protein kinase (MAPK) pathway, two other stress-activated MAPK family members, stress-activated protein kinase (SAPK) and p38MAPK, and Src family tyrosine kinases, p60(c-src) and p59(c-fyn) in cultured rat cardiac myocytes. In this study, to elucidate how hypoxia affects adhesive interaction between cardiac myocytes and extracellular matrix (ECM), we investigated the molecular mechanism of the activation of focal adhesion-associated tyrosine kinases p125(FAK) and paxillin. Here, we show that hypoxia induced tyrosine phosphorylation of p125(FAK) and paxillin and that hypoxia-induced activation of p125(FAK) was accompanied by its increased association with adapter proteins Shc and GRB2, and non-receptor type tyrosine kinase p60(c-src). Furthermore, hypoxia caused subcellular translocation of p125(FAK) from perinuclear sites to the focal adhesions. These results strongly suggest that p125(FAK) is one of the most important components in hypoxia-induced intracellular signaling in cardiac myocytes and may play a pivotal role in adhesive interaction between cardiac myocytes and ECM.  相似文献   

16.
Fluid shear stress (flow) modulates endothelial cell function via specific intracellular signaling events. Previously we showed that flow activated ERK1/2 in an integrin-dependent manner (Takahashi, M., and Berk, B. C. (1996) J. Clin. Invest. 98, 2623-2631). p130 Crk-associated substrate (Cas), a putative c-Src substrate, was originally identified as a highly phosphorylated protein that is localized to focal adhesions and acts as an adapter protein. Recent reports have shown that Cas is important in cardiovascular development and actin filament assembly. Flow (shear stress = 12 dynes/cm(2)) stimulated Cas tyrosine phosphorylation within 1 min in human umbilical vein endothelial cells. Phosphorylation peaked at 5 min (3.5 +/- 0.7-fold) and was sustained to 20 min. Tyrosine phosphorylation of Cas was functionally important because flow stimulated association of Cas with Crk in a time- and force-dependent manner. Flow-mediated activation of c-Src, phosphorylation of Cas, and association of Cas with Crk were all inhibited by calcium chelation and pretreatment with the Src family-specific tyrosine kinase inhibitor PP1. To determine the role of c-Src in flow-stimulated phosphorylation of Cas, we transduced cells with adenovirus encoding kinase-inactive Src. Expression of kinase-inactive Src prevented flow-induced Cas tyrosine phosphorylation but not ERK1/2 activation. Calcium-dependent activation of c-Src and tyrosine phosphorylation of Cas defines a new flow-stimulated signal pathway, different from ERK1/2 activation. This pathway may be involved in focal adhesion remodeling and actin filament assembly.  相似文献   

17.
K252a, a protein kinase inhibitor, acts as a neurotrophic factor in several neuronal cells. In this study we show that K252a enhanced the differentiation of C2C12 myoblasts as well as tyrosine phosphorylation of several focal adhesion-associated proteins including p130(Cas), focal adhesion kinase, and paxillin. The tyrosine phosphorylation of these proteins, reaching a maximum at 30 min after K252a treatment, closely correlated with the colocalization of these proteins in focal adhesion complexes and the coimmunoprecipitation of these proteins with p130(Cas). In addition, K252a stimulated longitudinal development of stress fiber-like structures and cell-matrix interaction in postmitotic myoblasts and eventually formation of well-developed myofibrils in multinucleated myotubes. Herbimycin A, a potent inhibitor of Src family kinases, and cytochalasin D, a selective disrupting-agent of actin filament, completely inhibited K252a-induced tyrosine phosphorylation as well as myoblast differentiation. Similar inhibitory effect was observed in the cells scrape loaded with a Rho inhibitor, C3 transferase, and the treatment of K252a induced a rapid translocation of Rho. These results are consistent with the model that Rho-dependent tyrosine phosphorylation of focal adhesion-associated proteins plays an important role in skeletal muscle differentiation.  相似文献   

