首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the importance of dimerization of E-cadherin in the heterophilic adhesive interaction between E-cadherin and integrin alpha(E)beta(7). Dimerization of cadherin molecules in parallel alignment is known to be essential for homophilic adhesion and has been attributed to Ca(2+)-dependent interactions in the domain 1-2 junction or to cross-intercalation of Trp2 from one molecule to the other. We have disrupted either or both of these proposed mechanisms by point mutations in E-cadherin-Fc and have tested the modified proteins for alpha(E)beta(7)-mediated cell adhesion. Prevention of Trp2 intercalation had no adverse effect on integrin-mediated adhesion, whereas disruption of Ca(2+) binding permitted adhesion but with reduced efficiency. Both modifications in combination abolished recognition by alpha(E)beta(7). In EGTA, alpha(E)beta(7) adhered to wild type E-cadherin but not to the Trp2 deletion mutant. Independent evidence that the mutations prevented either or both mechanisms for dimerization is presented. The data show that dimerization is required for recognition by alpha(E)beta(7) and that it can take place by either of two mechanisms. Implications for the roles of the alpha(E) and beta(7) integrin subunits in ligand binding and for Trp2 and Ca(2+) in the assembly of cadherin complexes are discussed.  相似文献   

2.
In multicellular organisms, cells are interconnected by cell adhesion molecules. Nectins are immunoglobulin (Ig)-like cell adhesion molecules that mediate homotypic and heterotypic cell-cell adhesion, playing key roles in tissue organization. To mediate cell-cell adhesion, nectin molecules dimerize in cis on the surface of the same cell, followed by trans-dimerization of the cis-dimers between the neighboring cells. Previous cell biological studies deduced that the first Ig-like domain of nectin and the second Ig-like domain are involved in trans-dimerization and cis-dimerization, respectively. However, to understand better the steps involved in nectin adhesion, the structural basis for the dimerization of nectin must be determined. In this study, we determined the first crystal structure of the entire extracellular region of nectin-1. In the crystal, nectin-1 formed a V-shaped homophilic dimer through the first Ig-like domain. Structure-based site-directed mutagenesis of the first Ig-like domain identified four essential residues that are involved in the homophilic dimerization. Upon mutating the four residues, nectin-1 significantly decreased cis-dimerization on the surface of cultured cells and abolished the homophilic and heterophilic adhesion activities. These results indicate that, in contrast with the previous notion, our structure represents a cis-dimer. Thus, our findings clearly reveal the structural basis for the cis-dimerization of nectins through the first Ig-like domains.  相似文献   

3.
We have found a new cell-cell adhesion system at cadherin-based cell-cell adherens junctions (AJs) consisting of at least nectin and l-afadin. Nectin is a Ca(2+)-independent homophilic immunoglobulin-like adhesion molecule, and l-afadin is an actin filament-binding protein that connects the cytoplasmic region of nectin to the actin cytoskeleton. Both the trans-interaction of nectin and the interaction of nectin with l-afadin are necessary for their colocalization with E-cadherin and catenins at AJs. Here, we examined the mechanism of interaction between these two cell-cell adhesion systems at AJs by the use of alpha-catenin-deficient F9 cell lines and cadherin-deficient L cell lines stably expressing their various components. We showed here that nectin and E-cadherin were colocalized through l-afadin and the COOH-terminal half of alpha-catenin at AJs. Nectin trans-interacted independently of E-cadherin, and the complex of E-cadherin and alpha- and beta-catenins was recruited to nectin-based cell-cell adhesion sites through l-afadin without the trans-interaction of E-cadherin. Our results indicate that nectin and cadherin interact through their cytoplasmic domain-associated proteins and suggest that these two cell-cell adhesion systems cooperatively organize cell-cell AJs.  相似文献   

