首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiaxial failure properties of trabecular bone are important for modeling of whole bone fracture and can provide insight into structure-function relationships. There is currently no consensus on the most appropriate form of multiaxial yield criterion for trabecular bone. Using experimentally validated, high-resolution, non-linear finite element models, biaxial plain strain boundary conditions were applied to seven bovine tibial specimens. The dependence of multiaxial yield properties on volume fraction was investigated to quantify the interspecimen heterogeneity in yield stresses and strains. Two specimens were further analyzed to determine the yield properties for a wide range of biaxial strain loading conditions. The locations and quantities of tissue level yielding were compared for on-axis, transverse, and biaxial apparent level yielding to elucidate the micromechanical failure mechanisms. As reported for uniaxial loading of trabecular bone, the yield strains in multiaxial loading did not depend on volume fraction, whereas the yield stresses did. Micromechanical analysis indicated that the failure mechanisms in the on-axis and transverse loading directions were mostly independent. Consistent with this, the biaxial yield properties were best described by independent curves for on-axis and transverse loading. These findings establish that the multiaxial failure of trabecular bone is predominantly governed by the strain along the loading direction, requiring separate analytical expressions for each orthotropic axis to capture the apparent level yield behavior.  相似文献   

2.
Dependence of yield strain of human trabecular bone on anatomic site   总被引:17,自引:0,他引:17  
Understanding the dependence of human trabecular bone strength behavior on anatomic site provides insight into structure-function relationships and is essential to the increased success of site-specific finite element models of whole bones. To investigate the hypothesis that the yield strains of human trabecular bone depend on anatomic site, the uniaxial tensile and compressive yield properties were compared for cylindrical specimens from the vertebra (n=61), proximal tibia (n=31), femoral greater trochanter (n=23), and femoral neck (n=27) taken from 61 donors (67+/-15years). Test protocols were used that minimized end artifacts and loaded specimens along the main trabecular orientation. Yield strains by site (mean+/-S.D.) ranged from 0.70+/-0.05% for the trochanter to 0.85+/-0.10% for the femoral neck in compression, from 0.61+/-0.05% for the trochanter to 0.70+/-0.05% for the vertebra in tension, and were always higher in compression than tension (p<0.001). The compressive yield strain was higher for the femoral neck than for all other sites (p<0.001), as was the tensile yield strain for the vertebra (p<0.007). Analysis of covariance, with apparent density as the covariate, indicated that inter-site differences existed in yield stress even after adjusting statistically for density (p<0.035). Coefficients of variation in yield strain within each site ranged from only 5-12%, consistent with the strong linear correlations (r(2)=0.94-0.98) found between yield stress and modulus. These results establish that the yield strains of human trabecular bone can differ across sites, but that yield strain may be considered uniform within a given site despite substantial variation in elastic modulus and yield stress.  相似文献   

3.
As a first step toward development of a multiaxial failure criterion for human trabecular bone, the Tsai-Wu quadratic failure criterion was modified as a function of apparent density and applied to bovine tibial trabecular bone. Previous data from uniaxial compressive, tensile, and torsion tests (n = 139 total) were combined with those from new triaxial tests (n = 17) to calibrate and then verify the criterion. Combinations of axial compression and radial pressure were used to produce the triaxial compressive stress states. All tests were performed with minimal end artifacts in the principal material coordinate system of the trabecular network. Results indicated that the stress interaction term F12 exhibited a strong nonlinear dependence on apparent density (r2 > 0.99), ranging from -0.126 MPa-2 at low densities (0.29 g/cm3) to 0.005 MPa-2 at high densities (0.63 g/cm3). After calibration and when used to predict behavior of new-specimens without any curve-fitting, the Tsai-Wu criterion had a mean (+/- SD) error of -32.6 +/- 10.6 percent. Except for the highest density triaxial specimens, most (15/17 specimens) failed at axial stresses close to their predicted uniaxial values, and some reinforcement for transverse loading was observed. We conclude that the Tsai-Wu quadratic criterion, as formulated here, is at best only a reasonable predictor of the multiaxial failure behavior of trabecular bone, and further work is required before it can be confidently applied to human bone.  相似文献   

