首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress and inflammation are implicated in the pathogenesis of many age-related diseases. We have demonstrated previously that oxidative inactivation of the proteasome is a molecular link between oxidative stress and overexpression of interleukin (IL)-8. Here, we elucidated a novel signaling cascade that leads to up-regulation of IL-8 in response to proteasome inactivation. The sequence of events in this cascade includes proteasome inactivation, activation of mitogen-activated protein kinase kinase (MKK)3/MKK6, activation of p38 mitogen-activated protein kinase (MAPK), epidermal growth factor receptor phosphorylation, phosphatidylinositol 3-kinase (PI3K) activation and increased IL-8 expression. Blocking any of these signaling pathways abolished the up-regulation of IL-8 induced by proteasome inhibition. Although Akt is also activated in response to proteasome inactivation, we found that the PI3K-dependent up-regulation of IL-8 is independent of 3-phosphoinositide-dependent protein kinase (PDK)1 and Akt. Inhibition of PDK1 and Akt with chemical inhibitors or expression of constitutive active Akt had little effects on IL-8 expression in response to proteasome inactivation. In contrast, inhibition of interleukin 2-inducible T cell kinase, a kinase downstream of PI3K, significantly reduced the expression and secretion of IL-8 in response to proteasome inactivation. Together, these data elucidate a novel signaling network that leads to increased IL-8 production in response to proteasome inactivation.  相似文献   

2.
3.
Regulation of cytokine and chemokine expression in microglia may have implications for CNS inflammatory disorders. In this study we examined the role of the cyclopentenone PG 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) in microglial inflammatory activation in primary cultures of human fetal microglia. 15d-PGJ(2) potently inhibited the expression of microglial cytokines (IL-1, TNF-alpha, and IL-6). We found that 15d-PGJ(2) had differential effects on the expression of two alpha-chemokines; whereas the Glu-Lys-Arg (ELR)(-) chemokine IFN-inducible protein-10/CXCL10 was inhibited, the ELR(+) chemokine IL-8/CXCL8 was not inhibited. These findings were shown in primary human microglia and the human monocytic cells line THP-1 cells, using diverse cell stimuli such as bacterial endotoxin, proinflammatory cytokines (IL-1 and TNF-alpha), IFN-beta, and HIV-1. Furthermore, IL-8/CXCL8 expression was induced by 15d-PGJ(2) alone or in combination with TNF-alpha or HIV-1. Combined results from EMSA, Western blot analysis, and immunocytochemistry showed that 15d-PGJ(2) inhibited NF-kappaB, Stat1, and p38 MAPK activation in microglia. Adenoviral transduction of super-repressor IkappaBalpha, dominant negative MKK6, and dominant negative Ras demonstrated that NF-kappaB and p38 MAPK were involved in LPS-induced IFN-inducible protein 10/CXCL10 production. Interestingly, although LPS-induced IL-8/CXCL8 was dependent on NF-kappaB, the baseline or 15d-PGJ(2)-mediated IL-8/CXCL8 production was NF-kappaB independent. Our results demonstrate that 15d-PGJ(2) has opposing effects on the expression of two alpha-chemokines. These data may have implications for CNS inflammatory diseases.  相似文献   

4.
CCK-8对内毒素休克大鼠肺脏细胞因子的抑制效应   总被引:8,自引:1,他引:7  
Meng AH  Ling YL  Zhao XY  Zhang JL  Wang QH 《生理学报》2002,54(2):99-102
观察八肽胆囊收缩素(cholecystokinin-octapeptide,CCK-8)改善脂多糖(lipopolysaccharide,LPS)引起的大鼠内毒素性休克(endotoxic shock,ES)过程中血清及肺脏细胞因子的变化,探讨p38比裂素活化蛋白激酶(p38 mito-gen-activated protein kinase,p38 MAPK)的信号转导作用。用生理多道记录仪观察尾静脉注入LPS(p38 mito-gen-activated protein kinase,p38 MAPK)的信号转导作用。用生理多道记录仪观察尾静脉注入 LPS(8mg/kg i.v.)复制的SD大鼠ES模型、LPS注入前10min尾静脉注入CCK-8(40ug/kg i.v.)、单独注入CCK-8(40Uug/kg i.v.)或生理盐水(对照)的四组大鼠平均动脉血压(MAP)的改变,应用ELISA试剂盒检测血清和肺脏中炎性细胞因子(TNF-a、IL-1β和IL-6)的变化。用Western blot检测肺脏p38 MAPK的表达。结果显示:CCK-8可改善LPS引起的大鼠MAP的下降。与对照组相比,LPS可显著增加血清和肺脏TNF-a、IL-1β和IL-6含量;CCK-8可显著抑制LPS诱导的血清和肺脏TNF-a、IL-1β和IL-6的增加。CCK-8可增加ES大鼠肺脏磷酸化p38 MAPK的表达。结果提示CCK-8可改善ES大鼠MAP的降低,并对肺脏促炎性细胞因子过量产生有抑制作用,p38MAPK可能参与了其信号转导机制。  相似文献   

