首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been suggested that bradykinin (BK) plays an important role in regulating neointimal formation after vascular injury. However, implication of BK in the growth of rat vascular smooth muscle cells (VSMCs) is controversial. Therefore, we examined the mitogenic effect of BK on VSMCs associated with activation of mitogen-activated protein kinase (MAPK). Both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were activated by BK in time- and concentration-dependent manners. Pretreatment of these cells with neither pertussis toxin nor cholera toxin attenuated the BK-induced responses. Pretreatment of VSMCs with Hoe 140 (a selective B(2) receptor antagonist), U73122 (an inhibitor of phospholipase C), and BAPTA/AM (an intracellular Ca(2+) chelator) inhibited both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation in response to BK. BK-induced [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were inhibited by pretreatment of VSMCs with tyrosine kinase inhibitors (genistein and herbimycin A), protein kinase C (PKC) inhibitors (staurosporine, Go-6976, and Ro-318220), an MAPK kinase inhibitor (PD98059), and a p38 MAPK inhibitor (SB203580). Overexpression of the dominant negative mutants, H-Ras-15A and Raf-N4, suppressed p42/p44 MAPK activation induced by BK and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. From these results, we concluded that the mitogenic effect of BK is mediated through activation of the Ras/Raf/MEK/MAPK pathway similar to that of PDGF-BB. BK-mediated MAPK activation was modulated by Ca(2+), PKC, and tyrosine kinase all of which are associated with cell proliferation in rat cultured VSMCs.  相似文献   

2.
The elevated level of thrombin has been detected in the airway fluids of asthmatic patients. However, the implication of thrombin in the pathogenesis of bronchial hyperreactivity was not completely understood. Therefore, in this study we investigated the effect of thrombin on cell proliferation and p42/p44 mitogen-activated protein kinase (MAPK) activation in human tracheal smooth muscle cells (TSMCs). Thrombin stimulated [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in a time- and concentration-dependent manner in TSMCs. Pretreatment of TSMCs with pertussis toxin (PTX) significantly inhibited [3H]thymidine incorporation and phosphorylation of MAPK induced by thrombin. These responses were attenuated by tyrosine kinase inhibitors genistein and herbimycin A, phosphatidyl inositide (PI)-phospholipase C (PLC) inhibitor U73122, protein kinase C (PKC) inhibitor GF109203X, removal of Ca(2+) by addition of BAPTA/AM plus EGTA, and PI 3-kinase inhibitors wortmannin and LY294002. In addition, thrombin-induced [3H]-thymidine incorporation and p42/p44 MAPK phosphorylation was completely inhibited by PD98059 (an inhibitor of MEK1/2), indicating that activation of MEK1/2 was required for these responses. Furthermore, overexpression of dominant negative mutants, RasN17 and Raf-301, significantly suppressed p42/p44 MAPK activation induced by thrombin and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. These results conclude that the mitogenic effect of thrombin was mediated through the activation of Ras/Raf/MEK/MAPK pathway. Thrombin-mediated MAPK activation was modulated by PI-PLC, Ca(2+), PKC, tyrosine kinase, and PI 3-kinase associated with cell proliferation in cultured human TSMCs.  相似文献   

3.
The elevated level of thrombin has been detected in the airway fluids of asthmatic patients and shown to stimulate cell proliferation in tracheal smooth muscle cells (TSMCs). However, the implication of thrombin in the cell proliferation was not completely understood. In this study, thrombin stimulated [3H]thymidine incorporation and p42/p44 mitogen-activated protein kinase (MAPK) phosphorylation in a time- and concentration-dependent manner in TSMCs. Pretreatment of TSMCs with pertussis toxin (PTX) significantly inhibited [3H]thymidine incorporation and phosphorylation of MAPK induced by thrombin. These responses were attenuated by tyrosine kinase inhibitors genistein and herbimycin A, phosphatidyl inositide (PI)-phospholipase C (PLC) inhibitor U73122, protein kinase C inhibitor GF109203X, removal of Ca2+ by addition of BAPTA/AM plus EGTA, PI 3-kinase inhibitors wortmannin and LY294002, and inhibitor of MEK1/2 PD98059. Furthermore, overexpression of dominant negative mutants, H-Ras-15A and Raf-N4, significantly suppressed p42/p44 MAPK activation induced by thrombin and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. These results conclude that the mitogenic effect of thrombin was mediated through the activation of Ras/Raf/MEK/MAPK pathway. Thrombin-mediated MAPK activation was modulated by PI-PLC, Ca2+, PKC, tyrosine kinase, and PI 3-kinase associated with cell proliferation in canine cultured TSMCs.  相似文献   

