首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-adapted plants growing in high altitude such as bracken fern Pteridium arachnoideum are exposed to environmental extremes that may induce a chemical adaptive response. Here we show that there is a non-uniform distribution of low (LMP) and high molecular weight (HMP) phenolics in the frond parts of P. arachnoideum growing at high elevation. LMP–HMP levels were measured in sun-exposed (E) and self shaded (SS) pinnae between 2100 and 3190 m in the tropical Andes, during dry and rainy seasons. While there was no difference in E vs. SS contents of LMP at 2100 m, E accumulated greater LMP–HMP concentrations relative to SS as altitude increased. This difference was increased during the dry season. Linear correlations between the position of each pinnae relative to the ground level and LMP–HMP occurred along a 2570–3190 m transect. Water restriction in the dry season also caused increase of LMP and HMP. We conclude that excess UV-B radiation and water availability are important modelers of the non-adapted plant acclimation response to stress in tropical high mountain habitats.  相似文献   

2.
Rheum tanguticum is an important but endangered traditional Chinese medicine endemic to China. The wild resources have been declining. Establishing the genetic diversity of the species would assist in its conservation and breeding program. Inter-simple sequence repeats (ISSR) markers were used to assess the genetic diversity and population genetic structure in 13 wild populations of R. tanguticum from Qinghai Province. Thirteen selected primers produced 329 discernible bands, with 326 (92.94%) being polymorphic, indicating high genetic diversity at the species level. The Nei's gene diversity (He) was estimated to be 0.1724 within populations (range 0.1026–0.2104), and 0.2689 at the species level. Analysis of molecular variance (AMOVA) showed that the genetic variation was found mainly within populations (71.02%), but variance among populations was only 28.98%. In addition, Nei's differentiation coefficients (Gst) was found to be high (0.3585), confirming the relatively high level of genetic differentiation among populations. Mantel test revealed a significant correlation between genetic and geographic distances (r = 0.573, P = 0.002), and the unweighted pair-group method using arithmetic average (UPGMA) clustering and Principal coordinates analysis (PCoA) demonstrated similar results. Meanwhile, the genetic diversity of R. tanguticum positively correlated with altitude and annual mean precipitation, but negatively correlated with latitude and annual mean temperature. This result might be an explanation that the natural distribution of R. tanguticum is limited to alpine cold areas. We propose conservation strategy and breeding program for this plant.  相似文献   

3.
Evaporative water loss (EWL) and energy metabolism were measured at different temperatures in Eothenomys miletus and Apodemus chevrieri in dry air. The thermal neutral zone (TNZ) of E. miletus was 22.5–30 °C and that of A. chevrieri was 20–27.5 °C. Mean body temperatures of the two species were 35.75±0.5 and 36.54±0.61 °C. Basal metabolic rates (BMR) were 1.92±0.17 and 2.7±0.5 ml O2/g h, respectively. Average minimum thermal conductance (Cm) were 0.23±0.08 and 0.25±0.06 ml O2/g h °C. EWL in E. miletus and A. chevrieri increased with the increase in temperature; the maximal EWL at 35 °C was 4.78±0.6 mg H2O/g h in E. miletus, and 5.92±0.43 mg H2O/g h in A. chevrieri. Percentage of evaporative heat loss to total heat production (EHL/HP) increased with the increase in temperature; the maximal EHL/HP was 22.45% at 30 °C in E. miletus, and in A. chevrieri it was 19.96% at 27.5 °C. The results may reflect features of small rodents in the Hengduan mountains region: both E. miletus and A. chevrieri have high levels of BMR and high levels of total thermal conductance, compared with the predicted values based on their body masses, while their body temperatures are relatively low. EWL plays an important role in temperature regulation.  相似文献   

