首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
In maize (Zea mays L., 2n = 2x = 20), map-based cloning and genome organization studies are often complicated because of the complexity of the genome. Maize chromosome addition lines of hexaploid cultivated oat (Avena sativa L., 2n = 6x = 42), where maize chromosomes can be individually manipulated, represent unique materials for maize genome analysis. Maize chromosome addition lines are particularly suitable for the dissection of a single maize chromosome using radiation because cultivated oat is an allohexaploid in which multiple copies of the oat basic genome provide buffering to chromosomal aberrations and other mutations. Irradiation (gamma rays at 30, 40, and 50 krad) of a monosomic maize chromosome 9 addition line produced maize chromosome 9 radiation hybrids (M9RHs)-oat lines possessing different fragments of maize chromosome 9 including intergenomic translocations and modified maize addition chromosomes with internal and terminal deletions. M9RHs with 1 to 10 radiation-induced breaks per chromosome were identified. We estimated that a panel of 100 informative M9RHs (with an average of 3 breaks per chromosome) would allow mapping at the 0. 5- to 1.0-Mb level of resolution. Because mapping with maize chromosome addition lines and radiation hybrid derivatives involves assays for the presence or absence of a given marker, monomorphic markers can be quickly and efficiently mapped to a chromosome region. Radiation hybrid derivatives also represent sources of region-specific DNA for cloning of genes or DNA markers.  相似文献   

2.
Summary In a series of 374 families with Down syndrome progeny, structural chromosome rearrangements were detected in the parents of six children with regular trisomy. The aberrations were reciprocal translocations and inversions. In all three informative families, the parent who transmitted the extra chromosome was not the one with the structural rearrangement. Among the three non-informative families there was one in which both parents carried different reciprocal translocations. In two other families a chromosome aberration was detected: a triple X mother and a father with a Philadelphia chromosome. Omitting the four parents with possible biased asccrtainment, 0.4% had a chromosome rearrangement. When the parents with constitutional chromosome aberrations and those with mosaicism, described previously, are combined, the frequency of chromosomally abnormal parents lies between 1.9% and 3.2%. When correlated with parental transmission of the extra chromosome, mosaicism rather than structural rearrangements appears to be of ctiologic significance.  相似文献   

3.
The duplicated and rearranged nature of plant genomes frequently complicates identification, chromosomal assignment and eventual manipulation of DNA segments. Separating an individual chromosome from its native complement by adding it to an alien genetic background together with the generation of radiation hybrids from such an addition line can enable or simplify structural and functional analyses of complex duplicated genomes. We have established fertile disomic addition lines for each of the individual maize chromosomes, except chromosome 10, with oat as the host species; DNA is available for chromosome 10 in a haploid oat background. We report on instability and transmission in disomic additions of maize chromosomes 1, 5, and 8; the chromosome 2, 3, 4, 6, 7, and 9 additions appear stable. The photoperiodic response of the two recovered maize chromosome 1 addition lines contrasts to the long-day flowering response of the oat parents and the other addition lines. Only when grown under short days did maize chromosome 1 addition lines set seed, and only one line transmitted the maize chromosome 1 to offspring. Low resolution radiation hybrid maps are presented for maize chromosomes 2 and 9 to illustrate the use of radiation hybrids for rapid physical mapping of large numbers of DNA sequences, such as ESTs. The potential of addition and radiation hybrid lines for mapping duplicated sequences or gene families to chromosome segments is presented and also the use of the lines to test interactions between genes located on different maize chromosomes as observed for ectopic expression of cell fate alterations. Electronic Publication  相似文献   

4.
Genomic in-situ hybridization (GISH) was used to monitor the behaviour of parental genomes, and the fate of intergenomic chromosome translocations, through meiosis of plants regenerated from asymmetric somatic hybrids between Nicotiana sylvestris and N. plumbaginifolia. Meiotic pairing in the regenerants was exclusively between chromosomes or chromosome segments derived from the same species. Translocation (recombinant) chromosomes contained chromosome segments from both parental species, and were detected at all stages of meiosis. They occasionally paired with respectively homologous segments of N. sylvestris or N. plumbaginifolia chromosomes. Within hybrid nuclei, the meiotic division of N. plumbaginifolia lagged behind that of N. sylvestris. However, normal and recombinant chromosomes were eventually incorporated into dyads and tetrads, and the regenerants were partially pollen fertile. Recombinant chromosomes were transmitted through either male or female gametes, and were detected by GISH in sexual progeny obtained on selfing or backcrossing the regenerants to N. sylvestris. A new recombinant chromosome in one plant of the first backcross generation provided evidence of further chromosome rearrangements occurring at, or following, meiosis in the original regenerants. This study demonstrates the stable incorporation of chromosome segments from one parental genome of an asymmetric somatic hybrid into another, via intergenomic translocation, and reveals their transmission to subsequent sexual progeny.  相似文献   