4.
Classical cadherins form parallel cis-dimers that emanate from a single cell surface. It is thought that the cis-dimeric form is active in cell-cell adhesion, whereas cadherin monomers are likely to be inactive. Currently, cis-dimers have been shown to exist only between cadherins of the same type. Here, we show the specific formation of cis-heterodimers between N- and R-cadherins. E-cadherin cannot participate in these complexes. Cells coexpressing N- and R-cadherins show homophilic adhesion in which these proteins coassociate at cell-cell interfaces. We performed site- directed mutagenesis studies, the results of which support the strand dimer model for cis-dimerization. Furthermore, we show that when N- and R-cadherins are coexpressed in neurons in vitro, the two cadherins colocalize at certain neural synapses, implying biological relevance for these complexes. The present study provides a novel paradigm for cadherin interaction whereby selective cis-heterodimer formation may generate new functional units to mediate cell-cell adhesion.  相似文献   

5.
The Ca2+-independent immunoglobulin-like molecule nectin first forms cell-cell adhesion and then assembles cadherin at nectin-based cell-cell adhesion sites, resulting in the formation of adherens junctions (AJs). Afadin is a nectin- and actin filament-binding protein that connects nectin to the actin cytoskeleton. Here, we studied the roles and modes of action of nectin and afadin in the formation of AJs in cultured MDCK cells. The trans-interaction of nectin assembled E-cadherin, which associated with p120(ctn), beta-catenin, and alpha-catenin, at the nectin-based cell-cell adhesion sites in an afadin-independent manner. However, the assembled E-cadherin showed weak cell-cell adhesion activity and might be the non-trans-interacting form. This assembly was mediated by the IQGAP1-dependent actin cytoskeleton, which was organized by Cdc42 and Rac small G proteins that were activated by the action of trans-interacting nectin through c-Src and Rap1 small G protein in an afadin-independent manner. However, Rap1 bound to afadin, and this Rap1-afadin complex then interacted with p120(ctn) associated with non-trans-interacting E-cadherin, thereby causing the trans-interaction of E-cadherin. Thus, nectin regulates the assembly and cell-cell adhesion activity of E-cadherin through afadin, nectin signaling, and p120(ctn) for the formation of AJs in Madin-Darby canine kidney cells.  相似文献   

6.
Intestinal LI-cadherin acts as a Ca2+-dependent adhesion switch   总被引:1,自引:0,他引:1  
Cadherins are Ca(2+)-dependent transmembrane glycoproteins that mediate cell-cell adhesion and are important for the structural integrity of epithelia. LI-cadherin and the classical E-cadherin are the predominant two cadherins in the intestinal epithelium. LI-cadherin consists of seven extracellular cadherin repeats and a short cytoplasmic part that does not interact with catenins. In contrast, E-cadherin is composed of five cadherin repeats and a large cytoplasmic domain that is linked via catenins to the actin cytoskeleton. Whereas E-cadherin is concentrated in adherens junctions, LI-cadherin is evenly distributed along the lateral contact area of intestinal epithelial cells. To investigate if the particular structural properties of LI-cadherin result in a divergent homotypic adhesion mechanism, we analyzed the binding parameters of LI-cadherin on the single molecule and the cellular level using atomic force microscopy, affinity chromatography and laser tweezer experiments. Homotypic trans-interaction of LI-cadherin exhibits low affinity binding with a short lifetime of only 1.4 s. Interestingly, LI-cadherin binding responds to small changes in extracellular Ca(2+) below the physiological plasma concentration with a high degree of cooperativity. Thus, LI-cadherin might serve as a Ca(2+)-regulated switch for the adhesive system on basolateral membranes of the intestinal epithelium.  相似文献   

7.
E-cadherin is the predominant adhesion molecule of epithelia. The interaction between extracellular segments of E-cadherin in the membrane of opposing cells is homophilic and calcium dependent. Whereas it is widely accepted that the specificity of the adhesive interaction is localized to the N-terminal domain, the kinetics of the recognition process are unknown. We report the first quantitative data describing the dissociation kinetics of individual E-cadherin interactions. Aggregation assays indicate that the two outermost domains of E-cadherin (E/EC1-2) retain biological activity when chemically immobilized on glass beads. Cadherin fragment trans-interaction was analysed using a flow chamber technique. Transient tethers had first-order kinetics, suggesting a unimolecular interaction. The unstressed lifetime of individual E-cadherin interactions was as brief as 2 s. A fast off rate and the low tensile strength of the E-cadherin bond may be necessary to support the high selectivity and plasticity of epithelial cell interactions.  相似文献   

