首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The eight positional isomers of methylated and benzoylated 1,5-anhydroribitol were generated simultaneously from 1,5-anhydroribitol by sequential partial methylation and benzoylation, and the four meso isomers and two enantiomeric pairs of isomers so-formed were isolated in chemically pure form by high-performance liquid chromatography. The corresponding acetates were obtained by debenzoylation of the pure isomers and acetylation. Reported herein are the 1H NMR spectra of the benzoates and the electron-ionization mass spectra of the acetates and the tri-O-methyl derivative. Also reported for the acetates and the tri-O-methyl derivative are their linear temperature-programmed gas-liquid chromatography retention indices on three different capillary columns.  相似文献   

2.
Described herein is the synthesis of the eight positional isomers of methylated and acetylated or benzoylated 1,5-anhydro-L-arabinitol. The compounds were generated simultaneously from 1,5-anhydro-L-arabinitol by sequential partial methylation and benzoylation and isolated in pure from by high-performance liquid chromatography. The desired acetates were obtained by debenzoylation and acetylation of the pure isomers. Reported herein are the 1H NMR spectra of the benzoates and the electron-ionization mass spectra of the acetates and the tri-O-methyl derivative. Also reported for the acetates and the tri-O-methyl derivative are their linear temperature-programmed gas-liquid chromatography retention indices on three different capillary columns.  相似文献   

3.
1. The structures of the alpha(2)- and alpha(3)-azopigments, prepared by diazotization of dog bile with ethyl anthranilate, were shown by mass spectrometry and g.l.c. to correspond to azobilirubin beta-d-xylopyranoside and azobilirubin beta-d-glucopyranoside respectively. 2. Both azopigments consist of a mixture of two methyl vinyl isomers having structures (IIIa) and (IIIb) for the alpha(2)-azopigment and structures (IVa) and (IVb) for the alpha(3)-azopigment. Separation of methyl vinyl isomers was obtained by t.l.c. or column chromatography performed on the acetylated azopigments. Hydrolysis of the less polar acetates derived from components (IIIa) and (IVa) gave rise to the azopigment (Ia), whereas hydrolysis of the more polar acetates derived from components (IIIb) and (IVb) gave rise to the azopigment acid (Ib). The positions of methyl and vinyl substituents in compounds (Ia) and (Ib) were assigned on the basis of their n.m.r. spectra. 3. Molecular ions in the mass spectra of the trimethylsilyl and acetyl derivatives of the azopigments indicated the presence of a pentose and a hexose conjugating sugar. 4. The ester functions linking the sugars to the propionic acid side chain of azobilirubin were demonstrated by ammonolysis and identification of the amide of azobilirubin as the aglycone derivative. 5. The sugar moieties were shown to occur as xylopyranose (alpha(2)) and glucopyranose (alpha(3)), bound at C-1, by application of a sequence of reactions performed on a micro-scale. The sugar hydroxyl groups were acetylated and the 1-acyl aglycone removed selectively by treatment with hydrogen bromide in acetic acid. Hydrolysis of the 1-bromo sugar acetates followed by acetylation afforded the alpha- and beta-xylopyranose tetra-acetates and alpha- and beta-glucopyranose penta-acetates, identified by a combination of g.l.c. and mass spectrometry. 6. The validity of this degradation scheme was confirmed (a) by g.l.c.-mass spectrometry identification of the alpha- and beta-1-propionyl derivatives of glucopyranose tetra-acetate, obtained from the alpha(3)-azopigment after final reaction with propionic anhydride; (b) by subjecting the acetates of alphabeta-glucopyranose, alphabeta-xylofuranose and alphabeta-glucofuranose to the same sequence of reactions.  相似文献   

4.
Syntheses of oligosaccharides expressed on cells are indispensable for the improvement of the functional analyses of the oligosaccharides and their applications. We are developing saccharide primers for synthesizing oligosaccharides using living cells. In this study, dodecyl 2-acetamido-2-deoxy-beta-D-glucopyranoside (GlcNAc-C12) and dodecyl beta-D-galactopyranosyl-(1-->4)-2-acetamido-2-deoxy-beta-D-glucopyranoside (LacNAc-C12) were examined for their abilities to prime the syntheses of neolacto-series oligosaccharides in HL60 cells. When GlcNAc-C12 was incubated with HL60 cells in serum-free medium for 2 days, 14 kinds of glycosylated products were collected from the culture medium. They were separated by high-performance liquid chromatography. The sequences of the products were determined to be neolacto-series oligosaccharides including Lewis(X), sialyl Lewis(X), polylactosamine, and sialylpolylactosamine by mass spectrometry. GlcNAc-C12 was also glycosylated by B16 cells and gave sialyllactosamine. Furthermore, LacNAc-C12 gave similar glycosylated products to GlcNAc-C12.  相似文献   

