首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Separation of the two newly replicated chromosomes in simian virus 40 late replicating intermediates (RI*) occurred by two pathways. The parental DNA strands were completely unwound, releasing circular DNA monomers with a gap in the nascent strand (Form II*), or duplex DNA in the termination region was not unwound, resulting in formation of catenated dimers. Under optimal conditions, both products were transient intermediates in replication, although Form II* was predominant. However, in hypertonic medium both RI* and catenated dimers accumulated, and Form II* was not observed. Hypertonic medium appeared to inhibit both DNA unwinding in the termination region and separation of catenated dimers. When the size of the genome or the position of the origin of replication was changed, termination occurred at sites other than that of wild-type SV40. Neither catenated dimers nor RI* DNA accumulated at these sites. Instead, RI* separated into Form II*. Unwinding parental DNA was more difficult at some termination regions than others. Therefore, although completion of DNA replication does not require a unique termination sequence, this sequence can determine the mode of separation for sibling molecules.  相似文献   

2.
Perturbations of Simian Virus 40 (SV40) DNA replication by ultraviolet (UV) light during the lytic cycle in permissive monkey CV-1 cells resemble those seen in host cell DNA replication. Formation of Form I DNA molecules (i.e. completion of SV40 DNA synthesis) was more sensitive to UV irradiation than synthesis of replicative intermediates or Form II molecules, consistent with inhibition of DNA chain elongation. The observed amounts of [3H]thymidine incorporated in UV-irradiated molecules could be predicted on the assumption that pyrimidine dimers are responsible for blocking nascent DNA strand growth. The relative proportion of labeled Form I molecules in UV-irradiated cultures rapidly increased to near-control values with incubation after 20 or 40 J/m2 of light (0.9--1.0 or 1.8--2.0 dimers per SV40 genome, respectively). This rapid increase and the failure of Form II molecules to accumulate suggest that SV40 growing forks can rapidly bypass many dimers. Form II molecules formed after UV irradiation were not converted to linear (Form III) molecules by the dimer-specific T4 endonuclease V, suggesting either that there are no gaps opposite dimers in these molecules or that T4 endonuclease V cannot use Form II molecules as substrates.  相似文献   

3.
Do damage-inducible responses in mammalian cells alter the interaction of lesions with replication forks? We have previously demonstrated that preirradiation of the host cell mitigates UV inhibition of SV40 DNA replication; this mitigation can be detected within the first 30 min after the test irradiation. Here we test the hypotheses that this mitigation involves either (1) rapid dimer removal, (2) rapid synthesis of daughter strands past lesions (trans-dimer synthesis), or (3) continued progression of the replication fork beyond a dimer. Cells preirradiated with UV were infected with undamaged SV40, and the effects of UV upon viral DNA synthesis were measured within the first hour after a subsequent test irradiation. In preirradiated cells, as well as in non-preirradiated cells, pyrimidine dimers block elongation of daughter strands; daughter strands grow only to a size equal to the interdimer distance along the parental strands. There is, within this first hour after UV, no evidence for trans-dimer synthesis, nor for more rapid dimer removal either in the bulk of the parental DNA or in molecules in the replication pool. Progression of the replication forks was analyzed by electron microscopy of replicating SV40 molecules. Dimers block replication-fork progression in preirradiated cells to the same extent as in non-preirradiated cells. These experiments argue strongly against the hypotheses that preirradiation of host cells results in either the rapid removal of dimers, trans-dimer synthesis, or continued replication-fork progression beyond dimers.  相似文献   