18.
NSP protein family members associate with p130Cas, a focal adhesion adapter protein best known as a Src substrate that integrates adhesion-related signaling. Over-expression of AND-34/BCAR3/NSP2 (BCAR3), but not NSP1 or NSP3, induces anti-estrogen resistance in human breast cancer cell lines. BCAR3 over-expression in epithelial MCF-7 cells augments levels of a phosphorylated p130Cas species that migrates more slowly on SDS-PAGE while NSP1 and NSP3 induce modest or no phosphorylation, respectively. Conversely, reduction in BCAR3 expression in mesenchymal MDA-231 cells by inducible shRNA results in loss of such p130Cas phosphorylation. Replacement of NSP3's serine/proline-rich domain with that of AND-34/BCAR3 instills the ability to induce p130Cas phosphorylation. Phospho-amino acid analysis demonstrates that BCAR3 induces p130Cas serine phosphorylation. Mass spectrometry identified phosphorylation at p130Cas serines 139, 437 and 639. p130Cas serine phosphorylation accumulates for several hours after adhesion of MDA-231 cells to fibronectin and is dependent upon BCAR3 expression. BCAR3 knockdown alters p130Cas localization and converts MDA-231 growth to an epithelioid pattern characterized by striking cohesiveness and lack of cellular projections at colony borders. These studies demonstrate that BCAR3 regulates p130Cas serine phosphorylation that is adhesion-dependent, temporally distinct from previously well-characterized rapid Fak and Src kinase-mediated p130Cas tyrosine phosphorylation and that correlates with invasive phenotype.  相似文献   

19.
Neuropeptide-stimulated tyrosine phosphorylation of specific components in Swiss 3T3 cells was investigated using monoclonal antibodies directed against the src transformation-associated substrates p125 focal adhesion kinase (FAK), a novel type of cytosolic tyrosine kinase, and p130. Treatment of Swiss 3T3 cells with the mitogenic peptides bombesin, vasopressin, and endothelin caused a striking increase in the tyrosine phosphorylation of p125FAK, as judged either by anti-phosphotyrosine (anti-Tyr(P)) Western blots of anti-p125FAK immunoprecipitates, or by anti-p125FAK immunoblots of anti-Tyr(P) immunoprecipitates. Bombesin-stimulated tyrosine phosphorylation of p125FAK was detectable within seconds and concentration-dependent (half-maximum effect of 0.3 nM). Neuropeptides also stimulated the tyrosine phosphorylation of a second component of M(r) 130,000, previously identified as the major p130 phosphotyrosyl protein in src-transformed cells. Bombesin stimulated p130 tyrosine phosphorylation with kinetics and concentration dependence similar to those observed for p125FAK. This is the first report to identify substrates for neuropeptide-stimulated tyrosine phosphorylation; the finding that one of these substrates is a tyrosine kinase suggests the existence of a novel signal transduction pathway in the action of mitogenic neuropeptides.  相似文献   

20.
HEF1 is a recently described p130(Cas)-like docking protein that contains one SH3 domain and multiple SH2 binding motifs. In B cells, HEF1 is phosphorylated by a cytoskeleton-dependent mechanism that is triggered by integrin ligation. However, the induction of HEF1 phosphorylation by G protein-coupled receptors has not been reported. We found that HEF1, but not p130(Cas), is tyrosine-phosphorylated following stimulation of the rabbit C1a calcitonin receptor stably expressed in HEK-293 cells. The calcitonin-induced tyrosine phosphorylation of HEF1 increased in a time- and dose-dependent manner. Dibutyryl cAMP and forskolin had little or no effect on HEF1 phosphorylation, and the protein kinase A inhibitor H89 failed to detectably inhibit the response to calcitonin, indicating that the G(s)/cAMP/protein kinase A pathway does not mediate the calcitonin effect. Pertussis toxin, which selectively blocks G(i/o) signaling, also had no effect. Increasing cytosolic Ca(2+) with ionomycin stimulated HEF1 phosphorylation and preventing any calcitonin-induced change in cytosolic calcium by a combination of BAPTA and extracellular EGTA completely blocked the calcitonin-induced tyrosine phosphorylation of HEF1. Phorbol 12-myristate 13-acetate also induced HEF1 tyrosine phosphorylation, and the protein kinase C inhibitor calphostin C completely inhibited both calcitonin- and phorbol 12-myristate 13-acetate-stimulated HEF1 phosphorylation. Calcitonin also induced the tyrosine phosphorylation of paxillin and focal adhesion kinase, and the association of these two proteins with HEF1. Pretreatment with cytochalasin D, which disrupts actin microfilaments, prevented the calcitonin-induced HEF1 and paxillin phosphorylation. In conclusion, the calcitonin-stimulated tyrosine phosphorylation of HEF1 is mediated by calcium- and protein kinase C-dependent mechanisms and requires the integrity of the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号