4.
The ability to determine trabecular bone tissue elastic and failure properties has biological and clinical importance. To date, trabecular tissue yield strains remain unknown due to experimental difficulties, and elastic moduli studies have reported controversial results. We hypothesized that the elastic and tensile and compressive yield properties of trabecular tissue are similar to those of cortical tissue. Effective tissue modulus and yield strains were calibrated for cadaveric human femoral neck specimens taken from 11 donors, using a combination of apparent-level mechanical testing and specimen-specific, high-resolution, nonlinear finite element modeling. The trabecular tissue properties were then compared to measured elastic modulus and tensile yield strain of human femoral diaphyseal cortical bone specimens obtained from a similar cohort of 34 donors. Cortical tissue properties were obtained by statistically eliminating the effects of vascular porosity. Results indicated that mean elastic modulus was 10% lower (p<0.05) for the trabecular tissue (18.0+/-2.8 GPa) than for the cortical tissue (19.9+/-1.8 GPa), and the 0.2% offset tensile yield strain was 15% lower for the trabecular tissue (0.62+/-0.04% vs. 0.73+/-0.05%, p<0.001). The tensile-compressive yield strength asymmetry for the trabecular tissue, 0.62 on average, was similar to values reported in the literature for cortical bone. We conclude that while the elastic modulus and yield strains for trabecular tissue are just slightly lower than those of cortical tissue, because of the cumulative effect of these differences, tissue strength is about 25% greater for cortical bone.  相似文献   

5.
In the context of reconciling the mechanical properties of trabecular bone measured from in vitro mechanical testing with the true in situ behavior, recent attention has focused on the "side-artifact" which results from interruption of the trabecular network along the sides of machined specimens. The objective of this study was to compare the magnitude of the side-artifact error for measurements of elastic modulus vs. yield stress and to determine the dependence of these errors on anatomic site and trabecular micro-architecture. Using a series of parametric variations on micro-CT-based finite element models of trabecular bone from the human vertebral body (n=24) and femoral neck (n=10), side-artifact correction factors were quantified as the ratio of the side-artifact-free apparent mechanical property to the corresponding property measured in a typical experiment. The mean (+/-SD) correction factors for yield stress were 1.32+/-0.17 vs. 1.20+/-0.11 for the vertebral body and femoral neck (p<0.05), respectively, and the corresponding factors for modulus were 1.24+/-0.09 vs. 1.10+/-0.04 (p<0.0001). Correction factors were greater for yield stress than modulus (p<0.003), but no anatomic site effect was detected (p>0.29) after accounting for variations in bone volume fraction (BV/TV). Approximately 30-55% of the variation in the correction factors for modulus and yield stress could be accounted for by BV/TV or micro-architecture, representing an appreciable systematic component of the error. Although some scatter in the correction factor-BV/TV relationships may confound accurate correction of modulus and yield stress for individual specimens, side-artifact correction is nonetheless essential for obtaining accurate mean estimates of modulus and yield stress for a cohort of specimens. We conclude that appreciation and correction for the differential effects of the side-artifact in modulus vs. yield stress and their dependence on BV/TV may improve the interpretation of measured elastic and failure properties for trabecular bone.  相似文献   

6.
Understanding the off-axis behavior of trabecular yield strains may lend unique insight into the etiology of fractures since yield strains provide measures of failure independent of elastic behavior. We sought to address anisotropy of trabecular yield strains while accounting for variations in both density and anatomic site and to determine the mechanisms governing this behavior. Cylindrical specimens were cored from vertebral bodies (n=22, BV/TV=0.11±0.02) and femoral necks (n=28, BV/TV=0.22±0.06) with the principal trabecular orientation either aligned along the cylinder axis (on-axis, n=22) or at an oblique angle of 15° or 45° (off-axis, n=28). Each specimen was scanned with micro-CT, mechanically compressed to failure, and analysed with nonlinear micro-CT-based finite element analysis. Yield strains depended on anatomic site (p=0.03, ANOVA), and the effect of off-axis loading was different for the two sites (p=0.04)—yield strains increased for off-axis loading of the vertebral bone (p=0.04), but were isotropic for the femoral bone (p=0.66). With sites pooled together, yield strains were positively correlated with BV/TV for on-axis loading (R2=58%, p<0.0001), but no such correlation existed for off-axis loading (p=0.79). Analysis of the modulus-BV/TV and strength-BV/TV relationships indicated that, for the femoral bone, the reduction in strength associated with off-axis loading was greater than that for modulus, while the opposite trend occurred for the vertebral bone. The micro-FE analyses indicated that these trends were due to different failure mechanisms for the two types of bone and the different loading modes. Taken together, these results provide unique insight into the failure behavior of human trabecular bone and highlight the need for a multiaxial failure criterion that accounts for anatomic site and bone volume fraction.  相似文献   