5.
In cereals, interspecific and intergeneric hybridizations (wide crosses) which yield karyotypically stable hybrid plants have been used as starting points to widen the genetic base of a crop and to construct stocks for genetic analysis. Also, uniparental genome elimination in karyotypically unstable hybrids has been utilized for cereal haploid production. We have crossed hexaploid oat (2n=6x=42, Avena sativa L.) and maize (2n=2x=20, Zea mays L.) and recovered 90 progenies through embryo rescue. Fifty-two plants (58%) produced from oatxmaize hybridization were oat haploids (2n=3x=21) following maize chromosome elimination. Twenty-eight plants (31%) were found to be stable partial hybrids with 1–4 maize chromosomes in addition to a haploid set of 21 oat chromosomes (2n=21+1 to 2n=21+4). Ten of the ninety plants produced were found to be apparent chromosomal chimeras, where some tissues in a given plant contained maize chromosomes while other tissues did not, or else different tissues contained a different number of maize chromosomes. DNA restriction fragment length polymorphisms (RFLPs) were used to identify the maize chromosome(s) present in the various oat-maize progenies. Maize chromosomes 2, 3, 4, 5, 6, 7, 8, and 9 were detected in partial hybrids and chromosomal chimeras. Maize chromosomes 1 and 10 were not detected in the plants analyzed to-date. Furthermore, partial self-fertility, which is common in oat haploids, was also observed in some oat-maize hybrids. Upon selfing, partial hybrids with one or two maize chromosomes showed nearly complete transmission of the maize chromosome to give self-fertile maize-chromosome-addition oat plants. Fertile lines were recovered that contained an added maize chromosome or chromosome pair representing six of the ten maize chromosomes. Four independently derived disomic maize chromosome addition lines contained chromosome 4, one line carried chromosome 7, two lines had chromosome 9, one had chromosome 2, and one had chromosome 3. One maize chromosome-8 monosomic addition line was also identified. We also identified a double disomic addition line containing both maize chromosomes 4 and 7. This constitutes the first report of the production of karyotypically stable partial hybrids involving highly unrelated species from two subfamilies of the Gramineae (Pooideae — oat, and Panicoideae — maize) and the subsequent recovery of fertile oat-maize chromosome addition lines. These represent novel material for gene/ marker mapping, maize chromosome manipulation, the study of maize gene expression in oat, and the transfer of maize DNA, genes, or active transposons to oat.Joint contribution of the Minnesota Agricultural Experiment Station and USDA-ARS. Scientific journal series paper No. 21 859 of the Minnesota Agricultural Experiment Station. Mention of a trademark or proprietary product does not constitute a guarantee or warranty by the USDA-ARS or the University of Minnesota and does not imply approval over other products that also may be suitable  相似文献   

6.
Chloroplast DNA sequencing and genomic in situ hybridization(GISH) were used to investigate the genomic origin and organizationof the alpine grass Poa jemtlandica. Using genomic probes ofP. alpina and P. flexuosa, GISH clearly distinguished betweenthese two putative parental genomes and thus confirmed the hybridnature of P. jemtlandica. The chloroplast trn L intron and trnL–trn F intergenic spacer (IGS) sequence genotypes ofP. flexuosa and P. jemtlandica were 100% identical but differedfrom those of P. alpina by a total of ten or 11 nucleotide substitutionsand six indels over 866 aligned positions, identifying P. flexuosaas the maternal parent of the P. jemtlandica population studiedhere and supporting a relatively recent origin of the hybrid.GISH revealed the presence of intergenomic translocations inthe hybrid genome, indicating that the two parental genomeshave undergone some rearrangements following hybridization.It is likely that some of these chromosome changes took placesoon after hybridization in order to overcome the adverse interactionsbetween the nuclear and the cytoplasmic genomes and to facilitatethe successful establishment of the newly formed hybrid. Thepresence of intergenomic chromosome changes may play an importantrole in the evolution of natural hybrids and the establishmentof new evolutionary lineages. Copyright 2000 Annals of BotanyCompany Natural hybridization, genome origin, intergenomic translocations, GISH, chloroplast DNA sequences, Poa jemtlandica  相似文献   

