共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA damage induced by carcinogenic lead chromate particles in cultured mammalian cells. 总被引:8,自引:0,他引:8
Particulate lead chromate is a highly water-insoluble cytotoxic and carcinogenic agent, but its mechanism of action remains obscure. We investigated its effects on DNA damage in CHO cells after a 24-h exposure using alkaline or neutral filter elution and cytogenetic studies. Concentrations (0.08, 0.4 and 0.8 micrograms/cm2), which reduced the colony-forming efficiency of CHO cells to 94, 50 and 10%, respectively, produced dose-dependent DNA single-strand breaks and DNA-protein crosslinks, but no DNA double-strand breaks or DNA-DNA crosslinks were observed. The single-strand breaks were absent from cells given a 24-h recovery period after removal of the treatment medium, even though most of the particles remained adhered to cells and to the culture dish. In contrast, both the DNA-protein crosslinks and chromosomal aberrations persisted even after the 24-h recovery period. These results suggest that the mechanism of the particle-induced early DNA single-strand breaks may be different from DNA-protein crosslinks and the lesions leading to chromosomal aberrations, or alternatively, that the repair of single-strand breaks is more efficient than the repair of DNA-protein crosslinks in the unavoidable continuing presence of carcinogen. These results also suggest that the chromosome damage may be related to the persistent DNA-protein crosslinks, and further confirm the genotoxic activity of carcinogenic lead chromate particles. 相似文献
2.
Amador RR Longo JP Lacava ZG Dórea JG Almeida Santos Mde F 《Genetics and molecular biology》2012,35(1):153-158
Metformin (dimethyl-biguanide) is an insulin-sensitizing agent that lowers fasting plasma-insulin concentration, wherefore it's wide use for patients with a variety of insulin-resistant and prediabetic states, including impaired glucose tolerance. During pregnancy it is a further resource for reducing first-trimester pregnancy loss in women with the polycystic ovary syndrome. We tested metformin genotoxicity in cells of Chinese hamster ovary, CHO-K1 (chromosome aberrations; comet assays) and in mice (micronucleus assays). Concentrations of 114.4 μg/mL and 572 μg/mL were used in in vitro tests, and 95.4 mg/kg, 190.8 mg/kg and 333.9 mg/kg in assaying. Although the in vitro tests revealed no chromosome aberrations in metaphase cells, DNA damage was detected by comet assaying after 24 h of incubation at both concentrations. The frequency of DNA damage was higher at concentrations of 114.4 μg/mL. Furthermore, although mortality was not observed in in vitro tests, the highest dose of metformin suppressed bone marrow cells. However, no statistically significant differences were noted in micronuclei frequencies between treatments. In vitro results indicate that chronic metformin exposure may be potentially genotoxic. Thus, pregnant woman undergoing treatment with metformin should be properly evaluated beforehand, as regards vulnerability to DNA damage. 相似文献
3.
The mechanism of action of two tetrahydrobenzopsoralenquinones: 4-methyl-tetrahydrobenzopsoralenquinone (compound 3) and 4-hydroxymethyltetrahydrobenzopsoralenquinone (compound 4) was studied in mammalian cells. These agents differ structurally from earlier benzo and tetrahydrobenzopsoralen derivatives 4-hydroxymethylbenzopsoralen (compound 1) and 4-hydroxymethyltetrahydrobenzopsoralen (compound 2) by the replacement of the benzopyranone with a quinonepyranone. In this study, we evaluated the antiproliferative activity of such derivatives in normal human lymphocytes and CHO cells cultivated in vitro. Compound 4 showed a noticeable antiproliferative activity. Studying the induction of chromosomal aberrations and of SCEs, we demonstrated that compound 4 has a clastogenic effect on mammalian cells. By means of DNA filter elution and protein precipitation techniques we evaluated the DNA damage produced by the tested compounds. Some experiments performed in presence of a DNA synthesis inhibitor showed that ongoing DNA synthesis is involved in cell killing by derivative 4. All data obtained suggest that compound 4 can interfere with the activity of topoisomerase II. Catalytic studies carried out with purified topoisomerase II and bacteriophage DNA confirmed this hypothesis. 相似文献
4.