7.
In a long-term effort to develop a complete multi-axial failure criterion for human trabecular bone, the overall goal of this study was to compare the ability of a simple cellular solid mechanistic criterion versus the Tsai-Wu, Principal Strain, and von Mises phenomenological criteria--all normalized to minimize effects of interspecimen heterogeneity of strength--to predict the on-axis axial-shear failure properties of bovine trabecular bone. The Cellular Solid criterion that was developed here assumed that vertical trabeculae failed due to a linear superposition of axial compression/tension and bending stresses, induced by the apparent level axial and shear loading, respectively. Twenty-seven bovine tibial trabecular bone specimens were destructively tested on-axis without end artifacts, loaded either in combined tension-torsion (n = 10), compression-torsion (n = 11), or uniaxially (n = 6). For compression-shear, the mean (+/- S.D.) percentage errors between measured values and criterion predictions were 7.7 +/- 12.6 percent, 19.7 +/- 23.2 percent, 22.8 +/- 18.9 percent, and 82.4 +/- 64.5 percent for the Cellular Solid, Tsai-Wu, Principal Strain, and von Mises criteria, respectively; corresponding mean errors for tension-shear were -5.2 +/- 11.8 percent, 14.3 +/- 12.5 percent, 6.9 +/- 7.6 percent, and 57.7 +/- 46.3 percent. Statistical analysis indicated that the Cellular Solid criterion was the best performer for compression-shear, and performed as well as the Principal Strain criterion for tension-shear. These data should substantially improve the ability to predict axial-shear failure of dense trabecular bone. More importantly, the results firmly establish the importance of cellular solid analysis for understanding and predicting the multiaxial failure behavior of trabecular bone.  相似文献   

8.
The ability to predict trabecular failure using microstructure-based computational models would greatly facilitate study of trabecular structure–function relations, multiaxial strength, and tissue remodeling. We hypothesized that high-resolution finite element models of trabecular bone that include cortical-like strength asymmetry at the tissue level, could predict apparent level failure of trabecular bone for multiple loading modes. A bilinear constitutive model with asymmetric tissue yield strains in tension and compression was applied to simulate failure in high-resolution finite element models of seven bovine tibial specimens. Tissue modulus was reduced by 95% when tissue principal strains exceeded the tissue yield strains. Linear models were first calibrated for effective tissue modulus against specimen-specific experimental measures of apparent modulus, producing effective tissue moduli of (mean±S.D.) 18.7±3.4 GPa. Next, a parameter study was performed on a single specimen to estimate the tissue level tensile and compressive yield strains. These values, 0.60% strain in tension and 1.01% strain in compression, were then used in non-linear analyses of all seven specimens to predict failure for apparent tensile, compressive, and shear loading. When compared to apparent yield properties previously measured for the same type of bone, the model predictions of both the stresses and strains at failure were not statistically different for any loading case (p>0.15). Use of symmetric tissue strengths could not match the experimental data. These findings establish that, once effective tissue modulus is calibrated and uniform but asymmetric tissue failure strains are used, the resulting models can capture the apparent strength behavior to an outstanding level of accuracy. As such, these computational models have reached a level of fidelity that qualifies them as surrogates for destructive mechanical testing of real specimens.  相似文献   