4.
In our previous study, bradykinin (BK) exerts its mitogenic effect through Ras/Raf/MEK/MAPK pathway in vascular smooth muscle cells (VSMCs). In addition to this pathway, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3-K) have been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we investigated whether these different mechanisms participating in BK-induced activation of p42/p44 MAPK and cell proliferation in VSMCs. We initially observed that BK- and EGF-dependent activation of Src, EGFR, Akt, and p42/p44 MAPK and [3H]thymidine incorporation were mediated by Src and EGFR, because the Src inhibitor PP1 and EGFR kinase inhibitor AG1478 abrogated BK- and EGF-dependent effects. Inhibition of PI3-K by LY294002 attenuated BK-induced Akt and p42/p44 MAPK phosphorylation and [3H]thymidine incorporation, but had no effect on EGFR phosphorylation, suggesting that EGFR may be an upstream component of PI3-K/Akt and MAPK in these responses. This hypothesis was supported by the tranfection with dominant negative plasmids of p85 and Akt which significantly attenuated BK-induced Akt and p42/p44 MAPK phosphorylation. Pretreatment with U0126 (a MEK1/2 inhibitor) attenuated the p42/p44 MAPK phosphorylation and [3H]thymidine incorporation stimulated by BK, but had no effect on Akt activation. Moreover, BK-induced transactivation of EGFR and cell proliferation was blocked by matrix metalloproteinase inhibitor GM6001. These results suggest that, in VSMCs, the mechanism of BK-stimulated activation of p42/p44 MAPK and cell proliferation was mediated, at least in part, through activation of Src family kinases, EGFR transactivation, and PI3-K/Akt.  相似文献   

5.
Effect of angiotensin II (ANG II) on mouse embryonic stem (ES) cell proliferation was examined. ANG II increased [(3)H] thymidine incorporation in a time- (>4 h) and dose- (>10(-9) M) dependent manner. The ANG II-induced increase in [(3)H] thymidine incorporation was blocked by inhibition of ANG II type 1 (AT(1)) receptor but not by ANG II type 2 (AT(2)) receptor, and AT(1) receptor was expressed. ANG II increased inositol phosphates formation and [Ca(2+)](i), and translocated PKC alpha, delta, and zeta to the membrane fraction. Consequently, the inhibition of PLC/PKC suppressed ANG II-induced increase in [(3)H] thymidine incorporation. The inhibition of EGF receptor kinase or tyrosine kinase prevented ANG II-induced increase in [(3)H] thymidine incorporation. ANG II phosphorylated EGF receptor and increased Akt, mTOR, and p70S6K1 phosphorylation blocked by AG 1478 (EGF receptor kinase blocker). ANG II-induced increase in [(3)H] thymidine incorporation was blocked by the inhibition of p44/42 MAPKs but not by p38 MAPK inhibition. Indeed, ANG II phosphorylated p44/42 MAPKs, which was prevented by the inhibition of the PKC and AT(1) receptor. ANG II increased c-fos, c-jun, and c-myc levels. ANG II also increased the protein levels of cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK4 but decreased the p21(cip1/waf1) and p27(kip1), CDK inhibitory proteins. These proteins were blocked by the inhibition of AT(1) receptor, PLC/PKC, p44/42 MAPKs, EGF receptor, or tyrosine kinase. In conclusion, ANG II-stimulated DNA synthesis is mediated by ANG II receptor-dependent Ca(2+)/PKC and EGF receptor-dependent PI3K/Akt/mTOR/p70S6K1 signal pathways in mouse ES cells.  相似文献   