5.
Two key synthons for the title pentasaccharide derivative, methyl O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L-idopyranosyluronate)-(1----4)-6-O-acetyl- 2-azido - 3-O- benzyl-2-deoxy-beta-D-glucopyranoside and O-(methyl 2,3-di-O-benzyl-4-O- chloroacetyl-beta-D-glucopyranosyluronate)-(1----4)-3,6-di-O-acetyl-2-az ido-2- deoxy-alpha-D- glucopyranosyl bromide, were prepared from a common starting material, cellobiose. They were coupled to give a tetrasaccharide derivative that underwent O-dechloroacetylation to the corresponding glycosyl acceptor. Its condensation with the known 6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl bromide afforded a 77% yield of suitably protected pentasaccharide, methyl O-(6-O- acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)- O- (methyl 2,3- di-O-benzyl-beta-D-glucopyranosyluronate)-(1----4)-O-(3,6-di-O-acetyl-2- azido-2 - deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L- idopyranosyluronate)- (1----4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranoside. Sequential deprotection and sulfation gave the decasodium salt of methyl O-(2- deoxy-2-sulfamido-6-O-sulfo-alpha-D-glucopyranosyl)-(1----4)-O-(be ta-D- glucopyranosyl-uronic acid)-(1----4)-O-(2-deoxy-2-sulfamido-3,6-di-O-sulfo-alpha-D-gluco pyranosyl)- (1----4)-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-(1----4)-2-deoxy-2- sulfamido-6-O- sulfo-beta-D-glucopyranoside (3). In a similar way, the trisaccharide derivative, the hexasodium salt of methyl O-(2-deoxy-2-sulfamido-6-O-sulfo-alpha-D- glucopyranosyl)- (1----4)-O-(beta-D-glucopyranosyluronic acid)-(1----4)-2-deoxy-2-sulfamido-3,6- di-O- sulfo-alpha-D-glucopyranoside (4) was synthesized from methyl O-(6-O-acetyl-2- azido- 3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2,3-di-O- benzyl-beta- D-glucopyranosyluronate)-3,6-di-O-acetyl-2-azido-2-deoxy-alpha-D- glucopyranoside. The pentasaccharide 3 binds strongly to antithrombin III with an association constant almost equivalent to that of high-affinity heparin, but the trisaccharide 4 appears not to bind.  相似文献   

6.
Certain 4-(phenylamino)furo[2,3-b]quinoline and 2-(furan-2-yl)-4-(phenylamino)quinoline derivatives were synthesized and evaluated in vitro against the full panel of NCIs 60 cancer cell lines. The preliminary results indicated these tricyclic 4-(phenylamino)furo[2,3-b]quinolines were more cytotoxic than their corresponding 2-(furan-2-yl)-4-(phenylamino)quinoline isomers. For the 4-(phenylamino)furo[2,3-b]quinolines, compounds 2a and 3d are two of the most potent with a mean GI50 value of 0.025 microM in each case. Inactivity of 2b and 2c (positional isomers of 2a) indicated that both electronic environment, and the distance between intercalating pharmacophore and H-bond-donating MeO group are important. For the 2-(furan-2-yl)-4-(phenylamino)quinoline isomers, compound 12 (a mean GI50 of 4.36 microM), which bears a para-COMe substituent, is more active than its meta-substituted counterpart 13 (10.5 microM). However, the electron-donating MeO substituent is preferred at the meta-position, and the cytotoxicity for the meta-substituted derivatives decreased in the order: MeO derivative 14b (3.05 microM) > oxime 16 (6.85 microM) > ketone 13 (10.5 microM) > methyl oxime 18 (20.6 microM).  相似文献   