The kinetics of DNA damage by bleomycin (BLM) was assessed by measuring the amount of DNA breakage induced by BLM at different doses, treatment lengths, and treatment temperatures. DNA degradation was measured with the alkaline unwinding method. Comparison of the curves of DNA cleavage by BLM leads to the conclusion that low doses (1-5 micrograms/ml) and short treatments (5-15 min) produce marked damage in the DNA. High increases in BLM concentration produce relatively small increases in DNA damage above the levels obtained with low doses. Extension of treatment times does not increase the DNA degradation above the rate observed with 15-min treatments. The repair of DNA damage starts at about 15 min after the initiation of treatment. The mending of DNA breaks is very fast and extensive when BLM is no longer present. Repair not only implies the closing of DNA nicks, but very likely the degradation of the BLM molecules intercalated in the DNA interrupting the reactions responsible for the generation of free radicals. Persistence of BLM in the cell environment facilitates the replacement of degraded BLM molecules by new ones. This produces the persistent production of free radicals and the establishment of a balance between the processes of DNA damage and repair. 相似文献
5.
Chloroquine (ClQ) inhibited the repair of DNA damage produced in cultured rat liver cells by methyl methanesulfonate (MMS). MMS caused fragmentation of single-strand DNA in alkaline sucrose gradients. Repair of the damage was followed by observing the restoration of the normal sedimentation pattern at intervals after treatment. Repair was significant by 7 h and nearly complete at 24 h. Addition of ClQ during the repair peiod markedly reduced the rate of repair. Also, ClQ increased the lethality of MMS, which could be due to the inhibition of repair. ClQ was found to inhibit protein synthesis, but the effect on repair is probably not due entirely to this action since comparable inhibition of protein synthesis by cycloheximide produced a lesser degree of delay in repair. 相似文献
6.
W.E. Ross E.R. Block Rwei-Ying Chang 《Biochemical and biophysical research communications》1979,91(4):1302-1308
We have examined the possibility that paraquat (PQ) may exert its toxicity by inducing DNA damage. Mouse lymphoblasts in culture exhibited inhibition of colony forming ability and DNA single strand breaks following a 2 hour exposure to PQ. These phenomenon are dose dependent and increase when a rat liver S9 fraction is included in the incubation mixture. The presence of superoxide dismutase and catalase did not prevent the effects of PQ. Our data indicate that DNA should be considered as a possibile macromolecular target for the lethal effects of paraquat. 相似文献
7.
A multi-drug-resistant cell line selected in increasing concentrations of Adriamycin and designated LZ (J. A. Belli, Radiat. Res. 119, 88-100, 1989) is shown to exhibit a survival response characterized by radiation sensitivity and Adriamycin resistance. To determine if this response is due to alterations in either the initial levels of damage induced or the repair of DNA damage, LZ cells and the parental V79 cells were exposed to either radiation or Adriamycin and the damage and repair were measured with alkaline or nondenaturing filter elution. After exposure to radiation, induction and repair of both single-strand and double-strand breaks were equivalent. LZ cells exposed to 100 micrograms/ml Adriamycin for 1 h contained no measurable damage while the same treatment induced breaks and crosslinks in V79 cells. Pretreatment of LZ cells for 1 h with Adriamycin before irradiation did not alter either the initial levels of induced damage or the repair of strand breakage. These results suggest that (1) mechanisms other than differential induction and repair of strand breaks are responsible for the increased radiation sensitivity in LZ, and (2) the lack of Adriamycin-induced DNA damage in LZ is at least partially responsible for the increased cell survival after treatment. 相似文献
8.
Recombination of homologous DNA fragments transfected into mammalian cells occurs predominantly by terminal pairing. 总被引:14,自引:17,他引:14 下载免费PDF全文
The mechanism by which double-strand cleavages stimulate the joining of plasmid DNA fragments introduced into cultured mammalian cells was investigated by cotransfecting pairs of plasmids encoding deletion mutations in a dominant selectable gene into LMtk- cells. Plasmid recombination substrates were produced by creating deletions of different sizes within the neo coding region of the pSV2neo plasmid. Complementing pairs of deleted plasmid DNAs were linearized at specific unique sites before cotransfection into mouse LMtk- cells by the calcium phosphate precipitation method. Cleaving one donor plasmid produced a 4- to 10-fold stimulation in the production of colonies able to survive in medium containing G-418. The linearization of the second plasmid further increased the efficiency by another factor of 6 to 15 when the cut was made on the opposite side of the homology, approximately equidistant from the center of the overlap. Fifty-seven individual G-418-resistant colonies representing the products of individual crosses were isolated, and the genomic DNAs containing the presumably integrated, functional recombinant neo genes were analyzed on Southern blots. A band consistent with the exchange of markers flanking the neo gene was present in 90% of the DNAs examined. In only one case was the pattern indicative of either a double crossover or a gene conversion event. These results support the idea that homologous extrachromosomal DNA fragments are joined through annealing of overlapping single-stranded ends. This DNA-joining phenomenon may represent the activity of cellular DNA repair enzymes; its relationship to genetic recombination occurring at the chromosomal level remains to be determined. 相似文献
9.