6.
We have previously demonstrated that concomitant activation of receptor tyrosine kinases and certain G protein-coupled receptors (GPCRs) can promote a synergistic increase in the rate of airway smooth muscle cell (ASM) proliferation. Here we clarify the role of p70S6 kinase (p70S6K) as an integrator of receptor tyrosine kinase and GPCR signaling that augments ASM DNA synthesis by demonstrating that specific p70S6K phosphorylation sites receive distinct regulatory input from GPCRs that promotes sustained kinase activity critical to mitogenesis. Prolonged stimulation of ASM cells with EGF and thrombin induced a greater than additive effect in levels of p70S6K phosphorylated at residue T389, whereas a significant but more modest increase in the level of T229 and T421/S424 phosphorylation was also observed. The augmenting effects of thrombin could be dissociated from p42/p44 MAPK activation, as selective inhibition of thrombin-stimulated p42/p44 failed to alter the profile of cooperative p70S6K T389 phosphorylation, p70S6K kinase activity, or ASM [(3)H]thymidine incorporation. Thrombin stimulated a sustained increase in the level of Akt phosphorylation and also augmented EGF-stimulated Akt phosphorylation. The cooperative effects of thrombin on Akt/p70S6K phosphorylation and [(3)H]thymidine incorporation were all attenuated by heterologous expression of Gbetagamma sequestrants. These data suggest that PI3K-dependent T389/T229 phosphorylation is limiting in late-phase p70S6K activation by EGF and contributes to the cooperative effect of GPCRs on p70S6K activity and cell growth.  相似文献   

7.
8.
Angiotensin (Ang) II via the AT(1) receptor acts as a mitogen in vascular smooth muscle cells (VSMC) through stimulation of multiple signaling mechanisms, including tyrosine kinases and mitogen-activated protein kinase (MAPK). In addition, cytosolic phospholipase A(2)(cPLA(2))-dependent release of arachidonic acid (AA) is linked to VSMC growth and we have reported that Ang II stimulates cPLA(2) activity via the AT(1) receptor. The coupling of Ang II to the activation of cPLA(2) appears to involve mechanisms both upstream and downstream of MAPK such that AA stimulates MAPK activity which phosphorylates cPLA(2) to further enhance AA release. However, the upstream mechanisms responsible for activation of cPLA(2) are not well-defined. One possibility includes phosphatidylinositide 3-kinase (PI3K), since PI3K has been reported to participate in the upstream signaling events linked to activation of MAPK. However, it is not known whether PI3K is involved in the Ang II-induced activation of cPLA(2) or if this mechanism is associated with the Ang II-mediated growth of VSMC. Therefore, we used cultured rat VSMC to examine the role of PI3K in the Ang II-dependent phosphorylation of cPLA(2), release of AA, and growth induced by Ang II. Exposure of VSMC to Ang II (100 nM) increased [(3)H]thymidine incorporation, cell number, and the release of [(3)H]AA. Also, using Western analysis, Ang II increased the phosphorylation of MAPK and cPLA(2) which were blocked by the MAPK kinase inhibitor PD98059 (10 microM/L). Similarly, the PI3K inhibitor LY294002 (10 microM/L) abolished the Ang II-mediated increase in MAPK phosphorylation, as well as phosphoserine-PLA(2). Further, inhibition of PI3K blocked the Ang II-induced release of AA and VSMC mitogenesis. However, exogenous AA was able to restore VSMC growth in the presence of LY294002, as well as reverse the inhibition of MAPK and cPLA(2) phosphorylation by LY294002. Thus, it appears from these data that Ang II stimulates the PI3K-sensitive release of AA which stimulates MAPK to phosphorylate cPLA(2) and enhance AA release. This mechanism may play an important role in the Ang II-induced growth of VSMC.  相似文献   

