首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The technique developed by Casadaban (M. J. Casadaban, J. Mol. Biol. 104: 541-555, 1976) has been employed to construct Escherichia coli K-12 derivatives in which the genes determining lactose utilization are fused to the regulatory region of the biotin operon. Fusions of the lac genes to either arm of this divergently transcribed operon have been isolated. When the operon is derepressed, expression of the lac genes is sufficient to permit growth on lactose minimal medium. Repressing conditions prevent growth on lactose. This property of bio-lac fusion strains, as well as the ease of determining the level of operon expression by assaying beta-galactosidase, was used for the isolation and characterization of mutants defective in repression. Preliminary analyses of several newly isolated regulatory mutants are presented. For the several birA mutants examined, there appeared to be no direct correlation between effects on minimum biotin requirement and alterations in repressibility, suggesting a possible dual function for the gene. Parallel attempts to obtain fusions of lac to bioH were unsuccessful, indicating lack of direct biotin control at the bioH locus.  相似文献   

2.
Bistability in the lac operon of Escherichia coli has been widely studied, both experimentally and theoretically. Experimentally, bistability has been observed when E. coli is induced by an artificial, nonmetabolizable, inducer. However, if the lac operon is induced with lactose, the natural inducer, bistability has not been demonstrated. We derive an analytical expression that can predict the occurrence of bistability both for artificial inducers and lactose. We find very different conditions for bistability in the two cases. Indeed, for artificial inducers bistability is predicted, but for lactose the condition for bistability is much more difficult to satisfy. Moreover, we demonstrate that in silico evolution of the lac operon generates an operon that avoids bistability with respect to lactose, but does exhibit bistability with respect to artificial inducers. The activity of this evolved operon strikingly resembles the experimentally observed activity of the operon. Thus our computational experiments suggest that the wild-type lac operon, which regulates lactose metabolism, is not a bistable switch. Nevertheless, for engineering purposes, this operon can be used as a bistable switch with artificial inducers.  相似文献   

3.
The lactose operon from Lactobacillus casei is regulated by very tight glucose repression and substrate induction mechanisms, which made it a tempting candidate system for the expression of foreign genes or metabolic engineering. An integrative vector was constructed, allowing stable gene insertion in the chromosomal lactose operon of L. casei. This vector was based on the nonreplicative plasmid pRV300 and contained two DNA fragments corresponding to the 3' end of lacG and the complete lacF gene. Four unique restriction sites were created, as well as a ribosome binding site that would allow the cloning and expression of new genes between these two fragments. Then, integration of the cloned genes into the lactose operon of L. casei could be achieved via homologous recombination in a process that involved two selection steps, which yielded highly stable food-grade mutants. This procedure has been successfully used for the expression of the E. coli gusA gene and the L. lactis ilvBN genes in L. casei. Following the same expression pattern as that for the lactose genes, beta-glucuronidase activity and diacetyl production were repressed by glucose and induced by lactose. This integrative vector represents a useful tool for strain improvement in L. casei that could be applied to engineering fermentation processes or used for expression of genes for clinical and veterinary uses.  相似文献   

4.
Eucaryotic and procaryotic organisms differ in two aspects of their translation machinery: polycistronic messengers are expressed as a sequence of individual proteins only in procaryotes, and the initiation of protein synthesis proceeds with an initiator tRNA which is found to be modified (formylated) in procaryotes and not in eucaryotes. In the present study, we show that formylation is required in vivo for the coordinate expression of the Escherichia coli lactose operon. Our experiments are consistent with a translation mechanism using dissociated ribosomes at the 5' end of the mRNA in a reaction that is only weakly dependent on formylation at this initiation step; the ribosomes then travel along the messenger and can reinitiate after the intracistronic barrier without dissociation. This latter initiation step is strongly dependent on the level of formylation: a low level of the formyl group, obtained by the antifolic agent trimethoprim, induces a strong polarity in the expression of the lactose operon. There exist mutant strains in which this polarity is much less apparent than in the wild type. We show here that such is the case of rpsL mutants. Ribosomes mutated in the S12 protein (rpsL) are found to be much more easily dissociated than the wild type. This might explain why the expression of the lactose operon on rpsL strains remains coordinated when the intracellular level of formylation is decreased.  相似文献   

5.
6.
The lactose operon from Lactobacillus casei is regulated by very tight glucose repression and substrate induction mechanisms, which made it a tempting candidate system for the expression of foreign genes or metabolic engineering. An integrative vector was constructed, allowing stable gene insertion in the chromosomal lactose operon of L. casei. This vector was based on the nonreplicative plasmid pRV300 and contained two DNA fragments corresponding to the 3′ end of lacG and the complete lacF gene. Four unique restriction sites were created, as well as a ribosome binding site that would allow the cloning and expression of new genes between these two fragments. Then, integration of the cloned genes into the lactose operon of L. casei could be achieved via homologous recombination in a process that involved two selection steps, which yielded highly stable food-grade mutants. This procedure has been successfully used for the expression of the E. coli gusA gene and the L. lactis ilvBN genes in L. casei. Following the same expression pattern as that for the lactose genes, β-glucuronidase activity and diacetyl production were repressed by glucose and induced by lactose. This integrative vector represents a useful tool for strain improvement in L. casei that could be applied to engineering fermentation processes or used for expression of genes for clinical and veterinary uses.  相似文献   