7.
Intergenomic interactions that include homoeologous recombinations and intergenomic translocations are commonly observed in plant allopolyploids. Homoeologous recombinations have recently been documented in unisexual salamanders in the genus Ambystoma and revealed exchanged chromosomal segments between A. laterale and A.jeffersonianum genomes in individual unisexuals. We discovered intergenomic translocations in two widespread unisexual triploids A.laterale--2 jeffersonianum (or LJJ) and its tetraploid derivative A.laterale--3 jeffersonianum (or LJJJ) by genomic in situ hybridization (GISH). Two different types of intergenomic translocations were observed in two unisexual populations and one contained novel chromosomes generated by an intergenomic reciprocal translocation. We also observed chromosome deletions in several individuals and these chromosome fragmentations were all derived from the A. jeffersonianum genome. These observed intergenomic reciprocal translocations are believed to be caused by non-homologous pairing during meiosis followed by breakage-rejoining events. Genomes of unisexual Ambystoma undergo complicated structural changes that include various intergenomic exchanges that offer unisexuals genetic and phenotypic complexity to escape their evolutionary demise. Unisexual Ambystoma have persisted as natural nuclear genomic hybrids for about four million years. These unisexuals provide a vertebrate model system to examine the interaction of distinct genomes and to evaluate the corresponding genetic, developmental and evolutionary implications of intergenomic exchanges. Intergenomic translocations and homoeologous recombinations appear to be frequent chromosome reconstruction events among unisexual Ambystoma.  相似文献   

8.
M L Irigoyen  C Linares  E Ferrer  A Fominaya 《Génome》2002,45(6):1230-1237
Fluorescent in situ hybridization (FISH) employing multiple probes was used with mitotic or meiotic chromosome spreads of Avena sativa L. cv. SunII and its monosomic lines to produce physical chromosome maps. The probes used were Avena strigosa pAs120a (which hybridizes exclusively to A-genome chromosomes), Avena murphyi pAm1 (which hybridizes exclusively to C-genome chromosomes), A. strigosa pAs121 (which hybridizes exclusively to A- and D-genome chromosomes), and the wheat rDNA probes pTa71 and pTa794. Simultaneous and sequential FISH employing two-by-two combinations of these probes allowed the unequivocal identification and genome assignation of all chromosomes. Ten pairs were found carrying intergenomic translocations: (i) between the A and C genomes (chromosome pair 5A); (ii) between the C and D genomes (pairs 1C, 2C, 4C, 10C, and 16C); and (iii) between the D and C genomes (pairs 9D, 11D, 13D, and 14D). The existence of a reciprocal intergenomic translocation (10C-14D) is also proposed. Comparing these results with those of other hexaploids, three intergenomic translocations (10C, 9D, and 14D) were found to be unique to A. sativa cv. SunII, supporting the view that 'SunII' is genetically distinct from other hexaploid Avena species and from cultivars of the A. sativa species. FISH mapping using meiotic and mitotic metaphases facilitated the genomic and chromosomal identification of the aneuploid chromosome in each monosomic line. Of the 18 analyzed, only 11 distinct monosomic lines were actually found, corresponding to 5 lines of the A genome, 2 lines of the C genome, and 4 lines of the D genome. The presence or absence of the 10C-14D interchange was also monitored in these lines.  相似文献   