7.
E Mappus  C Y Cuilleron 《Steroids》1979,33(6):693-718
The 3-(O-carboxymethyl)oximino derivative of 17β-hydroxy-5α-androstan-3-one (5α-dihydrotestosterone) was prepared. Thin-layer chromatography of the corresponding methyl ester showed the presence of two syn (60%) and anti (40%) geometrical isomers of the oxime chain to the C-4 position, which were characterized by 13C nmr. The 3β-hemisuccinami-do-5α-androstan-17β-ol was obtained after selective saponification with potassium carbonate of the 17β-hemisuccinate group of the 3,17-dihemi-succinoylated derivative of the previously described 3β-amino-5α-androstan-17β-ol. This 3β-hemisuccinamide was purified as the corresponding methyl ester-17β-acetate and was regenerated after saponification. The 3,3'-ethylenedioxy-7-oxo-5α-androstan-17β-yl acetate was obtained in quantitative yield by catalytic hydrogenation over 10% palladium-oncharcoal of the Δ5-7-oxo precursor in a dioxane-ethanol mixture containing traces of pyridine. The exclusive 5α-configuration of this hydrogenated product was established from nmr data and was confirmed by the synthesis of methyl 3,3'-ethylenedioxy-7-oxo-5β-cholan-24-oate as 5β-H-reference compound. The preceding 5α-H-7-ketone was converted into the 7-(O-carboxymethyl)oximino derivative (syn isomer to the C-6 position, exclusively) which was esterified into the corresponding methyl ester. The selective hydrolysis of the 3-ethyleneketal group was achieved by a short treatment with a formic acid-ether 1:1 (v/v) mixture at 20°C. Saponification of the latter reaction product with ethanolic potassium hydroxide gave the 7-(O-carboxymethyl)oximino-17β-hydroxy-5α-androstan-3-one derivative, which was characterized as the corresponding methyl ester. The reduction of the oxime of the 5α-H-7-ketone with sodium in ethanol or with lithium-aluminium hydride gave respectively the 7β-amine or the 7α-amine as the major product. The 7β- and 7α-configurations were established from nmr spectra of the corresponding 7-acetamido derivatives. The 7β- and 7α-hemisuccinamido derivatives were prepared from the mixture of 7β- and 7α-amines, as described above for 3-derivatives and were isolated after thin-layer chromatography of the methyl esters, followed by saponification of the corresponding 17β-acetates.  相似文献   

8.
Acetylation of the 2,3-O-isopropylidene derivative (1) of D-glyceraldehyde with hot acetic anhydride in the presence of sodium acetate give a mixture of (Z)- and (E)-enol acetates (2 and 3), together with the acetylated racemic aldehydrol (4) of 1. Likewise, the acyclic aldehydo 2,3:4,5-diisopropylidene acetals of D- and L-arabinose, D-xylose, and D-ribose underwent conversion into enol acetates, with the (Z) isomers preponderating, and convertible photochemically into the corresponding (E) isomers. Under other conditions of acetylation, the aldehydo derivatives were converted into the corresponding aldehydrol diacetates.  相似文献   

9.
On treatment with methanol in the presence of Amberlite IR-120 (H+) resin, 2-acetamido-2-deoxy-d-galactose yielded a mixture of four isomers, the methyl 2-acetamido-2-deoxy-α- and -β-d-galactofuranosides and their corresponding pyranosides. The isomers were separated preparatively on Dowex-1 ion-exchange resin, and analytically by high-pressure liquid chromatography, and identified by their m.p. and specific rotation and by assays of periodate uptake and formaldehyde liberated.  相似文献   

10.
Autoxidation of methyl linolenate gives rise to isomeric mono-hydroperoxides by reaction with one mole of oxygen but further reaction with a second mole of oxygen readily occurs to produce an isomeric mixture of diperoxides. Autoxidation of individual pure methyl hydroperoxylinolenate isomers has been used as a method of obtaining less complex diperoxide mixtures which can be separated into their pure components by preparative high-pressure liquid chromatography (HPLC). The major diperoxide isomers arising from the autoxidation of pure 9R- and 13S- hydroperoxides of methyl linolenate have been isolated and characterised as isomeric epidioxyhydroperoxides of methyl linolenate. These same compounds have been identified as components of the more complex mixture of diperoxides produced during methyl linolenate autoxidation. The structures of the isolated diperoxides have been determined by physico-chemical methods and a mechanism for their formation is proposed.  相似文献   

11.
The neutral fraction of the essential oil from freshly plucked tea-leaves was submitted to gas chromatography and the eluted components condensed in the capillary traps. The components were identified by the retention times, the odor as well as by infrared spectra, elementary analyses and preparation of derivatives. Among fourty two components, three isomers of linalooloxide and cis-jasmone were newly identified and the presence of acetates of trans- and cis-3-hexen-l-ol was presumed.  相似文献   