9.
Study of the behavior of trabecular bone at strains below 0.40 percent is of clinical and biomechanical importance. The goal of this work was to characterize, with respect to anatomic site, loading mode, and apparent density, the subtle concave downward stress-strain nonlinearity, that has been observed recently for trabecular bone at these strains. Using protocols designed to minimize end-artifacts, 155 cylindrical cores from human vertebrae, proximal tibiae, proximal femora, and bovine proximal tibiae were mechanically tested to yield at 0.50 percent strain per second in tension or compression. The nonlinearity was quantified by the reduction in tangent modulus at 0.20 percent and 0.40 percent strain as compared to the initial modulus. For the pooled data, the mean +/- SD percentage reduction in tangent modulus at 0.20 percent strain was 9.07+/- 3.24 percent in compression and 13.8 +/- 4.79 percent in tension. At 0.40 percent strain, these values were 23.5 +/- 5.71 and 35.7+/- 7.10 percent, respectively. The magnitude of the nonlineari't depended on both anatomic site (p < 0.001) and loading mode (p < 0.001), and in tension was positively correlated with density. Calculated values of elastic modulus and yield properties depended on the strain range chosen to define modulus via a linear curve fit (p < 0.005). Mean percent differences in 0.20 percent offset yield strains were as large as 10.65 percent for some human sites. These results establish that trabecular bone exhibits nonlinearity at low strains, and that this behavior can confound intersite comparisons of mechanical properties. A nonlinear characterization of the small strain behavior of trabecular bone was introduced to characterize the initial stress-strain behavior more thoroughly.  相似文献   

10.
Variations in yield strains for trabecular bone within a specific anatomic site are only a small fraction of the substantial variations that exist for elastic modulus and strength, and yet the source of this uniformity is not known. Our goal was to investigate the underlying mechanisms by using high-resolution, materially nonlinear finite element models of 12 human femoral neck trabecular bone specimens. The finite element models, used to obtain apparent yield strains in both tension and compression, assumed that the tissue-level yield strains were the same across all specimens. Comparison of the model predictions with the experimental data therefore enabled us to isolate the combined roles of volume fraction and architecture from the role of tissue material properties. Results indicated that, for both tensile and compressive loading, natural variations in volume fraction and architecture produced a negligible coefficient of variation (less than 3%) in apparent yield strains. Analysis of tissue-level strains showed that while bending of individual trabeculae played only a minor role in the apparent elastic behavior, the combined effects of this bending and tissue-level strength asymmetry produced apparent-level failure strains in compression that were 14% lower than those at the tissue level. By contrast, tissue and apparent-level yield strains were equivalent for tensile loading. We conclude that the uniformity of apparent yield strains is primarily the result of the highly oriented architecture that minimizes bending. Most of the variation that does occur is the result of the non-uniformity of the tissue-level yield strains.  相似文献   

11.
Within the context of improving knowledge of the structure-function relations for trabecular bone for cyclic loading, we hypothesized that the S-N curve for cyclic compressive loading of trabecular bone, after accounting for differences in monotonic strength behavior, does not depend on either site or species. Thirty-five cores of fresh-frozen elderly human vertebral trabecular bone, harvested from nine donors (mean+/-S.D., age=74+/-17 years), were biomechanically tested in compression at sigma/E(0) values (ratio of applied stress to pre-fatigue elastic modulus) ranging from 0.0026 to 0.0070, and compared against literature data (J. Biomech. Eng. 120 (1998) 647-654) for young bovine tibial trabecular bone (n=37). As reported for the bovine bone, the number of cycles to failure for the human vertebral bone was related to sigma/E(0) by a power-law relation (r(2)=0.54, n=35). Quantitative comparison of these data against those reported for the bovine bone supported our hypothesis. Namely, when the differences in mean monotonic yield strain between the two types of bone were accounted for, a single S-N curve worked well for the pooled data (r(2)=0.75, n=72). Since elderly human vertebral and young bovine tibial trabecular bone represent two very different types of trabecular bone in terms of volume fraction and architecture, these findings suggest that the dominant failure mechanisms in trabecular bone for cyclic loading occur at the ultrastructural level.  相似文献   

12.
Multiaxial strength characteristics of trabecular bone   总被引:4,自引:1,他引:3  
Bovine trabecular bone specimens were tested in multiaxial stress, including pure shear, in a special test device. Shear strength was proportional to apparent density to the exponent 1.65, in approximate agreement with theoretical and experimental studies on the shear strengths of porous foams. The mean shear strength was 6.60 +/- 1.66 MPa, after normalizing for apparent density. This compares well with normalized shear strengths from Saha and Gorman's (1981) study on human femora. A scanning electron microscope study indicated random trabecular architecture and a complex fracture mechanism at the level of the individual trabecular struts. Hoffmann's (1967) 3-D isotropic failure criterion was applied to the multiaxial test data, along with data from uniaxial compression tests, indicating a compressive strength approximately three times the tensile strength.  相似文献   