9.
J G Ault 《Génome》1992,35(5):855-863
The types and frequencies of spontaneous chromosome rearrangements caused by hybrid dysgenesis were studied in a second chromosome autosome of Drosophila melanogaster. This second chromosome, being an SD chromosome, had two important advantages over other autosomes for this study: (i) it had the two inversions characteristic of a standard SD-72 chromosome type, which distinguished it from its homolog in polytene chromosome spreads, and (ii) because of the meiotic drive associated with the segregation distorter system, it was preferentially transmitted to the next generation. The chromosome mutation frequency of this chromosome (given the name SDKona-2) was 8.3 and 11.7% in the F2 and F3 generations, respectively. The types of new chromosome rearrangements observed in the first four generations included paracentric inversions, pericentric inversions, duplications, deletions, reciprocal translocations (involving the third chromosome), and transpositions. Small paracentric inversions were the most common type of new rearrangement. Later, over 35 generations, some of these new rearrangements changed, either by becoming more complex or by being replaced with yet another new chromosome rearrangement. Duplications were unstable and were replaced by paracentric inversions whose breakpoints were on either side of the duplication. Transpositions arose both from a single multibreak event and from a series of two-break events.  相似文献   

10.
Homoeologous relationships of rice, wheat and maize chromosomes   总被引:34,自引:0,他引:34  
A set of cDNA clones, which had previously been mapped onto wheat chromosomes, was genetically mapped onto the chromosomes of rice. The resulting comparative maps make it possible to estimate the degree of linkage conservation between these two species. A number of chromosomal rearrangements, some of which must have involved interchromosomal translocations, differentiate the rice and wheat genomes. However, synteny of a large proportion of the loci appears to be conserved between the two species. The results of this study, combined with those from a recently published comparative map of the rice and maize genomes, suggest that rice, wheat and maize share extensive homoeologies in a number of regions in their genomes. Some chromosomes (e.g. chromosome 4 in rice, chromosomes 2 and 2S in wheat and maize, respectively) may have escaped major rearrangement since the divergence of these species from their last common ancestor. Comparative maps for rice, wheat and maize should make it possible to begin uniting the genetics of these species and allow for transfer of mapping information (including centromere positions) and molecular marker resources (e.g. RFLP probes) between species. In addition, such maps should shed light on the nature of chromosome evolution that accompanied the radiation of grasses in the early stages of plant diversification.  相似文献   

11.
The irs1 and irs1SF hamster cell lines are mutated for the XRCC2 and XRCC3 genes, respectively. Both show heightened sensitivity to ionizing radiation and particularly to the DNA cross-linking chemical mitomycin C (MMC). Frequencies of spontaneous chromosomal aberration have previously been reported to be higher in these two cell lines than in parental, wild-type cell lines. Microcell-mediated chromosome transfer was used to introduce complementing or non-complementing human chromosomes into each cell line. irs1 cells received human chromosome 7 (which contains the human XRCC2 gene) or, as a control, human chromosome 4. irs1SF cells received human chromosome 14 (which contains the XRCC3 gene) or human chromosome 7. For each set of hybrid cell lines, clones carrying the complementing human chromosome recovered MMC resistance to near-wild-type levels, while control clones carrying noncomplementing chromosomes remained sensitive to MMC. Fluorescence in situ hybridization with a human-specific probe revealed that the human chromosome in complemented clones remained intact in almost all cells even after extended passage. However, the human chromosome in noncomplemented clones frequently underwent chromosome rearrangements including breaks, deletions, and translocations. Chromosome aberrations accumulated slowly in the noncomplemented clones over subsequent passages, with some particular deletions and unbalanced translocations persistently transmitted throughout individual subclones. Our results indicate that the XRCC2 and XRCC3 genes, which are now considered members of the RAD51 gene family, play essential roles in maintaining chromosome stability during cell division. This may reflect roles in DNA repair, possibly via homologous recombination.  相似文献   

12.
The evolutionary history of Drosophila buzzatii   总被引:1,自引:0,他引:1  
Introgression of a chromosome segment from Drosophila serido into the genome of its sibling D. buzzatii brought about the release of mutator potential in the hybrids. Mutator activity was determined by examining the frequency of new chromosomal rearrangements, that appeared only in the progeny of hybrid individuals. Mutation frequency was 30 times greater in the progeny of hybrid males than in that of hybrid females. There was a remarkable influence of the D. buzzatii genetic background on the frequency of production of these new rearrangements. The appearance of a new rearrangement did not depend on the genotype of the larva that bore it, but only on that of its hybrid progenitor. Among the new rearrangements there were inversions, translocations, and duplications. The number of translocations was significantly lower than that of inversions or duplications; this last type was the most frequently recorded. The distribution of the aberrations among the four major autosomes seemed to be homogeneous, although the total number of breakpoints was significantly greater in chromosome 4 than in the others. No rearrangement was found on the X chromosome. Breakpoints within three of the four affected autosomes were not randomly distributed.  相似文献   