10.
Kessel Maris Liu Su Xian Xu An Santella Regina Hei Tom K. 《Molecular and cellular biochemistry》2002,(1):301-308
Although arsenic is a well-established human carcinogen, the underlying carcinogenic mechanism(s) is not known. Using the human-hamster hybrid (AL) cell mutagenic assay that is sensitive in detecting mutagens that induce predominately multilocus deletions, we showed previously that arsenite is indeed a potent gene and chromosomal mutagen and that oxyradicals may be involved in the mutagenic process. In the present study, the effects of free radical scavenging enzymes on the cytotoxic and mutagenic potential of arsenic were examined using the AL cells. Concurrent treatment of cells with either superoxide dismutase or catalase reduced both the cytotoxicity and mutagenicity of arsenite by an average of 2–3 fold, respectively. Using immunoperoxidase staining with a monoclonal antibody specific for 8-hydroxy-2-deoxyguanosine (8-OHdG), we demonstrated that arsenic induced oxidative DNA damage in AL cells. This induction was significantly reduced in the presence of the antioxidant enzymes. Furthermore, reducing the intracellular levels of non-protein sulfhydryls (mainly glutathione) using buthionine S-R-Sulfoximine increased the total mutant yield by more than 3-fold as well as the proportion of mutants with multilocus deletions. Taken together, our data provide clear evidence that reactive oxygen species play an important causal role in the genotoxicity of arsenic in mammalian cells. 相似文献
11.
The DNA damage induced in a human breast cancer cell line treated with 1,5 (10)-estradiene-3,4,17-trione (3,4-estrone-o-quinone; 3,4-EQ) has been measured qualitatively and quantitatively. Single-strand (ss) but not double-strand (ds) DNA breaks were formed in MCF-7 cells treated with 3,4-EQ. The ss DNA breaks formed in MCF-7 cells were partially repaired after incubation of cells in 3,4-EQ-free media for 2 and 4 h (i.e. 33 and 23% repair, respectively, as compared to the ss DNA breaks in cells after a 1-h exposure to 3,4-EQ without a recovery period). The formation of interstrand DNA cross-links was demonstrated in MCF-7 cells exposed to the bifunctional alkylating agent, mitomycin C, but not in those exposed to 3,4-EQ. Protein-linked DNA breaks were detected in MCF-7 cells after exposure to camptothecin and etoposide but not 3,4-EQ, suggesting that the ss DNA breaks induced by 3,4-EQ are unlikely to be mediated via topoisomerases. The induction of ss DNA breaks was detected in the estrogen receptor-negative cell line, BT-20, after exposure to 3,4-EQ. Furthermore, excess estradiol in culture media did not prevent 3,4-EQ-induced ss DNA breaks, suggesting that the DNA damage was not mediated via the estrogen receptor. Evaluation of the newly synthesized quinone analogue, 5,6,7,8-tetrahydro-1-2-naphthoquinone, in the ss DNA breakage assay revealed that the A and B ring moiety of 3,4-EQ is sufficient to produce ss DNA breaks in MCF-7 cells. 相似文献
12.
Arsenic induces oxidative DNA damage in mammalian cells 总被引:3,自引:0,他引:3
Although arsenic is a well-established human carcinogen, the underlying carcinogenic mechanism(s) is not known. Using the human-hamster hybrid (A(L)) cell mutagenic assay that is sensitive in detecting mutagens that induce predominately multilocus deletions, we showed previously that arsenite is indeed a potent gene and chromosomal mutagen and that oxyradicals may be involved in the mutagenic process. In the present study, the effects of free radical scavenging enzymes on the cytotoxic and mutagenic potential of arsenic were examined using the AL cells. Concurrent treatment of cells with either superoxide dismutase or catalase reduced both the cytotoxicity and mutagenicity of arsenite by an average of 2-3 fold, respectively. Using immunoperoxidase staining with a monoclonal antibody specific for 8-hydroxy-2'-deoxyguanosine (8-OHdG), we demonstrated that arsenic induced oxidative DNA damage in A(L) cells. This induction was significantly reduced in the presence of the antioxidant enzymes. Furthermore, reducing the intracellular levels of non-protein sulfhydryls (mainly glutathione) using buthionine S-R-Sulfoximine increased the total mutant yield by more than 3-fold as well as the proportion of mutants with multilocus deletions. Taken together, our data provide clear evidence that reactive oxygen species play an important causal role in the genotoxicity of arsenic in mammalian cells. 相似文献
13.