9.
Oxidized low-density lipoprotein (OX-LDL) contributes significantly to the development of atherosclerosis. However, the mechanisms of OX-LDL-induced vascular smooth muscle cell (VSMC) proliferation are not completely understood. Therefore, we investigated the effect of OX-LDL on cell proliferation associated with a specific pattern of mitogen-activated protein kinase (MAPK) by [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in canine cultured VSMCs. OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in a time- and concentration-dependent manner in VSMCs. Pretreatment of these cells with pertussis toxin (PTX) for 24 hours attenuated the OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation, indicating that these responses were mediated through a receptor coupled to a PTX-sensitive G protein. In cells pretreated with PMA for 24 h and with either the PKC inhibitor staurosporine or the tyrosine kinase inhibitor genistein for 1h, substantially reduced the [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in response to OX-LDL. Removal of Ca(2+) by addition of BAPTA/AM plus EGTA significantly inhibited OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation, indicating the requirement of Ca(2+) for these responses. OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation was completely inhibited by PD98059 (an inhibitor of MEK1/2) and SB203580 (an inhibitor of p38 MAPK). Furthermore, we also showed that overexpression of dominant negative mutants of Ras (RasN17) and Raf (Raf-301) completely suppressed MEK1/2 and p42/p44 MAPK activation induced by OX-LDL and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. Taken together, these results suggest that the mitogenic effect of OX-LDL is mediated through a PTX-sensitive G-protein-coupled receptor that involves the activation o Ras/Raf/MEK/MAPK pathway similar to those of PDGF-BB in canine cultured VSMCs.  相似文献   

10.
This study examined the effects of high glucose on cell proliferation and its related signal pathways using mouse embryonic stem (ES) cells. Here, we showed that high glucose level significantly increased [3H]thymidine incorporation, BrdU incorporation, the number of cells, [3H]leucine, and [3H]proline incorporation in a time-( >3 hr) and dose-(> 25 mM) dependent manner. Moreover, high glucose level increased the cellular reactive oxygen species (ROS), Akt, and mitogen-activated protein kinases (MAPKs) phosphorylation. Subsequently, these signaling molecules involved in high glucose-induced increase of [3H]thymidine incorporation. High glucose level also increased cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK 4 protein levels, which is cell cycle regulatory proteins acting in G1-S phase of cell cycle. Inhibition of phosphatidylinositol 3-kinase (PI3-K) (LY 294002: PI3-kinase inhibitor, 10(-6) M), Akt (Akt inhibitor, 10(-5) M), and p44/42 MAPKs (PD 98059: MEK inhibitor, 10(-5) M) decreased these proteins. High glucose level phosphorylated the RB protein, which was decreased by inhibition of PI3-K and Akt. In conclusion, high glucose level stimulates mouse ES cell proliferation via the PI3-K/Akt and MAPKs pathways.  相似文献   

11.
Mast cells proliferate in vivo in areas of active fibrosis, during parasite infestations, in response to repeated immediate hypersensitivity reactions and in patients with mastocytosis. We investigated how progesterone reduces the proliferation of HMC-1(560) mast cells that proliferate spontaneously in culture. Cells were incubated with 1 microM to 1 nM progesterone for 24-48 h. Progesterone (1 microM) reduced the spontaneous proliferation of HMC-1(560) mast cells to half that of cells cultured without hormone. [(3)H] thymidine incorporation was only 50% of control; there were fewer cells in G2/M and more cells in G0/G1. The amounts of phospho-Raf-1 (Tyr 340-341) and phospho-p42/p44 MAPK proteins were also reduced. In contrast progesterone had no effect on MAP kinase-phosphatase-1. The Raf/MAPK pathway, which depends on Src kinase activity, is implicated in the control of cell proliferation. HMC-1(560) cells incubated with the tyrosine kinase inhibitor PP1 proliferated more slowly than controls and had less phospho-Raf-1 (Tyr 340-341) and phospho-p42/p44 MAPK. The Csk homologous kinase (CHK), an endogenous inhibitor of Src protein tyrosine kinases, was also enhanced in progesterone-treated cells. In contrast, progesterone had no effect on the growth of cells transfected with siRNA CHK. We conclude that progesterone increases the amount of csk homologous kinase, which in turn reduces HMC-1(560) mast cell proliferation. This effect parallels decreases in the phosphorylated forms of Raf-1 and p42/44 MAPK, as their production depends on Src kinase activity.  相似文献   