4.
Irradiation of simian virus 40 (SV40)-infected cells with low fluences of UV light (20 to 60 J/m2, inducing one to three pyrimidine dimers per SV40 genome) causes a dramatic inhibition of viral DNA replication. However, treatment of cells with UV radiation (20 J/m2) before infection with SV40 virus enhances the replication of UV-damaged viral DNA. To investigate the mechanism of this enhancement of replication, we analyzed the kinetics of synthesis and interconversion of viral replicative intermediates synthesized after UV irradiation of SV40-infected cells that had been pretreated with UV radiation. This enhancement did not appear to be due to an expansion of the size of the pool of replicative intermediates after irradiation of pretreated infected cells; the kinetics of incorporation of labeled thymidine into replicative intermediates were very similar after irradiation of infected control and pretreated cells. The major products of replication of SV40 DNA after UV irradiation at the low UV fluences used here were form II molecules with single-stranded gaps (relaxed circular intermediates). There did not appear to be a change in the proportion of these molecules synthesized when cells were pretreated with UV radiation. Thus, it is unlikely that a substantial amount of DNA synthesis occurs past pyrimidine dimers without leaving gaps. This conclusion is supported by the observation that the proportion of newly synthesized SV40 form I molecules that contain pyrimidine dimers was not increased in pretreated cells. Pulse-chase experiments suggested that there is a more efficient conversion of replicative intermediates into form I molecules in pretreated cells. This could be due to more efficient gap filling in relaxed circular intermediate molecules or to the release of blocked replication forks. Alternatively, the enhanced replication observed here may be due to an increase in the excision repair capacity of the pretreated cells.  相似文献   

5.
G Prelich  B Stillman 《Cell》1988,53(1):117-126
Proliferating cell nuclear antigen (PCNA) is a cell cycle and growth regulated protein required for replication of SV40 DNA in vitro. Its function was investigated by comparison of the replication products synthesized in its presence or absence. In the completely reconstituted replication system that contains PCNA, DNA synthesis initiates at the origin and proceeds bidirectionally on both leading and lagging strands around the template DNA to yield duplex, circular daughter molecules. In contrast, in the absence of PCNA, early replicative intermediates containing short nascent strands accumulate. Replication forks continue bidirectionally from the origin, but surprisingly, only lagging strand products are synthesized. Thus two stages of DNA synthesis have been defined, with the second stage requiring PCNA for coordinated leading and lagging strand synthesis at the replication fork. We suggest that during eukaryotic chromosome replication there is a switch to a PCNA-dependent elongation stage that requires two distinct DNA polymerases.  相似文献   

6.
Replicative intermediates isolated from Escherichia coli cells infected with P2 gene B mutants were circular DNA molecules with single-stranded DNA tails, as opposed to the double-stranded DNA tails of wild-type replicative intermediates. The results show that the mutant replicative intermediates arose from aberrant DNA replication, aberrant due to a lack of lagging strand DNA synthesis, but with normal leading strand synthesis, so that only one circular duplex daughter DNA molecule was made from each duplex parent molecule. The single-stranded tails were shown to correspond to the nicked (and therefore displaced) parental DNA "l" strands. By partial denaturation mapping, the ends of the single-stranded tails tended to map close to the replication origin, but not all at a unique position, probably due to partial degradation or breakage in vivo, or during cell lysis or DNA isolation. By hybridization to separated strands of P2 DNA on nitrocellulose filters, DNA synthesis was shown to be asymmetric, and consistent with more leading strand than lagging strand synthesis having occurred. We concluded that the gene B protein is required for lagging strand DNA synthesis, but not for initiation, elongation or termination of the leading strand.  相似文献   