13.
Ionizing radiation can induce chromosome instability that is transmitted over many generations after irradiation in the progeny of surviving cells, but it remains unclear why this instability can be transmitted to the progeny. To acquire knowledge about the transmissible nature of genomic instability, we transferred an irradiated human chromosome into unirradiated mouse recipient cells by microcell fusion and examined the stability of the transferred human chromosome in the microcell hybrids. The transferred chromosome was stable in all six microcell hybrids in which an unirradiated human chromosome had been introduced. In contrast, the transferred chromosome was unstable in four out of five microcell hybrids in which an irradiated human chromosome had been introduced. The aberrations included changes in the irradiated chromosome itself and rearrangements with recipient mouse chromosomes. Thus the present study demonstrates that genomic instability can be transmitted to the progeny of unirradiated cells by a chromosome exposed to ionizing radiation, implying that the instability is caused by the irradiated chromosome itself and also that the instability is induced by the nontargeted effect of radiation.  相似文献   

14.
The quantitative analysis of the chromosome rearrangements detected in 2128 R-banded metaphases, obtained from gamma-irradiated human lymphocytes after 48 to 96 h in culture is reported. Depending on the culture time, and possibly on the dose of radiation (from 1 to 3 Gy), the most frequent type of rearrangement was either dicentrics or reciprocal translocations. In first generation mitoses, the frequency of cells without rearrangement ranged from 0.66 to 0.18, and the mean number of rearranged chromosomes per cell from 0.79 to 3.28. The dose-response curve follows a quadratic function for dicentric aberration yields, but not for other rearrangements.  相似文献   

15.
Wang Q  Liu H  Gao A  Yang X  Liu W  Li X  Li L 《PloS one》2012,7(2):e31033
Polyploidization is a major evolutionary process. Approximately 70–75% species of Triticeae (Poaceae) are polyploids, involving 23 genomes. To investigate intergenomic rearrangements after polyploidization of Triticeae species and to determine the effects of environmental factors on them, nine populations of a typical polyploid Triticeae species, Kengyilia thoroldiana (Keng) J.L.Yang et al. (2n = 6x = 42, StStPPYY), collected from different environments, were studied using genome in situ hybridization (GISH). We found that intergenomic rearrangements occurred between the relatively large P genome and the small genomes, St (8.15%) and Y (22.22%), in polyploid species via various types of translocations compared to their diploid progenitors. However, no translocation was found between the relatively small St and Y chromosomes. Environmental factors may affect rearrangements among the three genomes. Chromosome translocations were significantly more frequent in populations from cold alpine and grassland environments than in populations from valley and lake-basin habitats (P<0.05). The relationship between types of chromosome translocations and altitude was significant (r = 0.809, P<0.01). Intergenomic rearrangements associated with environmental factors and genetic differentiation of a single basic genome should be considered as equally important genetic processes during species'' ecotype evolution.  相似文献   

16.
Five percent of patients with unexplained mental retardation have been attributed to cryptic unbalanced subtelomeric rearrangements. Half of these affected individuals have inherited the rearrangement from a parent who is a carrier for a balanced translocation. However, the frequency of carriers for cryptic balanced translocations is unknown. To determine this frequency, 565 phenotypically normal unrelated individuals were examined for balanced subtelomeric rearrangements using Fluorescent In Situ hybridization (FISH) probes for all subtelomere regions. While no balanced subtelomeric rearrangements were identified, three females in this study were determined to be mosaic for the X chromosome. Mosaicism for XXX cell lines were observed in the lymphocyte cultures of 3 in 379 women (0.8%), which is a higher frequency than the 1 in 1000 (0.1%) reported for sex chromosome aneuploidies. Our findings suggest that numerical abnormalities of the X chromosome are more common in females than previously reported. Based on a review of the literature, the incidence of cryptic translocation carriers is estimated to be approximately 1/8,000, more than ten-fold higher than the frequency of visible reciprocal translocations.  相似文献   