DNA transfected into mammalian cells is subject to the high mutation frequency of approximately 1% per gene. We present data bearing on the derivation of the two main classes of mutations detected, base substitutions and deletions. The DNA sequence change is reported for nearly 100 independent base substitution mutations that occurred in shuttle vectors as a result of passage in simian cells. All of the mutations occur at G:C base pairs and involve either transition to A:T or transversion to T:A. To identify possible mutational intermediates, various topological forms of the vector DNA were introduced separately. Supercoiled and relaxed DNA are mutated at equal frequencies. However, linearized DNA leads to a greatly elevated frequency of deletions. Nicked and gapped templates stimulate both deletions and base substitutions. We discuss a model involving intracellular degradation of the transfected DNA which explains these observations. 相似文献
14.
15.
Mitochondrial DNA repair of oxidative damage in mammalian cells 总被引:9,自引:0,他引:9
Nuclear and mitochondrial DNA are constantly being exposed to damaging agents, from endogenous and exogenous sources. In particular, reactive oxygen species (ROS) are formed at high levels as by-products of the normal metabolism. Upon oxidative attack of DNA many DNA lesions are formed and oxidized bases are generated with high frequency. Mitochondrial DNA has been shown to accumulate high levels of 8-hydroxy-2'-deoxyguanosine, the product of hydroxylation of guanine at carbon 8, which is a mutagenic lesion. Most of these small base modifications are repaired by the base excision repair (BER) pathway. Despite the initial concept that mitochondria lack DNA repair, experimental evidences now show that mitochondria are very proficient in BER of oxidative DNA damage, and proteins necessary for this pathway have been isolated from mammalian mitochondria. Here, we examine the BER pathway with an emphasis on mtDNA repair. The molecular mechanisms involved in the formation and removal of oxidative damage from mitochondria are discussed. The pivotal role of the OGG1 glycosylase in removal of oxidized guanines from mtDNA will also be examined. Lastly, changes in mtDNA repair during the aging process and possible biological implications are discussed. 相似文献
16.
17.
Oxidative damage to DNA in mammalian chromatin. 总被引:18,自引:0,他引:18
M Dizdaroglu 《Mutation research》1992,275(3-6):331-342
Efforts have been made to characterize and measure DNA modifications produced in mammalian chromatin in vitro and in vivo by a variety of free radical-producing systems. Methodologies incorporating the technique of gas chromatography/mass spectrometry have been used for this purpose. A number of products from all four DNA bases and several DNA-protein cross-links in isolated chromatin have been identified and quantitated. Product formation has been shown to depend on the free radical-producing system and the presence or absence of oxygen. A similar pattern of DNA modifications has also been observed in chromatin of cultured mammalian cells treated with ionizing radiation or H2O2 and in chromatin of organs of animals treated with carcinogenic metal salts. 相似文献
18.
19.
R Meschini M T Quaranta M Fiore C Polcaro E Possagno F Palitti 《Mutation research》1988,204(4):645-648
The induction of sister-chromatid exchanges (SCE) and chromosomal aberrations (Ch.Ab.) by the herbicide maleic hydrazide (MH) has been investigated in Chinese hamster ovary (CHO) cells grown in vitro and in bone marrow cells of mice treated in vivo. MH induces SCE and Ch.Ab. in CHO cells without metabolic activation; however, no induction of SCE was found in the in vivo experiments. 相似文献
20.
Kurt W. Kohn 《BioEssays : news and reviews in molecular, cellular and developmental biology》1996,18(6):505-513
This personal account traces a series of studies that led from DNA physical chemistry to anticancer drug mechanisms. Chemical crosslinking as a basis for anticancer drug actions had been suspected since the time of the first clinical reports of the effectiveness of nitrogen mustard in 1946. After the elucidation of the DNA helix-coil transition, several nearly concurrent findings in the early 1960s established the paradigm of DNA interstrand crosslinking. The DNA filter elution phenomenon was discovered in the early 1970s, and lent itself to the development of practical assays for DNA crosslinks and other DNA lesions in mammalian cells. The assays allowed studies of the effects of DNA damaging agents at pharmacologically or toxicologically relevant doses, and have been widely applied in studies of mutagenic and chemotherapeutic agents. During the period 1979–1986, DNA filter elution studies led to the paradigm of DNA topoisomerases as targets of anticancer drug action, and this has become one of the most active areas of anticancer drug development. 相似文献