7.
Structure of Replicating Simian Virus 40 Deoxyribonucleic Acid Molecules   总被引:41,自引:21,他引:20       下载免费PDF全文
Properties of replicating simian virus 40 (SV40) deoxyribonucleic acid (DNA) have been examined by sedimentation analysis and by direct observation during a lytic cycle of infection of African green monkey kidney cells. Two types of replicating DNA molecules were observed in the electron microscope. One was an open structure containing two branch points, three branches, and no free ends whose length measurements were consistent with those expected for replicating SV40 DNA molecules. A second species had the same features as the open structure, but in addition it contained a superhelix in the unreplicated portion of the molecule. Eighty to ninety per cent of the replicative intermediates (RI) were in this latter configuration, and length measurements of these molecules also were consistent with replicating SV40 DNA. Replicating DNA molecules with this configuration have not been described previously. RI, when examined in ethidium bromide-cesium chloride (EB-CsCl) isopycnic gradients, banded in a heterogeneous manner. A fraction of the RI banded at the same density as circular SV40 DNA containing one or more single-strand nicks (component II). The remaining radioactive RI banded at densities higher than that of component II, and material was present at all densities between that of supercoiled double-stranded DNA (component I) and component II. When RI that banded at different densities in EB-CsCl were examined in alkaline gradients, cosedimentation of parental DNA and newly replicated DNA did not occur. All newly replicated DNA sedimented more slowly than did intact single-stranded SV40 DNA, a finding that is inconsistent with the rolling circle model of DNA replication. An inverse correlation exists between the extent of replication of the SV40 DNA and the banding density in EB-CsCl. Under alkaline conditions, the parental DNA strands that were contained in the RI sedimented as covalently closed structures. The sedimentation rates in alkali of the covalently closed parental DNA decreased as replication progressed. Based on these observations, some possible models for replication of SV40 DNA are proposed.  相似文献   

8.
Simian Virus 40 (SV40) infected cells were pulse labeled with (3H) thymidine and chased either in the absence or in the presence of the cytotoxic drug VM26 (teniposide). We investigated the structure of labeled SV40 DNA and found that VM26 had no significant effect on replicative chain elongation but strongly inhibited the conversion of late replication intermediates to mature DNA daughter molecules. The late replicative SV40 DNA intermediates which accumulate in VM26 treated cells contained essentially full length labeled DNA strands. These newly synthesized strands were not part of two catenated interlocked SV40 monomers suggesting that the block occurred prior to the final ligation reaction. Since VM26 is known to be a specific inhibitor of DNA topoisomerase II we conclude that this enzyme is dispensable for the chain elongation of replicating SV40 DNA, but that it is essential for the termination of SV40 DNA replication cycles.  相似文献   

9.
P Drge  J M Sogo    H Stahl 《The EMBO journal》1985,4(12):3241-3246
Highly torsionally stressed replicative intermediate SV40 DNA molecules are produced when ongoing replicative DNA synthesis is inhibited by aphidicolin, a specific inhibitor of DNA polymerase alpha. The high negative superhelical density of these molecules can be partially released by intercalating drugs such as chloroquine or ethidium bromide. The torsionally stressed replicative intermediates bind to monoclonal anti-Z-DNA antibodies. Electron microscopy of anti-Z-DNA cross-linked to torsionally stressed replicative intermediates shows that the antibody specifically binds close to the replication forks. The superhelical structures are not formed when SV40 DNA replication is inhibited by both aphidicolin and novobiocin, suggesting that a topoisomerase type II-like enzyme is somehow involved in the introduction of torsional strain in replicative intermediate DNA. One interpretation of our data is that fork movement continues to some rather limited extent when SV40 DNA synthesis in replicative chromatin is blocked by aphidicolin. After deproteinization, the exposed single-stranded DNA branches reassociate to form paranemic DNA structures with left-handed helical stretches, while the reduced linking number of the parental strands induces a high negative superhelical density.  相似文献   

10.
Portions of the human genome that have replicated after ultraviolet light irradiation and those that remain unreplicated have both been examined for the distribution of pyrimidine dimers and the extent of repair replication following their removal. The data indicate that the number of unrepaired dimers and the extent of repair replication seen after their excision are equal in the replicated and unreplicated DNA. Furthermore, the daughter strand of replicated DNA is larger than the average interdimer distance found in the parental strand. Hence, DNA replication in normal human fibroblasts is clearly capable of getting past pyrimidine dimers, and a preferential repair of such lesions in DNA that is about to be or has been replicated does not operate to any visible extent in these cells.  相似文献   