4.
We tested the effects of UV radiation (UVR) and nitrate limitation on the production of dimethylsulfide (DMS), particulate dimethylsulfoniopropionate (DMSPp), and particulate dimethylsulfoxide (DMSOp) in natural seawater from the Gulf of Mexico and in phytoplankton cultures. DMS/Chl a ratios in PAR-only and PAR + UV-exposed seawater were 0.44–2.0 and 0.46–1.9 nmol DMS μg−1 Chl a, respectively, whereas the ratios in cultures of Amphidinium carterae were 1.0–2.2 nmol μg−1 in PAR-exposed samples and 0.91–2.1 nmol μg−1 in PAR + UV-exposed samples. These results suggested that UVR did not substantially affect DMS/Chl a ratios in seawater and A. carterae culture samples. Similarly, UVR had no significant effect on DMSOp/Chl a in seawater samples (0.83–1.6 nmol DMSO μg−1 Chl a for PAR + UV vs. 0.70–1.5 nmol μg−1 for PAR-exposed seawater samples, respectively) or in A. carterae cultures (0.20–1.3 and 0.19–0.88 nmol DMSO μg−1 Chl a in PAR + UV- and PAR-exposed cultures, respectively). In an experiment with the diatom, Thalassiosira oceanica, the culture was grown in high nitrate (30 μM) or low nitrate (6 μM) media and exposed to PAR-only or PAR + UV. The low nitrate, PAR-only samples showed an increase of intracellular dimethylsulfoniopropionate (DMSP) concentration from 2.1 to 15 mmol L−1 in 60 h, but the increase occurred only after cultures reached the stationary phase. Cultures of T. oceanica grown under UVR had lower growth rates than those under PAR-only (μ′ = 0.17 and 0.32 d−1, respectively) and perhaps did not experience severe nitrate limitation even in the low nitrate treatment. These results suggest that the elevated UVR in low nitrate environments could result in reduction of DMSP in some species, whereas DMSP concentrations would not be affected in eutrophic areas.  相似文献   

5.
Biometric measurements of Mesozoic coccoliths (coccolith length and width) have been used in short-term biostratigraphic, taxonomic and palaeoecologic studies, but until now, not over longer time scales. Here, we present a long time-series study (∼ 30 million years) for the Upper Cretaceous, which aims to identify broad trends in coccolith size and to understand the factors governing coccolith size change over long time scales. We have generated biometric data for the dominant Upper Cretaceous coccolith groups, Broinsonia/Arkhangelskiella, Prediscosphaera, Retecapsa and Watznaueria, from 36 Cenomanian–Maastrichtian (100.5–66 Ma) samples from Goban Spur in the northeast Atlantic (DSDP Site 549). These data show that the coccolith sizes within Prediscosphaera, Retecapsa and Watznaueria were relatively stable through the Late Cretaceous, with mean size variation less than 0.7 μm. Within the Broinsonia/Arkhangelskiella group there was more pronounced variation, with a mean size increase from ∼ 6 μm in the Cenomanian to ∼ 10 μm in the Campanian. This significant change in mean size was largely driven by evolutionary turnover (species origination and extinctions), and, in particular, the appearance of larger species/subspecies (Broinsonia parca parca, Broinsonia parca constricta, Arkhangelskiella cymbiformis) in the early Campanian, replacing smaller species, such as Broinsonia signata and Broinsonia enormis. Shorter-term size fluctuations within Broinsonia/Arkhangelskiella, observed across the Late Cenomanian–Turonian and Late Campanian–Maastrichtian intervals, may, however, reflect changing palaeoenvironmental conditions, such as sea surface temperature and nutrient availability.  相似文献   