7.
8.
9.
Mechanisms of Directed Mutation   总被引:12,自引:0,他引:12       下载免费PDF全文
P. L. Foster  J. Cairns 《Genetics》1992,131(4):783-789
  相似文献   

10.
This work is a continuation from another study previously published in this journal. Both the former and the present works are dedicated to investigating the bistable behavior of the lac operon in Escherichia coli from a mathematical modeling point of view. In the previous article, we developed a detailed mathematical model that accounts for all of the known regulatory mechanisms in this system, and studied the effect of inducing the operon with lactose instead of an artificial inducer. In this article, the model is improved to account, in a more detailed way, for the interaction of the repressor molecules with the three lac operators. A recently discovered cooperative interaction between the CAP molecule (an activator of the lactose operon) and Operator 3 (which influences DNA folding) is also included in this new version of the model. The growth rate dependence on the rate of energy entering the bacteria (in the form of transported glucose molecules and of metabolized lactose molecules) is also considered. A large number of numerical experiments is carried out with this improved model. The results are discussed in regard to the bistable behavior of the lactose operon. Special attention is paid to the effect that a variable growth rate has on the system dynamics.  相似文献   

11.
1. Acute transient catabolite repression of beta-galactosidase synthesis, observed when glucose is added to glycerol-grown cells of Escherichia coli (Moses & Prevost, 1966), requires the presence of a functional operator gene (o) in the lactose operon. Total deletion of the operator gene abolished acute transient repression, even in the presence of a functional regulator gene (i). 2. Regulator constitutives (i(-)) also show transient repression provided that the operator gene is functional. Regulator deletion mutants (i(del)), with which to test specifically the role of the i gene, have not so far been available. 3. The above mutants, showing various changes in the lactose operon, show no alteration in the effect of glucose on induced tryptophanase synthesis. Glucose metabolism, as measured in terms of the release of (14)CO(2) from [1-(14)C]glucose and [6-(14)C]glucose, also showed no differences between strains exhibiting or not exhibiting transient repression. This suggests no change in the operation of the pentose phosphate cycle, a metabolic activity known to be of paramount importance for glucose repression of beta-galactosidase synthesis (Prevost & Moses, 1967). 4. Chronic permanent repression by glucose of beta-galactosidase synthesis (less severe in degree than acute transient repression) persists in strains in which transient repression has been genetically abolished. Constitutive alkaline-phosphatase synthesis, which shows no transient repression, also demonstrates chronic permanent repression by glucose. 5. Chloramphenicol repression also persists in mutants with no transient repression, and also affects alkaline phosphatase. It is suggested that chronic permanent repression and chloramphenicol repression are non-specific, and that they do not influence beta-galactosidase synthesis via the regulatory system of the lactose operon.  相似文献   

12.
13.
《Free radical research》2013,47(1):379-382
The biological role and the regulation of superoxide dismutase (SOD) in E. coli have been investigated using genetics. Cloning of both E. coli SOD genes permitted construction of mutants completely lacking SOD. The conditional oxygen sensitivity of those mutants, together with their increased mutation rate, demonstrated the essential biological role of SOD. SOD-deficient mutants constitute a powerful tool to assess a possible role of O?2 or SOD in biological processes. Complementation of their deficiencies by the expression of SOD originating from a different organism is used for screening libraries for SOD genes of other species. Regulation of MnSOD has been studied using protein and operon fusions with the lactose operon, and isolating regulation mutants. These studies reveal multiregulation of MnSOD including response to the superoxide mediated oxidative stress and response to variations of the intracellular redox state induced by metabolic changes.  相似文献   

14.
A set of plasmid cloning vehicles was developed to facilitate the construction of gene or operon fusions in Rhizobium meliloti. The vehicles also contain a broad-host-range replicon and could be introduced into bacteria either by transformation or by transduction, using bacteriophage P2. Insertion of foreign DNA into a unique restriction endonuclease cleavage site promotes the synthesis of either the Escherichia coli lactose operon or the kanamycin phosphotransferase gene from transposon Tn5. Expression of the lactose operon could be detected by observing the color of Rhizobium colonies on medium that contained a chromogenic indicator. We also determined the growth conditions that make it possible to select either for or against the expression of the E. coli lactose operon in R. meliloti. Recombinant plasmids were constructed by inserting MboI restriction fragments of R. meliloti DNA into one of the vehicles, pMK353 . Expression of beta-galactosidase by a number of these recombinants was measured in both R. meliloti and E. coli.  相似文献   