11.
The maturation of replicating simian virus 40 (SV40) chromosomes into superhelical viral DNA monomers [SV40(I) DNA] was analyzed in both intact cells and isolated nuclei to investigate further the role of soluble cytosol factors in subcellular systems. Replicating intermediates [SV40(RI) DNA] were purified to avoid contamination by molecules broken at their replication forks, and the distribution of SV40(RI) DNA as a function of its extent of replication was analyzed by gel electrophoresis and electron microscopy. With virus-infected CV-1 cells, SV40(RI) DNA accumulated only when replication was 85 to 95% completed. These molecules [SV40(RI*) DNA] were two to three times more prevalent than an equivalent sample of early replicating DNA, consistent with a rate-limiting step in the separation of sibling chromosomes. Nuclei isolated from infected cells permitted normal maturation of SV40(RI) DNA into SV40(I) DNA when the preparation was supplemented with cytosol. However, in the absence of cytosol, the extent of DNA synthesis was diminished three- to fivefold (regardless of the addition of ribonucleotide triphosphates), with little change in the rate of synthesis during the first minute; also, the joining of Okazaki fragments to long nascent DNA was inhibited, and SV40(I) DNA was not formed. The fraction of short-nascent DNA chains that may have resulted from dUTP incorporation was insignificant in nuclei with or without cytosol. Pulse-chase experiments revealed that joining, but not initiation, of Okazaki fragments required cytosol. Cessation of DNA synthesis in nuclei without cytosol could be explained by an increased probability for cleavage of replication forks. These broken molecules masqueraded during gel electrophoresis of replicating DNA as a peak of 80% completed SV40(RI) DNA. Failure to convert SV40(RI*) DNA into SV40(I) DNA under these conditions could be explained by the requirement for cytosol to complete the gap-filling step in Okazaki fragment metabolism: circular monomers with their nascent DNA strands interrupted in the termination region [SV40(II*) DNA] accumulated with unjoined Okazaki fragments. Thus, separation of sibling chromosomes still occurred, but gaps remained in the terminal portions of their daughter DNA strands. These and other data support a central role for SV40(RI*) and SV40(II*) DNAs in the completion of viral DNA replication.  相似文献   

12.
In vivo-labeled SV40 replicating DNA molecules can be converted into covalently closed superhelical SV40 DNA (SV40(I) using a lysate of sv40-infected monkey cells containing intact nuclei. Replication in vitro occurred at one-third the in vivo rate for 30 min at 30 degrees. After 1 hour of incubation, about 54% of the replicating molecules had been converted to SV40(I), 5% to nicked, circular molecules (SV40(II), 5% to covalently closed dimers; the remainder failed to complete replication although 75% of the prelabeled daughter strands had been elongated to one-genome length. Density labeling in vitro showed that all replicating molecules had participated during DNA synthesis in vitro. Velocity and equilibrium sedimentation analysis of pulse-chased and labeled DNA using radioactive and density labels suggested that SV40 DNA synthesis in vitro was a continuation of normal ongoing DNA synthesis. Initiation of new rounds of SV40 DNA replication was not detectable.  相似文献   

13.
Detergent extraction of simian virus 40 (SV40) DNA from infected monkey CV-1 cells, after a brief exposure to the drug camptothecin, yields covalent complexes between topoisomerase I and DNA that band with reduced buoyant densities in CsCl. The following lines of evidence indicate that the enzyme is preferentially associated with SV40 replicative intermediates. First, the percentage of the isolated labeled viral DNA that exhibited a reduced buoyant density is inversely proportional to the length of the labeling period and approximately parallels the percentage of replicative intermediates for each labeling time (5 to 60 min). Second, after labeling for 60 min, the isolated low-density material was found to be enriched for replicative intermediates as measured by sedimentation in neutral sucrose. Third, analysis of extracted viral DNA by equilibrium centrifugation in CsCl-propidium diiodide gradients that separate replicating molecules from completed form I DNA revealed that camptothecin pretreatment specifically caused the linkage of topoisomerase I to replicating molecules. In addition, analysis of the low-density material obtained under conditions when only the newly synthesized strands of the replicative intermediates were labeled showed that the enzyme was associated almost exclusively with the parental strands. Taken together, these observations indicate that topoisomerase I is involved in DNA replication, and they are consistent with the hypothesis that the enzyme provides swivels to allow the helix to unwind. The observed bias in the distribution of topoisomerase I on intracellular SV40 DNA could be the result of rapid encapsidation of replicated molecules that precludes the association of topoisomerase I with the DNA or, alternatively, the result of a specific association of the enzyme with replicative intermediates.  相似文献   