5.
6.
7.
8.
9.
10.
11.
Obesity has been implicated in several diseases, including cancer; however, the relationship of obesity and susceptibility to ultraviolet (UV) radiation-caused skin diseases has not been investigated. As UV-induced oxidative stress has been implicated in several skin diseases, we assessed the role of obesity on UVB-induced oxidative stress in genetically obese Lep(ob)/Lep(ob) (leptin-deficient) mice. Here, we report that chronic exposure to UVB (120 mJ/cm(2)) resulted in greater oxidative stress in the skin of obese mice in terms of higher levels of H(2)O(2) and NO production, photo-oxidative damage of lipids and proteins, and greater depletion of antioxidant defense enzymes, like glutathione, glutathione peroxidase, and catalase. As UV-induced oxidative stress mediates activation of MAPK and NF-kappaB signaling pathways, we determined the effects of UVB on these pathways in obese mice. Exposure of obese mice to UVB resulted in phosphorylation of ERK1/2, JNK, and p38 proteins of the MAPK family. Compared to wild-type mice, the obese mice exhibited higher levels of phosphorylation of these proteins, greater activation of NF-kappaB/p65, and higher levels of circulating proinflammatory cytokines, including TNF-alpha, IL-1beta and IL-6, on UVB irradiation. Taking these results together, our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced oxidative stress and therefore may be a risk factor for skin diseases associated with UVB-induced oxidative stress.  相似文献   

12.
13.
Exposure of macrophages to bacterial lipopolysaccharide (LPS) induces release of proinflammatory cytokines that play crucial roles in chronic inflammation. Glucosamine has reported to possess anti-inflammatory properties and currently is the oral supplement of choice for the management of inflammation related complications including osteoarthritis. In this study, quaternized amino glucosamine (QAGlc), a newly synthesized cationic glucosamine (Glc) derivative was found to inhibit LPS-stimulated production of IL-1beta, IL-6, TNF-alpha, and PGE(2) in RAW264.7, mouse macrophages more potently than its starting material Glc. Since production of cytokines is regulated mainly via activation of NF-kappaB and regulation of mitogen-activated protein kinases (MAPKs), we examined if QAGlc could be responsible for the suppression of NF-kappaB pathway and MAPKs. We used reporter gene assay and Western blotting to examine the effects of QAGlc on activation and translocation of NF-kappaB. Further, QAGlc-mediated inhibition of NF-kappaB was accompanied with a suppression of its translocation. Apparently, QAGlc was shown to attenuate LPS-induced activation of p38 MAPK and JNK in RAW264.7 cells suggesting that inhibition of MAPK-mediated LPS signaling also contribute to suppression of cytokine production following stimulation of macrophages with LPS.  相似文献   

14.
IL-6, a proinflammatory cytokine, has been implicated in the development of vascular diseases. We previously demonstrated that mechanical stress can initiate signaling pathways leading to smooth muscle cell (SMC) proliferation and apoptosis, but little is known concerning cyclic stress-induced inflammatory response. To explore the role of stretch in the upregulation of cytokine expression in SMCs we performed RNase protection assay for a panel of cytokines and found that mechanical stress resulted in a time-dependent induction of IL-6 mRNA but not other cytokines, e.g., IL-1alpha, IL-1beta, IL-6, IL-10, IL-12p35, IL-12p40, IL-18, IFN-gamma, and macrophage migration inhibitory factor (MIF). This induction also correlated with elevated IL-6 protein levels in the supernatant. Pretreatment of the cells with NF-kappaB inhibitors inhibited NF-kappaB activity and resulted in marked inhibition (50%) of IL-6 protein. Moreover, SMC lines stably expressing dominant-negative Ras (RasN17) or Rac (RacN17) exhibited a remarkable decrease in p38 MAPK activity and IL-6 mRNA induction by mechanical stress. Furthermore, a significant inhibition of 30 and 40% in IL-6 protein was observed in SMCs pretreated with inhibitors of p38 MAPK and ERK1/2, respectively, but not JNK. Interestingly, SMCs isolated from PKC-delta-deficient mice exhibited higher levels of IL-6 compared with wild-type cells. Finally, high levels of IL-6 expression were observed in atherosclerotic lesions of vein bypass grafts, which are related to altered biomechanical stress. Our findings demonstrate that biomechanical stress-induced IL-6 expression occurs via a mechanism that involves Ras/Rac/p38 MAPK/NF-kappaB/NF-IL6 signaling pathways, which is downregulated by PKC-delta, and suggest that modulation of this event contributes to the pathogenesis of atherosclerosis.  相似文献   

