首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Quiescent cultured Nakano mouse lens cells incubated for 40 hours with sodium orthovanadate incorporated 3H-thymidine at an accelerated rate; the greatest response occurred at 20 microM vanadate, whereas by 2 microM an incorporation rate equivalent to unstimulated cells was noted. Microscopic examination of the cells revealed that those exposed to concentrations of vanadate greater than 100 microM had lysed by the end of the 40-hour incubation. Reduction in vanadate exposure time to 1 hour caused the cells to incorporate the greatest amount of 3H-thymidine at a vanadate concentration of 200 microM to 500 microM. Half-maximum incorporation of 3H-thymidine (after a 40-hour incubation) was induced by a 2-hour incubation with 20 microM vanadate. Studies with insulin showed that while 20 ng/ml insulin alone did not increase 3H-thymidine incorporation, 20 ng/ml insulin in combination with 20 microM vanadate resulted in a significant increase in 3H-thymidine uptake over cells exposed to only vanadate. Insulin alone will increase cell number and insulin with vanadate are synergistic in the stimulation of DNA synthesis, but the two together show no further increase in cell number over that produced by insulin alone. Thus, vanadate can increase progression from G1/G0 to S-phase, but cannot stimulate cells to divide. Studies designed to detect DNA damage and repair rather than S-phase DNA synthesis demonstrated that vanadate was not causing increased 3H-thymidine uptake by damaging DNA. Cell counts revealed that vanadate, while able to induce DNA synthesis, does not induce mitosis. Autoradiography and equilibrium sedimentation experiments demonstrated that gene amplification was not occurring. A known vanadate exchange inhibitor blocked the ability of vanadate to increase 3H-thymidine incorporation which is consistent with the idea that cellular internalization of vanadate is required for this effect to be seen. 86Rb+ uptake experiments demonstrate that the vanadate concentration inducing 50% inhibition of (Na+, K+)ATPase is nearly two orders of magnitude more concentrated that vanadate concentrations shown capable of inducing 3H-thymidine uptake. This strongly suggests that (Na+, K+)ATPase inhibition is not the central mechanism by which DNA synthesis is stimulated by vanadate.  相似文献   

4.
5.
6.
7.
8.
9.
Effects of endothelin on DNA synthesis were investigated in two clones of vascular smooth muscle cells, 1YB4 and A7r5. The peptide stimulated DNA synthesis in both clones with apparent EC50 of less than 1 ng/ml. More than 17 h was required before initiating endothelin-stimulated DNA synthesis. The platelet-derived growth factor at a concentration which had no effects by itself on DNA synthesis enhanced the effect of low concentrations of endothelin. A calcium antagonist, nifedipine, inhibited endothelin-induced DNA synthesis. These data suggest that endothelin stimulates DNA synthesis in vascular smooth muscle cells through nifedipine-sensitive mechanisms that can be modulated by platelet-derived growth factor.  相似文献   

10.
11.
The commitment of Reuber H 35 hepatoma cells to DNA synthesis was studied by exposing cells which were synchronized by serum depletion, to serum. It is shown that the period of commitment is 6--8 during the G2 period of the previous cell cycle.  相似文献   

12.
Inhibition of DNA synthesis in F9 embryonal carcinoma cells with high thymidine induces differentiation similar to that induced with retinoic acid (RA). The presence of differentiated cells is evident after 15 h of treatment with 2 mM thymidine, during which period DNA synthesis is inhibited 99%. The addition of RA during the period of high thymidine treatment does not increase the amount of differentiation seen at the end of the 15-h treatment, but does increase the amount seen after thymidine is removed. The inhibition of proliferation by low serum concentration does not induce differentiation in the absence of RA. In partially synchronized cultures of F9 cells, the addition of RA alters the pattern of DNA replication during the first third of S phase. If RA is present during this part of S phase, differentiation is evident both morphologically and biochemically during the following cell cycle. Addition of RA during the second half of S phase does not lead to obvious differentiation until after the next cell cycle. These results suggest that particular events during the early replication period of F9 cells are targets for RA action in induction of differentiation of F9 cells.  相似文献   