12.
Hyperplasia of airway smooth muscle (ASM) within the bronchial wall of asthmatic patients has been well documented and is likely due to increased muscle proliferation. We have shown that ASM cells obtained from asthmatic patients proliferate faster than those obtained from non-asthmatic patients. In ASM from non-asthmatics, mitogens act via dual signaling pathways (both ERK- and PI 3-kinase-dependent) to control growth. In this study we are the first to examine whether dual pathways control the enhanced proliferation of ASM from asthmatics. When cells were incubated with 0.1% or 1% FBS, ERK activation was significantly greater in cells from asthmatic subjects (P < 0.05). In contrast, when cells were stimulated with 10% FBS, ERK activity was significantly greater in the non-asthmatic cells. However, cell proliferation in asthmatic cells was still significantly higher in cells stimulated by both 1% and 10% FBS. Pharmacological inhibition revealed that although dual proliferative pathways control ASM growth in cells from non-asthmatics stimulated with 10% FBS to an equal extent ([(3)H]-thymidine incorporation reduced to 57.2 +/- 6.9% by the PI 3-kinase inhibitor LY294002 and 57.8 +/- 1.1% by the ERK-pathway inhibitor U0126); in asthmatics, the presence of a strong proliferative stimulus (10% FBS) reduces ERK activation resulting in a shift to the PI 3-kinase pathway. The underlying mechanism appears to be upregulation of an endogenous MAPK inhibitor--MKP-1--that constrains ERK signaling in asthmatic cells under strong mitogenic stimulation. This study suggests that the PI 3-kinase pathway may be an attractive target for reversing hyperplasia in asthma.  相似文献   

13.
Vascular endothelial cells are unique in that they exit from the cell cycle when they come into contact with each other. Although the phenomenon is called "contact inhibition," little is known about the cellular mechanisms involved. Here we show that the phosphatase inhibitor sodium orthovanadate (SOV) induced the reentry of contact-inhibited human umbilical vascular endothelial cells (HUVECs) into the cell cycle and that reentry was associated with activation of the extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI 3-K)/Akt pathways. SOV stimulated [(3)H]thymidine uptake of contact-inhibited HUVECs in a time- and dose-dependent manner. SOV-induced increase in [(3)H]thymidine uptake was significantly inhibited by the mitogen-activated protein kinase kinase inhibitor PD98059 and by the PI 3-K inhibitor LY294002. SOV also stimulated the expression of cyclin D1, cyclin E, and cyclin A, and the activity of CDK2 kinase, whereas it decreased the expression of p27(kip1). In marked contrast, growth media alone did not induce these changes. Furthermore, these SOV-induced changes were abolished by pretreatment with PD98059 and LY294002. SOV stimulated phosphorylation of ERK and Akt in contact-inhibited HUVECs, while growth media alone did not. This phosphorylation was associated with inhibition of phosphatase activity in the cells. Finally, overexpression of high cell density-enhanced protein tyrosine phosphatase 1 inhibited c-fos and cyclin A promoter activity. Taken together, our results suggest that in contact-inhibited HUVECs, increased phosphatase activity suppressed the ERK and PI 3-K/Akt pathways, resulting in exit from the cell cycle by down-regulation of cyclin D1, cyclin E, and cyclin A and by up-regulation of p27(kip1).  相似文献   