8.
Cadherins are a family of transmembrane glycoproteins responsible for Ca2+-dependent cell-cell adhesion. Their amino acid sequences are highly conserved in the cytoplasmic domain. To study the role of the cytoplasmic domain in the function of cadherins, we constructed expression vectors with cDNAs encoding the deletion mutants of E-cadherin polypeptides, in which the carboxy terminus was truncated at various lengths. These vectors were introduced into L cells by transfection, and cell lines expressing the mutant E-cadherin molecules were isolated. In all transfectants obtained, the extracellular domain of the mutant E-cadherins was exposed on the cell surface, and had normal Ca2+-sensitivity and molecular size. However, these cells did not show any Ca2+-dependent aggregation, indicating that the mutant molecules cannot mediate cell-cell binding. The mutant E-cadherin molecules could be released from cells by nonionic detergents, whereas a fraction of normal E-cadherin molecules could not be extracted with the detergent and appeared to be anchored to the cytoskeleton at cell-cell junctions. These results suggest that the cytoplasmic domain regulates the cell-cell binding function of the extracellular domain of E-cadherin, possibly through interaction with some cytoskeletal components.  相似文献   

9.
Bogoeva VP  Russev GC 《Steroids》2008,73(11):1060-1065
Helix pomatia agglutinin (HPA) is a N-acetylgalactosamine (GalNAc) binding lectin, found in the reproductive gland of a Roman snail. The present study has shown that HPA, in addition to its carbohydrate binding capacity possesses a hydrophobic binding activity. This protein binds with high affinity (k(D)=1.9-2.4 microM) steroid hormones: testosterone and progesterone, identified as putative ligands for the animal lectin HPA. Additionally, we have found that this lectin also interacts with adenine (k(D)=5.4+/-0.5 microM) and arylaminonaphthalene sulfonate TNS (k(D)=12+/-0.3 microM). Binding of HPA to hormones and adenine was accompanied by a significant increase of the intrinsic Trp fluorescence (up to 50%), characterizing the conformational changes in the lectin molecule. The hyperbolic shape of the binding curves indicated one high affinity site for the two steroid hormones and adenine, and more than one hydrophobic site for TNS, showed by the sigmoidal curve fit and Hill coefficient of (n(H)=1.5+/-0.2). Hormones and adenine compete for an identical binding site, suggested to occupy the central hydrophobic cavity of the HPA hexamer. Fluorescence resonance energy transfer (FRET) was applied to calculate the intramolecular distance between TNS and Trp chromophores.  相似文献   

10.
This is the first structural evidence of alpha-tocopherol (alpha-TP) as a possible candidate against inflammation, as it inhibits phospholipase A2 specifically and effectively. The crystal structure of the complex formed between Vipera russelli phospholipase A2 and alpha-tocopherol has been determined and refined to a resolution of 1.8 A. The structure contains two molecules, A and B, of phospholipase A2 in the asymmetric unit, together with one alpha-tocopherol molecule, which is bound specifically to one of them. The phospholipase A2 molecules interact extensively with each other in the crystalline state. The two molecules were found in a stable association in the solution state as well, thus indicating their inherent tendency to remain together as a structural unit, leading to significant functional implications. In the crystal structure, the most important difference between the conformations of two molecules as a result of their association pertains to the orientation of Trp31. It may be noted that Trp31 is located at the mouth of the hydrophobic channel that forms the binding domain of the enzyme. The values of torsion angles (phi, psi, chi(1) and chi(2)) for both the backbone as well as for the side-chain of Trp31 in molecules A and B are -94 degrees, -30 degrees, -66 degrees, 116 degrees and -128 degrees, 170 degrees, -63 degrees, -81 degrees, respectively. The conformation of Trp31 in molecule A is suitable for binding, while that in B hinders the passage of the ligand to the binding site. Consequently, alpha-tocopherol is able to bind to molecule A only, while the binding site of molecule B contains three water molecules. In the complex, the aromatic moiety of alpha-tocopherol is placed in the large space at the active site of the enzyme, while the long hydrophobic channel in the enzyme is filled by hydrocarbon chain of alpha-tocopherol. The critical interactions between the enzyme and alpha-tocopherol are generated between the hydroxyl group of the six-membered ring of alpha-tocopherol and His48 N(delta1) and Asp49 O(delta1) as characteristic hydrogen bonds. The remaining part of alpha-tocopherol interacts extensively with the residues of the hydrophobic channel of the enzyme, giving rise to a number of hydrophobic interactions, resulting in the formation of a stable complex.  相似文献   