14.
Structure of F-actin needles from extracts of sea urchin oocytes   总被引:12,自引:0,他引:12  
The mouse L-cell line LD maintains its mitochondrial DNA genome in the form of a head-to-tail unicircular dimer of the monomeric 16,000 base-pair species. This situation permits a comparison of the mechanism of replication of this dimeric molecule with our previous studies of replication of monomeric mouse L-cell mitochondrial DNA. Whereas monomeric mitochondrial DNA requires about one hour for a round of replication, the dimeric molecule requires almost three hours. Denaturing agarose gel electrophoretic analyses of replicative intermediates reveals several discrete size classes of partially replicated daughter strands of dimeric mitochondrial DNA. This suggests that replication occurs with specific discontinuities in the rate of daughter strand synthesis. The strand specificity of these daughter strands was determined by hybridization with 32P-labeled DNA representing either the heavy or light strand mitochondrial DNA sequence. The sizes and strand specificities of these discrete daughter strands indicate that the same set of control sequences is functional in both dimer and monomer mitochondrial DNA replication.Immediately following a round of replication, the majority of dimeric mitochondrial DNA molecules contain displacement loops, as assessed by their sensitivity to nicking within the displaced DNA strand by single-strand DNA specific S1 nuclease under conditions which leave supercoiled DNA intact. This result is in contrast with the conformation of newly replicated monomeric mitochondrial DNA molecules, which lack both superhelical turns and displacement loops. This indicates that dimeric mitochondrial DNA proceeds through a different series of post-replicative processing steps than does monomeric mitochondrial DNA. We postulate that intermediates at late stages of dimeric mitochondrial DNA replication contain displacement loops which remain intact following closure of the full-length daughter strands.  相似文献   

15.
The structure of replicating simian virus 40 (SV40) minichromosomes was studied by DNA crosslinking with trimethyl-psoralen. The procedure was used both in vitro with extracted SV40 minichromosomes as well as in vivo with SV40-infected cells. Both procedures gave essentially the same results. Mature SV40 minichromosomes are estimated to contain about 27 nucleosomes (error +/- 2), except for those molecules with a nucleosome-free gap, which are interpreted to contain 25 nucleosomes (error +/- 2). In replicative intermediates, nucleosomes are present in the unreplicated parental stem with the replication fork possibly penetrating into the nucleosomal DNA before the histone octamer is removed. Nucleosomes reassociate on the newly replicated DNA branches at distances from the branch point of 225 ( +/- 145) nucleotides on the leading strand and of 285( +/- 120) nucleotides on the lagging strand. In the presence of cycloheximide, daughter duplexes contained unequal numbers of nucleosomes, supporting dispersive and random segregation of parental nucleosomes. These were arranged in clusters with normal nucleosome spacing. We detected a novel type of interlocked dimer comprising two fully replicated molecules connected by a single-stranded DNA bridge. We cannot decide whether these dimers represent hemicatenanes or whether the two circles are joined by a Holliday-type structure. The joining site maps within the replication terminus. We propose that these dimers represent molecules engaged in strand segregation.  相似文献   

16.
O Sundin  A Varshavsky 《Cell》1981,25(3):659-669
When SV40-infected cells are placed into hypertonic medium, newly synthesized DNA accumulates as form C catenated dimers. These molecules consist of two supercoiled monomer circles of SV40 DNA interlocked by one or more topological inter-twinings and are seen as transiently labeled inter-mediates during normal replication. Form C catenated dimers represent pure segregation intermediates, replicative DNA structures in which DNA synthesis is complete but which still require topological separation of the two daughter circles. Hypertonic shock seems to block selectively a type II topoisomerase activity involved in disentangling the two circles. This is reflected in the fact that form C catenated dimers that accumulate during the block are highly intertwined with catenation linkage numbers up to C(L) = 20. While initiation of replication is also inhibited by hypertonic treatment, ongoing SV40 DNA synthesis is not affected, and replication is free to proceed from the earliest cairns structure through to form C catenated dimers. The block to segregation is rapidly and completely released by shifting the cells back to normal medium. A much slower recovery of DNA segregation takes place on prolonged incubation in hypertonic medium, perhaps because of some cellular homeostatic mechanism. The results of this work lead to a detailed view of the final stages of SV40 DNA replication.  相似文献   