15.
Deletion analysis of the Escherichia coli lactose promoter P2.   总被引:5,自引:0,他引:5       下载免费PDF全文
  相似文献   

16.
Regulation of the synthesis of bacteriophage T4 gene 32 protein   总被引:27,自引:0,他引:27  
The synthesis of T4 gene 32 product (P32) has been followed by gel electrophoresis of infected cell lysates. In wild-type infections, its synthesis starts soon after infection and begins to diminish about the time late gene expression commences. The absence of functional P32 results in a marked increase in the amount of the non-functional P32 synthesized. For example, infections of T4 mutants which contain a nonsense mutation in gene 32 produce the nonsense fragment at more than ten times the maximum rate of synthesis of the gene product observed in wild-type infections. All of the temperature-sensitive mutants in gene 32 that were tested also overproduce this product at the non-permissive temperature. This increased synthesis of the non-functional product is recessive, since mixed infections (wild-type, gene 32 nonsense mutant) fail to overproduce the nonsense fragment.Mutations in genes required for late gene expression (genes 33 and 53) as well as some genes required for normal DNA synthesis also result in increased production of P32. The overproduction in such infections is dependent on DNA synthesis; in the absence of DNA synthesis no overproduction occurs. This contrasts with the overproduction resulting from the absence of functional P32 which is not dependent on DNA synthesis.These results are compatible with a model for the regulation of expression of gene 32 in which the synthesis of P32 is either directly or indirectly controlled by its own function. Thus, in the absence of P32 function the expression of this gene is increased as is manifest by the high rate of P32 synthesis. It is further suggested that in infections defective in late gene expression and consequently in the maturation of replicated DNA, the increased P32 production is caused by the large expansion of the DNA pool. This DNA is presumed to compete for active P32 by binding it non-specifically to single-stranded regions, thus reducing the amount of P32 free to block gene 32 expression. Similarly, the aberrant DNA synthesized following infections with mutants in genes 41, 56, 58, 60 and 30, although quantitatively less than that produced in the maturation defective infections, can probably bind large quantities of P32 to single-stranded regions resulting in increased P32 synthesis.  相似文献   

17.
Summary mRNA of the galactose operon of E. coli was measured in wildtype E. coli and in gal operon amber and insertion mutants. The mRNA coded by the distal half of the operon is reduced in the mutants. This reduction is more pronounced in the insertion mutants than in the amber mutants. It was compared with the polar effects of the mutations on the enzymes of the operon.  相似文献   

18.
19.
We have worked out a system to obtain mutations that map in the promoter region of the Escherichia coli galactose operon. In order to easily detect small changes in gal promoter activity, we constructed a plasmid containing an operon fusion in which the lactose operon structural genes were controlled by the galactose operon promoter region. In cells harbouring this plasmid, even modest variations in the expression of the lac genes could be detected on MacConkey lactose indicator plates.Enrichment for mutations that map in the promoter segment of the galactose operon was achieved by mutagenesis in vitro of a small fragment of DNA covering the promoter region. After insertion of the mutagenized gal promoter fragment into the gal-lac fusion plasmid, lac?1 cells were transformed and screened for an altered Lac+ phenotype on indicator plates. Several mutants were isolated due to lesions mapping in the small fragment covering the galactose promoter. In these mutants, the level of β-galactosidase was between 15 and 50% of the wild-type level.The mutant promoters were subsequently reinserted into a plasmid containing the intact galactose operon. Cells harbouring such plasmids, reconstituted with mutant galactose promoters, contained decreased levels of galactokinase that paralleled the decreases in β-galactosidase. The biochemical properties of these mutants are reported in the accompanying paper (Busby et al., 1982).  相似文献   

20.
We have isolated chromosomal mutants of an Escherchia coli K-12 strain that maintain higher levels of an F' plasmid. The mutants are designated as plasmid copy number (pcn) mutants. They were detected by selecting for increased lactose fermentation in bacteria deleted for the lac operon but harboring an F'lacI,P pro+ plasmid. When examined for the amount of F' plasmid deoxyribonucleic acid (DNA) by the dye-CsCl isopycnic technique, the mutants show two to seven times as much covalently closed, circular (CCC) DNA as does the parental strain. The increased plasmid level in one mutant strain (pcn-24) was confirmed by DNA-DNA hybridization; however, this latter technique indicated about a twofold lower increase when compared with the increase measured for pcn-24 by the dye-CsCl technique. In mutant pcn-24 the increased amount of F' DNA reflects a proportional increase in monomeric-size plasmid molecules because oligomeric forms are not found. Also, in mutant pcn-24 the extra CCC plasmid copies do not seem to be randomly distributed throughout the cell's cytoplasm but appear complexed in situ with their host's folded chromosome. In all pcn mutants examined to date, the classical sex factor F is maintained at normal levels, whereas the viral plasmid Pl CM is maintained at two to three times the normal level. In all 17 pcn mutants isolated, the pcn mutation maps on the chromosome and not on the plasmid. Finally, the absolute amount of CCC F' DNA detectable in lysates of the six different pcn mutants examined decreased 50 to 90% upon incubation of the lysate at 37 C. In contrast, no loss of CCC DNA occurs when lysates of the parental F' strain are incubated at 37 C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号