11.
Intercellular adhesion molecules can be classified as Ca2+ dependent or Ca2+ independent. This classification has significant functional implications regarding cellular interactions. The best characterized Ca2(+)-dependent adhesion molecules, such as L-CAM or E-cadherin, belong to the family of closely related cell surface molecules called cadherins. On the other hand, those immunoglobulin supergene family members which function as adhesion molecules, such as neural cell adhesion molecule, have been found to be Ca2+ independent. In agreement with this generalization, we have recently shown that carcinoembryonic antigen (CEA) and nonspecific cross-reacting antigen (NCA), two closely related members of the CEA family, a subset of the immunoglobulin supergene family, function in vitro as Ca2(+)-independent adhesion molecules. In contrast, we show here that transfectants of a third member of the CEA family, biliary glycoprotein (BGP), also aggregate homotypically in suspension but require Ca2+ for aggregation. In addition, like the cadherins and unlike CEA or NCA or other adhesion molecules of the immunoglobulin supergene family, BGP transfectant aggregation requires physiological temperatures. Two forms of BGP, with three and two immunoglobulin C2-set domains, show Ca2(+)- and temperature-dependent adhesion, so that these properties do not reside in the third C2-set domain. The significance of this expression in the range of functional properties of the immunoglobulin supergene family and its CEA subset is discussed.  相似文献   

12.
The access of three proteases to their sites of cleavage was used as a measure of regulatory interactions in the plasma membrane Ca2+ pump isoform 4b (PMCA4b). When the proteases could not cut at their sites in the C-terminal regulatory region, the interaction was judged to be tight. This was the case in the absence of Ca2+, when chymotrypsin and caspase cut PMCA only very slowly. Ca2+ accelerated the fragmentation, but the digestion remained incomplete. In the presence of Ca2+ plus calmodulin, the digestion became nearly complete in all cases, indicating a more flexible conformation of the carboxyl terminus in the fully activated state. The acceleration of proteolysis by Ca2+ or Ca2+ plus calmodulin occurred equally at the caspase site upstream of the calmodulin-binding domain and the chymotrypsin and calpain sites downstream of that domain. Replacing Trp1093 (a key residue within the calmodulin-binding domain) with alanine had a much more specific effect, because it exposed only proteolytic sites within the calmodulin-binding domain that had previously been shielded in the native protein. At these sites, both calpain and chymotrypsin cut the Trp1093 --> Ala mutant in the absence of calmodulin. These data indicate that, in the auto-inhibited conformation, the calmodulin-binding/auto-inhibitory sequence and the regions both upstream and downstream are in close contact with the catalytic core. Trp1093 plays an essential role not only in stabilizing the Ca2+-calmodulin/calmodulin-binding domain complex but also in the formation or stability of the inhibitory conformation of that domain when it interacts with the catalytic core of PMCA4b.  相似文献   

13.
A large-scale preparation method for bovine brain 28-kDa cholecalcin-like protein is described. Flow dialysis binding studies revealed that the protein binds at least 3 mol of Ca2+/mol of protein. The protein undergoes conformational changes on binding calcium as shown by UV differential absorption spectroscopy, near and far UV circular dichroism, and intrinsic fluorescence. Circular dichroism (CD) studies in the far UV indicate an apparent increase in helical content in the presence of Ca2+. The effect of calcium on the protein structure is nearly maximum for 1 Ca2+ bound/protein molecule. UV differential absorption studies on the binding of the Ca2+ agonist Tb3+ and Tb3+ luminescence induced by energy Trp----Tb3+ transfer indicate that Tb3+ binds to two higher affinity Ca2+-binding sites. These sites are probably very close to the single Trp residue. Analysis of the fluorescence parameters of the single tryptophan residue in the apoprotein and its accessibility to ionic and neutral quenchers suggests that this residue is located in a highly hydrophobic domain on the protein surface.  相似文献   