17.
M M Seidman  A J Levine  H Weintraub 《Cell》1979,18(2):439-449
  相似文献   

18.
Cell extracts (S100) derived from human 293 cells were separated into five fractions by phosphocellulose chromatography and monitored for their ability to support simian virus 40 (SV40) DNA replication in vitro in the presence of purified SV40 T antigen. Three fractions, designated I, IIA, and IIC, were essential. Fraction IIC contained the known replication factors topoisomerases I and II, but in addition contained a novel replication factor called RF-C. The RF-C activity, assayed in the presence of I, IIA, and excess amounts of purified topoisomerases, was detected in both cytosol and nuclear fractions, but was more abundant in the latter fraction. RF-C was purified from the 293 cell nuclear fraction to near homogeneity by conventional column chromatography. The reconstituted reaction mix containing purified RF-C could replicate SV40 origin-containing plasmid DNA more efficiently than could the S100 extract, and the products were predominantly completely replicated, monomer molecules. Interestingly, in the absence of RF-C, early replicative intermediates accumulated and subsequent elongation was aberrant. Hybridization studies with strand-specific, single-stranded M13-SV40 DNAs showed that in the absence of RF-C, abnormal DNA synthesis occurred preferentially on the lagging strand, and leading-strand replication was inefficient. These products closely resembled those previously observed for SV40 DNA replication in vitro in the absence of proliferating-cell nuclear antigen. These results suggest that an elongation complex containing RF-C and proliferating-cell nuclear antigen is assembled after formation of the first nascent strands at the replication origin. Subsequent synthesis of leading and lagging strands at a eucaryotic DNA replication fork can be distinguished by different requirements for multiple replication components, but we suggest that even though the two polymerases function asymmetrically, they normally progress coordinately.  相似文献   

19.
Escherichia coli NY73, possessing a temperature-sensitive mutation in the dnaG locus, was rendered sensitive to bacteriophage phiX174 by P1 transduction. phiX174 reproduces in this strain at 30 C but not at 40 C. All three stages of phiX174 replication, parental replicative form (RF) synthesis, RF replication, and progeny single-stranded DNA synthesis, are thermolabile in this mutant. Competition-annealing data show that both plus- and minus-strand synthesis are equally inhibited after shift up to 40 C during RF replication. We conclude that the dnaG gene product is required for the synthesis of both strands of phiX RF during RF replication and of the complementary strand and viral progeny strands during stages I and III, respectively.  相似文献   

20.
We have analyzed the structural characteristics of simian virus 40 replicative intermediate DNA produced after UV irradiation and the kinetics of conversion of this intermediate DNA into form I DNA. Replicative intermediate DNA isolated at 30 or 60 min after UV irradiation consists primarily of two species of molecules that sediment in neutral sucrose gradients as either Cairns theta structures or relaxed monomeric circles. Replication forks on the Cairns intermediate DNA are symmetrically located with respect to the origin of replication, ruling out the possibility of asymmetric pauses or blocks to replication fork progression at damage sites. The relaxed circles contain at least one randomly located discontinuity in the daughter strand. Pulse-chase experiments demonstrated that a UV fluence-dependent fraction of the Cairns intermediate DNA progresses through the relaxed circular intermediate before being converted to completed form I molecules. Disappearance of Cairns intermediate DNA occurs at the same rate in irradiated and unirradiated cells, whereas completion of the relaxed circular intermediate DNA occurs at a slow rate, relatively independent of UV fluence. These data support a model for replication of UV-damaged DNA in which replication rapidly continues past damage sites via a gap formation event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号