14.
Bradykinin (BK) is released into the tear-film in ocular allergic patients. BK has been shown to exert mitogenic effects on several cell types. However, the mechanisms underlying its action on corneal keratocytes (CKs) were largely unknown. This study was to investigate the mitogenic effect of BK on rabbit CKs linked to activation of p42/p44 mitogen-activated protein kinase (MAPK), assessed by [3H]thymidine incorporation and Western blotting analysis, respectively. BK stimulated [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in a time- and concentration-dependent manner. Pretreatment with pertussis toxin attenuated the BK-induced responses. BK-stimulated responses were attenuated by inhibitors of selective B2 receptor (Hoe 140), phosphatidylinositol (PI)-PLC (U73122), an intracellular Ca2+chelator (BAPTA/AM), PKC (GF109203X), tyrosine kinase (genistein), and MEK1/2 (PD98059). BK also stimulated translocation of p42/p44 MAPK into nucleus and led to expression of c-fos and c-jun in CKs. These results demonstrate that in CKs, BK-stimulated phosphorylation of p42/p44 MAPK is mediated through the activation of BK B2 receptors and leads to cell proliferation.  相似文献   

15.
U46619, a thromboxane A2 mimetic, caused tyrosine phosphorylation of several proteins in rabbit platelets. Among them, 42 kDa protein was identified as a mitogen-activated protein kinase (MAPK). U46619 activated MAPK in a concentration-dependent manner, measured by incorporation of 32P to a specific substrate for MAPK. U46619 also liberated [3H)arachidonic acid in a concentration-dependent manner. The U46619-induced MAPK activation and [3H]arachidonic acid liberation were inhibited by SQ29548 and by the removal of external Ca2+ ions. This is a first demonstration that TXA2 activates MAPK accompanied with arachidonic acid liberation in rabbit platelets.  相似文献   

16.
Vascular and airway remodeling, which are characterized by airway smooth muscle (ASM) and pulmonary arterial vascular smooth muscle (VSM) proliferation, contribute to the pathology of asthma, pulmonary hypertension, restenosis and atherosclerosis. To evaluate the proliferation of VSM and ASM cells in response to mitogens, we perform a [3H]thymidine incorporation assay. The proliferation protocol takes approximately 48 h and includes stimulating cells synchronized in G0/G1 phase of the cell cycle with agonists, labeling cells with [3H]thymidine and examining levels of [3H]thymidine incorporation by scintillation counting. Although using radiolabeled [3H]thymidine incorporation is a limitation, the greatest benefit of the assay is providing reliable and statistically significant data.  相似文献   

17.
18.
Lee SH  Lee MY  Han HJ 《Cell proliferation》2008,41(2):230-247
Hypoxia plays important roles in some early stages of mammalian embryonic development and in various physiological functions. This study examined the effect of arachidonic acid on short-period hypoxia-induced regulation of G(1) phase cell-cycle progression and inter-relationships among possible signalling molecules in mouse embryonic stem cells. Hypoxia increased the level of hypoxia-inducible factor-1alpha (HIF-1alpha) expression and H2O2 generation in a time-dependent manner. In addition, hypoxia increased the levels of cell-cycle regulatory proteins (cyclin D(1), cyclin E, cyclin-dependent kinase 2 (CDK2) and CDK4). Maximum increases in the level of these proteins and retinoblastoma phosphorylation were observed after 12-24 h of exposure to hypoxic conditions, and then decreased. Alternatively, the level of the CDK inhibitors, p21(Cip1) and p27(Kip1) were decreased. These results were consistent with the results of [3H]-thymidine incorporation and cell counting. Hypoxia also increased the level of [3H]-arachidonic acid release and inhibition of cPLA(2) reduced hypoxia-induced increase in levels of the cell-cycle regulatory proteins and [3H]-thymidine incorporation. The level of cyclooxygenase-2 (COX-2) was also increased by hypoxia and inhibition of COX-2 decreased the levels of cell-cycle regulatory proteins and [3H]-thymidine incorporation. Indeed, the percentage of cells in S phase, levels of cell cycle regulatory proteins, and [3H]-thymidine incorporation were further increased in hypoxic conditions with arachidonic acid treatment compared to normoxic conditions. Hypoxia-induced Akt and mitogen-activated protein kinase (MAPK) phosphorylation was inhibited by vitamin C (antioxidant, 10(-3) M). In addition, hypoxia-induced increase of cell-cycle regulatory protein expression and [(3)H]-thymidine incorporation were attenuated by LY294002 (PI3K inhibitor, 10(-6) M), Akt inhibitor (10(-6) M), rapamycin (mTOR inhibitor, 10(-9) M), PD98059 (p44/42 inhibitor, 10(-5) M), and SB203580 (p38 MAPK inhibitor, 10(-6) M). Furthermore, hypoxia-induced increase of [(3)H]-arachidonic acid release was blocked by PD98059 or SB203580, but not by LY294002 or Akt inhibitor. In conclusion, arachidonic acid up-regulates short time-period hypoxia-induced G(1) phase cyclins D(1) and E, and CDK 2 and 4, in mouse embryonic stem cells through the cooperation of PI3K/Akt/mTOR, MAPK and cPLA(2)-mediated signal pathways.  相似文献   