13.
Damage in trabecular bone at small strains   总被引:5,自引:0,他引:5  
Evidence that damage decreases bone quality, increases fracture susceptibility, and serves as a remodeling stimulus motivates further study of what loading magnitudes induce damage in trabecular bone. In particular, whether damage occurs at the smaller strains characteristic of habitual, as opposed to traumatic, loading is not known. The overall goal of this study was to characterize damage accumulation in trabecular bone at small strains (0.20 - 0.45% strain). A continuum damage mechanics approach was taken whereby damage was quantified by changes in modulus and residual strain. Human vertebral specimens (n = 7) were tested in compression using a multi-cycle load - unload protocol in which the maximum applied strain for each cycle, epsilonmax, was increased incrementally from epsilonmax = 0.20% on the first loading cycle to epsilonmax = 0.45% on the last cycle. Modulus and residual strain were measured for each cycle. Both changes in modulus and residual strains commenced at small strains, beginning as early as 0.24 and 0.20% strain, respectively. Strong correlations between changes in modulus and residual strains were observed (r = 0.51 - 0.98). Fully nonlinear, high-resolution finite element analyses indicated that even at small apparent strains, tissue-level strains were sufficiently high to cause local yielding. These results demonstrate that damage in trabecular bone occurs at apparent strains less than half the apparent compressive yield strain reported previously for human vertebral trabecular bone. Further, these findings imply that, as a consequence of the highly porous trabecular structure, tissue yielding can initiate at very low apparent strains and that this local failure has detectable and negative consequences on the apparent mechanical properties of trabecular bone.  相似文献   

14.
The mechanical characteristics of cancellous bone at the upper femoral region   总被引:10,自引:0,他引:10  
Mechanical behaviour of trabecular bone at the upper femoral region of human bones has been studied by compression tests on trabecular bone specimens removed from normal femora obtained at autopsy. Compression tests were performed along three different axes of loading on wet specimens and high loading rates. Femoral head specimens proved to be the strongest for any axis of loading.

Large variation in compressive strength and modulus of elasticity is seen within and between femoral bone samples. Anisotropy and differences in anisotropy for the different regions have been observed. A significant correlation between mechanical properties (σ max − E) and bone mineral content of the specimen was found.

Tests on whole bone structures demonstrate that removal of the central part of the trabecular bone at the proximal femur reduces the strength for impact loading considerably (± 50%).  相似文献   


15.
Anisotropic yield behavior of bone under combined axial force and torque   总被引:3,自引:1,他引:2  
In this study the yield behavior of cortical bone was determined under combined loading conditions involving tension, compression and torsion. The axis of each test sample coincided with the long bone axis. To minimize viscoelastic behavior, tests were conducted using an effective strain rate in the range of 0.01-0.06 s-1. Experimental yield loci for bovine and human cortical bone were determined using a strain offset technique to determine the 'common yield point' for combined loading. Several failure criteria which have been used for composite materials were examined for applicability to the experimental results. Data were obtained for bovine and human tibial and femoral bone. The Tsai-Wu criterion was in best agreement to the test data, although Hill's criterion could describe the individual compression-torsion or tension-torsion regimes with good accuracy.  相似文献   

16.
Elastic moduli, yield stress and ultimate compressive stress were determined for cancellous bone from the femoral head and neck regions of the canine femur. Unconfined compression tests were performed on 5 mm cubic samples which were cut from two femurs. Elastic moduli were measured in three orthogonal directions, and the yield stress and ultimate stress were measured along the proximal-distal axis. The results from this investigation support previous assumptions that the mechanical behavior of canine cancellous bone is qualitatively similar to human cancellous bone. The canine cancellous bone was observed to be anisotropic in elastic modulus. For two thirds of the cubic specimens tested, the elastic modulus was largest in the load-bearing, proximal-distal direction. A linear relationship between yield stress and elastic modulus was observed for canine bone, as is typical of human bone. A similar linear relationship between ultimate stress and elastic modulus was observed. Thus, for canine bone as well as for human bone, failure appears to be governed by a strain level which is position independent. The yield strain of 0.0259 and ultimate strain of 0.0288 for canine bone were both less than the yield strain of 0.0395 reported for human bone.  相似文献   