13.
Although the precise intracellular function(s) of the polyamines remain incompletely defined, a myraid of evidence now shows that the polyamines must accumulate or be maintained at a specific intracellular concentration in order for all mammalian cells to grow or divide. The initial step in polyamine biosynthesis normally involves the decarboxylation of ornithine by the enzyme ornithine decarboxylase (ODCase E.C. 4.1.1.17) to yield putrescine. Increases in the steady-state level of intracellular ornithine have been reported to markedly alter the accumulation of the polyamines following stimulation of Reuber H35 Hepatoma cells with 12-O-tetradecanoylphorbol-beta-acetate (TPA) in the presence of serum (Wu and Byus: (Biochem. Biophys. Acta 804:89-99, 1984); Wu et al.: (Cancer Res. 41:3384-3391, 1981). We wished to determine whether or not incubation of H35 hepatoma cells with exogenous ornithine would result in a stimulation of DNA synthesis following treatment with the mitogens TPA and insulin. For these studies, H35 cells were maintained under serum-free conditions for 2-3 days in order to obtain synchronous cultures suitable for analysis of the level of DNA synthesis. Cultures treated in this manner were highly viable, maintained similar growth rates, and possessed the equivalent levels of intracellular ornithine and polyamines as the serum-containing cultures. Arginine levels, however, were approximately twofold higher following culture under serum-restricted conditions for 3 days. The addition of exogenous ornithine (0.5 mM) was accompanied by a 4-5-fold increase in intracellular steady-state ornithine levels and by a 6-8-fold increase in the presence of TPA and ornithine. In a manner identical to the serum-containing cultures (Wu and Byus (1984] the addition of TPA and exogenous ornithine to the serum-free cells caused a dose-dependent increase in intracellular putrescine (up to 5-fold) and a concomitant decrease in ODC activity in comparison to stimulation with TPA alone. The addition of TPA led to a 3-5-fold increase in the incorporation of tritiated thymidine into DNA. In the presence of exogenous ornithine, TPA-induced DNA synthesis was further stimulated more than twofold in a dose-dependent manner. Insulin (10(-10)-10(-8) M) proved to be more efficacious as a mitogen in the H35 cells and led to greater stimulation of DNA synthesis than TPA. Insulin alone also resulted in a higher steady-state level of ornithine and putrescine in comparison with TPA alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
16.
17.
18.
Nandi S  Mondal S  Reddy IJ 《Theriogenology》2012,77(5):1014-1020
Studies were conducted to examine the effect of seven prostaglandin producing modulators on the in vitro growth of uterine epithelial cells in buffalo. The uterine epithelial cells isolated from slaughtered buffaloes were cultured in media containing a) Lipopolysaccaride (LPS): 0, 0.01, 0.1, 1, 10 and 100 μg/ml, b) linoleic acid: 0, 0.01, 0.1, 1, 10 and 100 μg/ml, c) linolenic acid: 0, 0.01, 0.1, 1, 10 and 100 μg/ml, d) oxytocin: 0, 10, 100, 1,000, 10,000 and 100,000 nm, e) tumor necrosis factor-α (TNF-α): 0, 0.05, 0.5, 1, 2.5 and 5 nm, f) progesterone: 0.1, 10, 25, 50, 75 and 100 nM, and g) estradiol: 0, 2.5, 5, 10, 20 and 50 nM. The control medium consisted of RPMI-1640 plus 10% bovine fetal serum. The growth of uterine epithelial were measured in terms of viability, cell number increment and monolayer formation. Results suggested that the growth of uterine epithelial cells were significantly (P < 0.05) higher in media containing 10 μg/ml, 10 μg/ml, 1 nm and 10 μg/ml linoleic acid, linolenic acid, TNF-α and LPS, respectively compared to control and lower doses used. Progesterone, estradiol and oxytocin did not significantly (P > 0.05) increase the growth of uterine epithelial cells. In conclusion, the growth of uterine epithelial cells increased when exposed to modulators in the order of linoleic acid ≥ linolenic acid ≥ LPS ≥ TNF-α > progesterone > estrogen > oxytocin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号