19.
This experiment focused on MAPK activation in host cell invasion and replication of T. gondii, as well as the expression of CC chemokines, MCP-1 and MIP-1 alpha , and enzyme, COX-2/prostaglandin E2 (PGE2) in infected cells via western blot, [3H]-uracil incorporation assay, ELISA and RT-PCR. The phosphorylation of ERK1/2 and p38 in infected HeLa cells was detected at 1 hr and/or 6 hr postinfection (PI). Tachyzoite proliferation was reduced by p38 or JNK MAPK inhibitors. MCP-1 secretion was enhanced in infected peritoneal macrophages at 6 hr PI. MIP-1 alpha mRNA was increased in macrophages at 18 hr PI. MCP-1 and MIP-1 alpha were reduced after treatment with inhibitors of ERK1/2 and JNK MAPKs. COX-2 mRNA gradually increased in infected RAW 264.7 cells and the secretion of COX-2 peaked at 6 hr PI. The inhibitor of JNK suppressed COX-2 expression. PGE2 from infected RAW 264.7 cells was increased and synthesis was suppressed by PD98059, SB203580, and SP600125. In this study, the activation of p38, JNK and/or ERK1/2 MAPKs occurred during the invasion and proliferation of T. gondii tachyzoites in HeLa cells. Also, increased secretion and expression of MCP-1, MIP-1 alpha , COX-2 and PGE2 were detected in infected macrophages, and appeared to occur via MAPK signaling pathways.  相似文献   

20.
The reported studies on the metabolism in chicken hepatocytes in comparison with those of mammals are quite different. Therefore, this study examined the effect of EGF on DNA synthesis along with its related signal cascades in primary cultured chicken hepatocytes. EGF stimulated DNA synthesis in a dose (> or =10 ng/ml)-dependent manner, which correlated with the increase in CDK-2 and CDK-4 expression. The EGF-induced increase in [3H]-thymidine incorporation was blocked by AG 1478 (an EGF receptor tyrosine kinase antagonist), genistein, and herbimycin A (tyrosine kinase inhibitors), suggesting a role in the activation and tyrosine phosphorylation of the EGF receptor. In addition, the EGF-induced stimulation of [3H]-thymidine incorporation was prevented by staurosporine, H-7, or bisindolylmaleimide I (protein kinase C inhibitors), suggesting a role of PKC. In addition, PD 98059 (a MEK inhibitor), SB 203580 (a p38 MAPK inhibitor), and SP 600125 (a JNK inhibitor) blocked the EGF-induced stimulation of [3H]-thymidine incorporation and CDK-2/4 expression. Indeed, EGF increased the translocation of PKC from the cytosol to the membrane fraction, and increased the activation of p44/42 MAPK, p38 MAPK, and JNK. Moreover, EGF increased the CDK-2, CDK-4, cyclin D1, and cyclin E expression levels but decreased the p21 and p27 expression levels. These EGF-induced increases were blocked by an EGF receptor antagonist, tyrosine kinase inhibitors, PKC inhibitors, and MAPKs inhibitors. In conclusion, EGF stimulates DNA synthesis of primary cultured chicken hepatocytes via Ca2+/PKC and the MAPKs signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号