17.
Translocations, deletions, and chromosome fusions are frequent events seen in cancers with genome instability. Here we analyzed 358 genome rearrangements generated in Saccharomyces cerevisiae selected by the loss of the nonessential terminal segment of chromosome V. The rearrangements appeared to be generated by both nonhomologous end joining and homologous recombination and targeted all chromosomes. Fifteen percent of the rearrangements occurred independently more than once. High levels of specific classes of rearrangements were isolated from strains with specific mutations: translocations to Ty elements were increased in telomerase-defective mutants, potential dicentric translocations and dicentric isochromosomes were associated with cell cycle checkpoint defects, chromosome fusions were frequent in strains with both telomerase and cell cycle checkpoint defects, and translocations to homolog genes were seen in strains with defects allowing homoeologous recombination. An analysis of human cancer-associated rearrangements revealed parallels to the effects that strain genotypes have on classes of rearrangement in S. cerevisiae.  相似文献   

18.
Intergenomic translocations between wheat, Hordeum chilense and Hordeum vulgare have been obtained in tritordeum background. Advanced lines from the crosses between three disomic chromosome addition lines for chromosome 2Hv, 3Hv, and 4Hv of barley (Hordeum vulgare) in Triticum aestivum cv. Chinese Spring (CS) and hexaploid tritordeum (2n = 6x = 42, AABBHchHch) were analyzed. Multicolor FISH using both genomic DNA from H. chilense and H. vulgare were used to establish the presence and numbers of H. vulgare introgressions into tritordeum. Interspecific H. vulgare/H. chilense and intergeneric wheat/H. vulgare and wheat/H. chilense translocations were identified. Frequencies of plants containing different kinds of intergenomic translocations between chromosome arms are presented. These lines can be useful for introgressing into tritordeum characters of interest from H. vulgare.  相似文献   

19.
Two new X-autosome Robertsonian (Rb) translocations, Rb(X.9)6H and Rb(X.12)7H, were found during the course of breeding the Rb(X.2)2Ad rearrangement at Harwell. The influence of these new Rbs on meiotic chromosome segregation was investigated in hemizygous males and heterozygous females and compared to that of Rb(X.2)2Ad. Screening of metaphase II spermatocytes gave incidences of sex chromosome aneuploidy of 9.2% in Rb(X.2)6H/Y and 9.6% in Rb(X.9)2Ad/Y males; no metaphase II cells were present in the testes of the Rb(X.12)7H/Y males examined and no males with this karyotype have so far proved fertile. In breeding tests, 5% of the progeny of Rb(X.2)2Ad/Y males were sex chromosome aneuploids compared to 10% of the Rb(X.9)6H/Y offspring. The difference was not significant, however. Cytogenetic analyses of metaphase II stage oocytes showed elevated rates of hyperhaploidy (n + 1) in Rb heterozygous females over chromosomally normal mice: 4.2% for Rb(X.2)2Ad/+; 2.1% for Rb(X.9)6H/+; 2.2% for Rb(X.12)7H/+ and 1.1% for normal females. There was, however, no statistically significant difference in the rates of hyperhaploidy between the three different Rb types, nor overall between Rb/+ and normal females. Karyotypic analyses of liveborn offspring of Rb heterozygous females revealed low incidences of X0 animals but no other type of sex chromosome aneuploidy. Intercrosses of heterozygous females and hemizygous males yielded 5.5% aneuploidy for Rb(X.2)2Ad and 5.4% for Rb(X.9)6H. In heterozygous females, there was evidence from the metaphase II and breeding test data for all three rearrangements, of preferential segregation of the Rb metacentric to the polar body resulting in a deficiency of cells and progeny carrying a translocation chromosome.  相似文献   

20.
In order to produce chicks heterozygous for structural aberrations of chromosomes, 67 hens were inseminated with semen that had been exposed to 1200 R of X-rays. A sample of 204 chicks was hatched and survived. Among these, 18 (8.9%) contained rearrangements comprising 19 translocations and one pericentric inversion. All 10 males and eight females heterozygous for rearrangements were fertile and transmitted these rearrangements to approximately half their hatched progeny. Each of the major chromosomes of the chicken karyotype, except number 6, was involved in one or more of the translocations. The pericentric inversion was of a segment of chromosome number 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号