15.
16.
Down-regulation of overabundant interleukin (IL)-8 present in cystic fibrosis (CF) airways could ease excessive neutrophil burden and its deleterious consequences for the lung. IL-8 production in airway epithelial cells, stimulated with e.g. inflammatory cytokines IL-1β and tumor necrosis factor (TNF)-α, is regulated by several signaling pathways including nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK). We previously demonstrated that the anti-inflammatory drugs dexamethasone and ibuprofen suppress NF-κB; however, only dexamethasone down-regulates cytokine-induced IL-8, highlighting the importance of non-NF-κB mechanisms. Here, we tested the hypothesis that down-regulation of cytokine-induced IL-8 requires modulation of the MAPK phosphatase (MKP)-1/p38 MAPK/mRNA stability pathway. The effects of dexamethasone (5 nm) and ibuprofen (480 μm) on this pathway and IL-8 were studied in CF (CFTE29o-, CFBE41o-) and non-CF (1HAEo-) airway epithelial cells. We observed that dexamethasone, but not ibuprofen, destabilizes IL-8 mRNA and up-regulates MKP-1 mRNA. Further, siRNA silencing of MKP-1, via p38 MAPK, leads to IL-8 overproduction and diminishes the anti-IL-8 potential of dexamethasone. However, MKP-1 overexpression does not significantly alter IL-8 production. By contrast, direct inhibition of p38 MAPK (inhibitor SB203580) efficiently suppresses IL-8 with potency comparable with dexamethasone. Similar to dexamethasone, SB203580 decreases IL-8 mRNA stability. Dexamethasone does not affect p38 MAPK activation, which excludes its effects upstream of p38 MAPK. In conclusion, normal levels of MKP-1 are necessary for a full anti-IL-8 potential of pharmacological agents; however, efficient pharmacological down-regulation of cytokine-induced IL-8 also requires direct effects on p38 MAPK and mRNA stability independently of MKP-1.  相似文献   

17.
Intestinal mucosal cells and invading leukocytes produce inappropriate levels of cytokines and chemokines in human colitis. However, smooth muscle cells of the airway and vasculature also synthesize cytokines and chemokines. To determine whether human colonic myocytes can synthesize proinflammatory mediators, strips of circular smooth muscle and smooth muscle cells were isolated from human colon. Myocytes and muscle strips were stimulated with 10 ng/ml of IL-1beta, TNF-alpha, and IFN-gamma, respectively. Expression of mRNA for IL-1beta, IL-6, IL-8, and cyclooxygenase-2 (COX-2) was induced within 2 h and continued to increase for 8-12 h. Regulated on activation, normal T cell-expressed and -secreted (RANTES) mRNA expression was slower, appearing at 8 h and increasing linearly through 20 h. Expression of all five mRNAs was inhibited by 0.1 microM MG-132, a proteosome inhibitor that blocks NF-kappaB activation. Expression of IL-1beta, IL-6, IL-8, and COX-2 mRNA was reduced by 30 microM PP1, an Src family tyrosine kinase inhibitor, and by 25 microM SB-203580, a p38 MAPK inhibitor. MAPK/extracellular regulated kinase-1 inhibitor PD-98059 (25 microM) was much less effective. In conclusion, human colonic smooth muscle cells can synthesize and secrete interleukins (IL-1beta and IL-6) and chemokines (IL-8 and RANTES) and upregulate expression of COX-2. Regulation of cytokine, chemokine, and COX-2 mRNA depends on multiple signaling pathways, including Src-family kinases, extracellular regulated kinase, p38 MAPKs, and NF-kappaB. SB-203580 was a consistent, efficacious inhibitor of inflammatory gene expression, suggesting an important role of p38 MAPK in synthetic functions of human colonic smooth muscle.  相似文献   

18.
19.
The initial step in an immune response toward a viral infection is the induction of inflammatory cytokines. This innate immune response is mediated by expression of a variety of cytokines exemplified by TNF-alpha and IL-1beta. A key signal for the recognition of intracellular viral infections is the presence of dsRNA. Viral infections and dsRNA treatment can activate several signaling pathways including the protein kinase R pathway, mitogen-activated protein kinase (MAPK) pathways, and NF-kappaB, which are important in the expression of inflammatory cytokines. We previously reported that activation of protein kinase R was required for dsRNA induction of TNF-alpha, but not for IL-1beta. In this study, we report that activation of the p38 MAPK pathway by respiratory viral infections is necessary for induction of inflammatory cytokines in human bronchial epithelial cells. Inhibition of p38 MAPK by two different pharmacological inhibitors showed that expression of both TNF-alpha and IL-1beta required activation of this signaling pathway. Interestingly, inhibition of NF-kappaB did not significantly reduce viral induction of either cytokine. Our data show that, during the initial infections of epithelial cells with respiratory viruses, activation of the p38 MAPK pathway is associated with induction of inflammation, and NF-kappaB activation may be less important than previously suggested.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号