17.
Ontogenetic changes in the human femur associated with the acquisition of bipedal locomotion, especially the development of the bicondylar angle, have been well documented. The purpose of this study is to quantify changes in the three-dimensional structure of trabecular bone in the human proximal femur in relation to changing functional and external loading patterns with age. High-resolution X-ray computed tomography scan data were collected for 15 juvenile femoral specimens ranging in age from prenatal to approximately nine years of age. Serial slices were collected for the entire proximal femur of each individual with voxel resolutions ranging from 0.017 to 0.046 mm depending on the size of the specimen. Spherical volumes of interest were defined within the proximal femur, and the bone volume fraction, trabecular thickness, trabecular number, and fabric anisotropy were calculated in three dimensions. Bone volume fraction, trabecular number, and degree of anisotropy decrease between the age of 6 months and 12 months, with the lowest values for these parameters occurring in individuals near 12 months of age. By age 2-3 years, the bone volume, thickness, and degree of anisotropy increase slightly, and regions in the femoral neck become more anisotropic corresponding to the thickening of the inferior cortical bone of the neck. These results suggest that trabecular structure in the proximal femur reflects the shift in external loading patterns associated with the initiation of unassisted walking in infants.  相似文献   

18.
The balance between local remodeling and accumulation of trabecular bone microdamage is believed to play an important role in the maintenance of skeletal integrity. However, the local mechanical parameters associated with microdamage initiation are not well understood. Using histological damage labeling, micro-CT imaging, and image-based finite element analysis, regions of trabecular bone microdamage were detected and registered to estimated microstructural von Mises effective stresses and strains, maximum principal stresses and strains, and strain energy density (SED). Bovine tibial trabecular bone cores underwent a stepwise uniaxial compression routine in which specimens were micro-CT imaged following each compression step. The results indicate that the mode of trabecular failure observed by micro-CT imaging agreed well with the polarity and distribution of stresses within an individual trabecula. Analysis of on-axis subsections within specimens provided significant positive relationships between microdamage and each estimated tissue stress, strain and SED parameter. In a more localized analysis, individual microdamaged and undamaged trabeculae were extracted from specimens loaded within the elastic region and to the apparent yield point. As expected, damaged trabeculae in both groups possessed significantly higher local stresses and strains than undamaged trabeculae. The results also indicated that microdamage initiation occurred prior to apparent yield at local principal stresses in the range of 88-121 MPa for compression and 35-43 MPa for tension and local principal strains of 0.46-0.63% in compression and 0.18-0.24% in tension. These data provide an important step towards understanding factors contributing to microdamage initiation and establishing local failure criteria for normal and diseased trabecular bone.  相似文献   

19.
20.
Trabecular plates play an important role in determining elastic moduli of trabecular bone. However, the relative contribution of trabecular plates and rods to strength behavior is still not clear. In this study, individual trabeculae segmentation (ITS) and nonlinear finite element (FE) analyses were used to evaluate the roles of trabecular types and orientations in the failure initiation and progression in human vertebral trabecular bone. Fifteen human vertebral trabecular bone samples were imaged using micro computed tomography (μCT), and segmented using ITS into individual plates and rods by orientation (longitudinal, oblique, and transverse). Nonlinear FE analysis was conducted to perform a compression simulation for each sample up to 1% apparent strain. The apparent and relative trabecular number and tissue fraction of failed trabecular plates and rods were recorded during loading and data were stratified by trabecular orientation. More trabecular rods (both in number and tissue fraction) failed at the initiation of compression (0.1–0.2% apparent strain) while more plates failed around the apparent yield point (>0.7% apparent strain). A significant correlation between plate bone volume fraction (pBV/TV) and apparent yield strength was found (r2=0.85). From 0.3% to 1% apparent strain, significantly more longitudinal trabecular plate and transverse rod failed than other types of trabeculae. While failure initiates at rods and rods fail disproportionally to their number, plates contribute significantly to the apparent yield strength because of their larger number and tissue volume. The relative failed number and tissue fraction at apparent yield point indicate homogeneous local failure in plates and rods of different orientations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号