14.
Ca2+-induced conformational changes of scallop myosin regulatory domain (RD) were studied using intrinsic fluorescence. Both the intensity and anisotropy of tryptophan fluorescence decreased significantly upon removal of Ca2+. By making a mutant RD we found that the Ca2+-induced fluorescence change is due mainly to Trp21 of the essential light chain which is located at the unusual Ca2+-binding EF-hand motif of the first domain. This result suggests that Trp21 is in a less hydrophobic and more flexible environment in the Ca2+-free state, supporting a model for regulation based on the 2 A resolution structure of scallop RD with bound Ca2+ [Houdusse A. and Cohen C. (1996) Structure 4, 21-32]. Binding of the fluorescent probe, 8-anilinonaphthalene-1-sulphonate (ANS) to the RD senses the dissociation of the regulatory light chain (RLC) in the presence of EDTA, by energy transfer from a tryptophan cluster (Trp818, 824, 826, 827) on the heavy chain (HC). We identified a hydrophobic pentapeptide (Leu836-Ala840) at the head-rod junction which is required for the effective energy transfer and conceivably is part of the ANS-binding site. Extension of the HC component of RD towards the rod region results in a larger ANS response, presumably indicating changes in HC-RLC interactions, which might be crucial for the regulatory function of scallop myosin.  相似文献   

15.
Nectins are Ca(2+)-independent immunoglobulin (Ig)-like cell-cell adhesion molecules. The trans-interactions of nectins recruit cadherins to the nectin-based cell-cell adhesion, resulting in formation of cell-cell adherens junctions (AJs) in epithelial cells and fibroblasts. The trans-interaction of E-cadherin induces activation of Rac small G protein, whereas the trans-interactions of nectins induce activation of not only Rac but also Cdc42 small G protein. We showed by the fluorescent resonance energy transfer (FRET) imaging that the trans-interaction of E-cadherin induced dynamic activation and inactivation of Rac, which led to dynamic formation and retraction of lamellipodia. Moreover, we found here that the nectins, which did not trans-interact with other nectins (non-trans-interacting nectins), inhibited the E-cadherin-induced activation of Rac and reduced the velocity of the formation of the E-cadherin-based cell-cell AJs. The inhibitory effect of non-trans-interacting nectins was suppressed by the activation of Cdc42 induced by the trans-interactions of nectins. These results indicate a novel role of nectins in regulation of the E-cadherin-induced activation of Rac and formation of cell-cell AJs.  相似文献   

16.
A fluorescence study of the calpactin I complex, a heterotetramer composed of two molecules of p36 and two molecules of p11, and its subunits, was performed to clarify their conformation. The analysis of the fluorescence characteristics of the single Trp of p36, in the absence of Ca(2+), shows that: (i) in the complex, Trp is buried within the protein matrix and subjected to static quenching from nearby groups; (ii) for p36 the results are similar, but Trp seems even more shielded than in the complex. Adding Ca(2+) to the calpactin I complex, or to p36, shifts the Trp emission maximum wavelengths, and increases the quantum yields which reflect a conformational change, burying the Trp in a more hydrophobic environment. In the presence and even in the absence of Ca(2+), the binding of phosphatidylserine liposomes induces a conformational change, detected by fluorescence measurements. The Ca(2+) dissociation constants, as determined by fluorescence titrations, are similar for the complex and p36 (KD approximately 0.5 x 10(-3) M). The affinity is enhanced a 1000-times in the presence of negatively charged phospholipids. In p11, both Try residues are located in a hydrophobic environment and the protein fluorescence does not change upon Ca(2+) addition.  相似文献   

17.
Fluorescence investigations of calmodulin hydrophobic sites   总被引:3,自引:0,他引:3  
Calmodulin activation of target enzymes depends on the interaction between calmodulin hydrophobic regions and some enzyme areas. The Ca2+ induced exposure of calmodulin hydrophobic sites was studied by means of 2-p-toluidinylnaphthalene-6-sulfonate, a fluorescent probe. Scatchard and Job plots showed that the calmodulin-Ca42+ complex bound two molecules of this hydrophobic probe, with KD congruent to 1.4 X 10(-4) M. These sites are not totally exposed until calmodulin has bound four Ca2+ per molecule, so the conformational change is not over before the four specific Ca2+ - binding sites are saturated with Ca2+.  相似文献   