12.
The 2-(4-methoxybenzyl)-1-cyclohexanols and 2-(4-methoxybenzyl)-1-cyclopentanols are the basic structure of a series of juvenile hormone analogs which act as insect growth regulators. Their enantioselective transesterification with the lipase B from Candida antarctica produced pure enantiomers of R-cyclohexyl and R-cyclopentyl acetates (i.e. eep > 99%). Differences observed in the resolution of the four racemic compounds are in accordance with model structure of secondary alcohols suitable for catalysis.  相似文献   

13.
Administration of (13)C labeled acetates ([1-(13)C], [2-(13)C] and [1,2-(13)C(2)] to Lasiodiplodia theobromae showed the tetraketide origins of both theobroxide, a potato-tuber inducing substance [1, (1S, 2R, 5S, 6R)-3-methyl-7-oxa-bicyclo[4.1.0]hept-3-en-2,5-diol]) and its carbonyldioxy derivative [2, (1S, 4R, 5S, 6R)-7,9-dioxa-3-methyl-8-oxobicyclo [4.3.0]-2-nonene-4,5-diol]. The incorporation of acetate-derived hydrogen into 1 and 2 was studied using [2-(2)H(3), 2-(13)C]acetate. Three and one deuterium atoms were incorporated at one methyl and epoxy carbons, respectively. The observed loss of deuterium atoms from the methyl group suggests a considerable amount of exchange from the methyl group of [2-(2)H(3), 2-(13)C]acetate during biosynthesis of 1 and 2. Incorporation of [1-(13)C]- and [1,2-(13)C(2)]acetates indicates the carbonyl carbon of the carbonyldioxy derivative is derived from the carboxy carbon of the precursor.  相似文献   

14.
The synthesis of 5-hydroxy-2-(beta-D-ribofuranosyl)pyran-4-one (9) is described. Treatment of pyranulose glycoside with bromine in carbon tetrachloride afforded brompyranulose glycoside in 90% yield. The reaction of (6S)- and (6R)-4-bromo-6-hydroxy-6-(2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl)-6H- pyran-3-one (2) in acidic media was examined with the following results: the reaction of 2 with trifluoroacetic acid (TFA) in dioxane afforded a mixture of 5-hydroxy-2-(2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl)pyran-4-one (3) and its furan derivative 5-hydroxy-2-{5-(benzoyloxy)methyl]furan-2-yl}pyran-4-one (4), but the use of hydrochloric acid formed the bromofurfural, 3-bromo-5-(2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl)-2-furancarboxyal dehyde only. Acetylation of a mixture (3 and 4) with acetic anhydride facilitated product separation to give the corresponding acetates 5-acetoxy-2-(2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl)pyran-4-one (5) and 5-acetoxy-2-{5-[(benzoyloxy)methyl]furan-2-yl}pyran-4-one (6). Treatment of 5 with hydrazine afforded 3-hydroxymethyl-6-(beta-D-ribofuranosyl)-1H-pyridazin-4-one in 43% yield. Debenzoylation of 5 with aq ammonia gave 9 in 50% yield.  相似文献   

15.
5(6)-Carboxyfluorescein is protected as the diacetate then reduced to 5(6)-(hydroxymethyl)fluorescein diacetate. The separated isomers are subjected to a Mitsunobu reaction with dibenzyl imidodicarbonate, yielding diprotected 5- and 6-(aminomethyl)fluorescein diacetate. Methanolysis of the acetates followed by deprotection with HBr/acetic acid gives 5- and 6-(aminomethyl)fluorescein hydrobromide.  相似文献   

16.
1-O-Acetyl-2,3-dideoxy-3-C-(hydroxymethyl)-4-thiofuranose derivative was synthesized from (S,S)-1,4-bis(benzyloxy)-2,3-epoxybutane derived from (+)-diethyl L-tartrate and the enantiomerically pure (E)-5-(2-bromovinyl)-1-[2',3'-dideoxy-3'-C-(hydroxymethyl)-beta-D-4'- thiopentofuranosyl]uracil 4 was obtained via coupling of silylated uracil followed by palladium-mediated coupling of methyl acrylate.  相似文献   