18.
Using site-directed mutagenesis, we show in this paper that the adhesive interface detected in cadherin crystals is unlikely to mediate adhesive interaction between myc- and flag-tagged E-cadherin molecules in human A-431 cells. We also found that a critical residue within this interface, His(233), is part of the epitope for mAb SHE78-7. This epitope was accessible to the antibody in the adhesive E-cadherin dimers, which is consistent with uninvolvement of the site containing His(233) in cell-cell adhesion. However, both the adhesive dimerization and the integrity of the SHE78-7 epitope depended on the same intramolecular interaction between Trp(156) and its hydrophobic pocket. Our data suggest that this interaction may have an important regulatory function in controlling the surface topology of the NH(2)-terminal domain of E-cadherin.  相似文献   

19.
The effect of the plant alkaloid ryanodine on the skeletal muscle sarcoplasmic reticulum Ca2+ release channel was studied by determining the Ca2+ permeability of "heavy" vesicles passively loaded with 45Ca2+ in the presence or absence of ryanodine. Depending on the experimental conditions, ryanodine either stimulated or inhibited Ca2+ efflux. Vesicles were rendered permeable to 45Ca2+ at a ryanodine concentration of 0.01 microM when diluted into a medium containing the two Ca2+ release channel inhibitors Mg2+ and ruthenium red. At ryanodine concentrations greater than 10 microM, 45Ca2+ efflux was inhibited in channel-activating (5 microM Ca2+) or -inhibiting (10 mM Mg2+ plus 10 microM ruthenium red) media. An optimal stimulatory effect was observed when vesicles were incubated with ryanodine at 37 degrees C and in media that caused partial opening of the channel. Similar results to those described above were obtained using cardiac sarcoplasmic reticulum vesicles that were capable of rapid 45Ca2+ efflux. Use of the slowly permeating molecule L-[3H]glucose allowed measurement of channel-mediated efflux rates from vesicles in the presence and absence of ryanodine. At low activating concentrations, ryanodine did not appreciably change the regulation of L-glucose efflux rates by external Ca2+, Mg2+, and adenine nucleotide. These results suggested two possible modes of action of ryanodine: 1) a change in the gating mechanism of the channel which is not readily detected using the slowly permeating molecule L-glucose or 2) a change in channel structure which prevents its complete closing.  相似文献   

20.
At high concentrations of ATP, ATP hydrolysis and Ca2+ transport by the (Ca2+ + MG2+)-ATPase of intact sarcoplasmic reticulum vesicles exhibit a secondary activation that varies with the extent of back-inhibition by Ca2+ accumulated within the vesicles. When the internal ionized Ca2+ is clamped at low and intermediate levels by the use of Ca-precipitating anions, the apparent Km values for activation by ATP are lower than in fully back-inhibited vesicles (high internal Ca2+). In leaky vesicles unable to accumulate Ca2+, raising Ca2+ in the assay medium from 20-30 microM to 5 mM abolishes the activation of hydrolysis by high concentrations of ATP. The level of [32P]phosphoenzyme formed during ATP hydrolysis from [32P]phosphate added to the medium also varies with the extent of back-inhibition; it is highest when Ca2+ is raised to a level that saturates the internal, low-affinity Ca2+ binding sites. In intact vesicles, increasing the ATP concentration from 10 to 400 microM competitively inhibits the reaction of inorganic phosphate with the enzyme but does not change the rate of hydrolysis. In a previous report (De Meis, L., Gomez-Puyou, M.T. and Gomez-Puyou, A. (1988) Eur. J. Biochem. 171, 343-349), it has been shown that the hydrophobic molecules trifluoperazine and iron bathophenanthroline compete for the catalytic site of the Pi-reactive form of the enzyme. Here it is shown that inhibition of ATP hydrolysis by these compounds is reduced or abolished when Ca2+ binds to the low-affinity Ca2+ binding sites of the enzyme. Since inhibition by these agents is indifferent to activation of hydrolysis by high concentrations of ATP, it is suggested that the second Km for ATP and the inhibition by hydrophobic molecules involve two different Ca-free forms of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号