17.
The use of partially ethylated alditol acetates for the analysis by gas-liquid chromatography of the components of polysaccharides, and the glycosidic linkages of these components, is described. The derivatives are prepared by procedures analogous to those for the synthesis of partially methylated alditol acetates. Derivatization requires two successive ethylations and more-strenuous conditions of hydrolysis and reduction than for the methyl analogs. The partially ethylated alditol acetates are formed in nearly quantitative yield and give single, sharp peaks on gas chromatography. Retention-time data, relative to two internal standards, are given for 79 glycosidic linkage-isomers of mannose, galactose, glucose, arabinose, xylose, rhamnose, and fucose, on four g.l.c. columns. One of these columns is a newly developed, highly polar, capillary column. Direct comparisons of these retention times to retention times of partially methylated alditol acetates are made. The ethyl analogs are eluted sooner that the corresponding methyl derivatives, and the amount of this shift in elution time is dependent upon the number of alkyl groups in the derivative. This change in elution time allows separation of many polysaccharide components by g.l.c. that are not separable as their partially methylated alditol acetates. Others, separated as their O-methyl derivatives, are coeluted as their partially ethylated alditol acetates. The two derivatives thus provide excellent complementary procedures because of their differential chromatographic separation and because of the similarity of their preparation.  相似文献   

18.
D-Phenylpropionate (PP) derivatives of racemic hydroxy acid methyl esters and alkanols were prepared and the gas-liquid chromatographic separation of diastereoisomers was investigated using QF-1 as stationary phase. Good separations were obtained for the diasteroisomeric PP-derivatives of methyl 3-, 15-, 16-, and 17-hydroxyoctadecanoates. Less separation was observed for methyl 2- and 14-hydroxyoctadecanoates as PP-derivatives and there was no visible separation for PP-derivatives of 4-, 7-, or 13-hydroxyoctadecanoic acid methyl esters. The use of optically active 15-, 16- and 17-hydroxyoctadecanoic acids showed, that in these cases, the diastereoisomers containing L-hydroxy acids had shorter retention times than the ones containing D-hydroxy acids. On the other hand, the D-phenylpropionate derivative of methyl 3D-hydroxydecanoate had shorter retention time than the derivative of its L-enantiomer. PP-derivatives of 3-hexanol, 3-heptanol, 3-octanol, 2-octanol and 2-eicosanol could be resolved by gas-liquid chromatography.  相似文献   

19.
Derivatization of 4-hydroxyproline (Hyp) in collagen using trifluoroacetylation and methanol esterification produces two derivatives when analyzed by gas chromatography/mass spectrometry (GC/MS). The diacyl derivative N,O-bis(trifluoroacetyl)-4-hydroxy-L-proline methyl ester (N,O-TFA-Hyp) formed in this manner has a shorter retention time and different fragmentation pattern by GC/MS as compared to the slower eluting monoacetylated species N-trifluoroacetyl-4-hydroxy-L-proline methyl ester (N-TFA-Hyp). By selected ion monitoring of the appropriate ions of either N,O-TFA-Hyp (m/z 164, 278) or N-TFA-Hyp (m/z 164, 182) efficient quantitation of Hyp in collagen is possible within the broad range of 5-1000 ng with a lower limit of detection of 0.5 ng per injection. Measurement of 18O2 incorporation into collagen is possible by selected ion monitoring of the m/z 182 ion formed only from the monoacetylated derivative, N-TFA-Hyp, produced by methanol solvolysis of the N,O-TFA-Hyp derivative, as proposed herein.  相似文献   

20.
A mixture of two monoterpenes was obtained as the opisthonotal gland secretion from unidentified Histiogaster sp. A096 (Acari: Acaridae), and their structures were elucidated to be (4E)-dehydrocitrals [(2E,4E)- and (2Z,4E)-3,7-dimethyl-2,4,6-octatrienals] by GC/MS, GC/FT-IR, UV and 1H-NMR spectra. Both isomers of (4E)-dehydrocitral prepared by syntheses in 4 steps from 3-methyl-2-butenal with 34.2% yields (based on the ylide) were separated by column chromatography into the (2E,4E)- and (2Z,4E)-3,7-dimethyl-2,4,6-octatrienal. Mass spectra together with GC retention times of the purified natural (4E)-dehydrocitrals were identical with those of synthetic (2E,4E)-3,7-dimethyl-2,4,6-octatrienal and (2Z,4E)-3,7-dimethyl-2,4,6-octatrienal. The geometry at the 2-C position of both synthetic (4E)-dehydrocitrals was confirmed by NOESY analyses. This is the first identification of (4E)-dehydrocitrals from the animal kingdom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号