6.
Current knowledge about the abundance, growth, and primary production of the seagrass Cymodocea nodosa (Ucria) Ascherson is biased towards shallow (depth <3 m) meadows although this species also forms extensive meadows at larger depths along the coastlines. The biomass and primary production of a C. nodosa meadow located at a depth of 8–11 m was estimated at the time of maximum annual vegetative development (summer) using reconstruction techniques, and compared with those available from shallow meadows of this species. A depth-referenced data base of values at the time of maximum annual development was compiled to that end. The vegetative development of C. nodosa at 8–11 m depth was not different from that achieved by shallow (depth <3 m) meadows of this species. Only shoot density, which decreased from 1637 to 605 shoots m−2, and the annual rate of elongation of the horizontal rhizome, which increased from 23 to 71 cm apex−1 year−1, were different as depth increased from <3 to 8–11 m. Depth was a poor predictor of the vegetative development and primary production of C. nodosa. The biomass of rhizomes and roots decreased with depth (g DW m−2 = 480 (±53, S.E.) − 32 (±15, S.E.) depth (in m); R2 = 0.12, F = 4.65, d.f. = 35, P = 0.0381) which made total biomass of the meadow to show a trend of decrease with depth but the variance of biomass data explained by depth was low. The annual rate of elongation of the horizontal rhizome showed a significant positive relationship with depth (cm apex−1 year−1 = 18 (±5.1, S.E.) + 5.0 (±1.33, S.E.) depth (in m); R2 = 0.50, F = 14.07, d.f. = 14, P = 0.0021). As shoot size and growth did not change significantly with depth, the reduction of shoot density should drive any changes of biomass and productivity of C. nodosa as depth increases. The processes by which this reduction of C. nodosa abundance with depth occur remain to be elucidated.  相似文献   

7.
Anyphaena accentuata and Philodromus spp. are cold adapted and winter-active spider species. Their predation activity was investigated at constant temperatures between –4 and 30 °C. The lower temperature threshold for Anyphaena was –3.7 °C, while that of Philodromus was –1.2 °C. At 1 °C the latency to capture and prey consumption was significantly shorter in Anyphaena than in Philodromus. The capture rate increased with temperature and was maximal at 15 °C in Anyphaena and at 30 °C in Philodromus. At 30 °C, the latency to the capture was significantly shorter in Philodromus than in Anyphaena whose mortality significantly increased.  相似文献   

8.
In this study, we report a novel cellulase [β-1,4-endoglucanase (EGase), EC 3.2.1.4] cDNA (Bh-EGase II) belonging to the glycoside hydrolase family (GHF) 45 from the beetle Batocera horsfieldi. The Bh-EGase II gene spans 720 bp and consists of a single exon coding for 239 amino acid residues. Bh-EGase II showed 93.72% protein sequence identity to Ag-EGase II from the beetle Apriona germari. The GHF 45 catalytic site is conserved in Bh-EGase II. Bh-EGase II has three putative N-glycosylation sites at 56–58 (N–K–S), 99–101 (N–S–T), and 237–239 (N–Y–S), respectively. The cDNA encoding Bh-EGase II was expressed in baculovirus-infected insect BmN cells and Bombyx mori larvae. Recombinant Bh-EGase II from BmN cells and larval hemolymph had an enzymatic activity of approximately 928 U/mg. The enzymatic catalysis of recombinant Bh-EGase II showed the highest activity at 50 °C and pH 6.0.  相似文献   

9.
The family Trigonalyidae is considered to be one of the most basal lineages in the suborder Apocrita of Hymenoptera. Here, we determine the first complete mitochondrial genome of the Trigonalyidae, from the species Taeniogonalos taihorina (Bischoff, 1914). This mitochondrial genome is 15,927 bp long, with a high A + T-content of 84.60%. It contains all of the 37 typical animal mitochondrial genes and an A + T-rich region. The orders and directions of all genes are different from those of previously reported hymenopteran mitochondrial genomes. Eight tRNA genes, three protein-coding genes and the A + T-rich region were rearranged, with the dominant gene rearrangement events being translocation and local inversion. The arrangements of three tRNA clusters, trnYtrnMtrnItrnQ, trnWtrnL2trnC, and trnHtrnAtrnRtrnNtrnStrnEtrnF, and the position of the cox1 gene, are novel to the Hymenoptera, even the insects. Six long intergenic spacers are present in the genome. The secondary structures of the RNA genes are normal, except for trnS2, in which the D-stem pairing is absent.  相似文献   

10.
11.
Two Gram-staining-negative, moderately halophilic bacteria, strains M1-18T and L1-16, were isolated from a saltern located in Huelva (Spain). They were motile, strictly aerobic rods, growing in the presence of 3–25% (w/v) NaCl (optimal growth at 7.5–10% [w/v] NaCl), between pH 4.0 and 9.0 (optimal at pH 6.0–7.0) and at temperatures between 15 and 40 °C (optimal at 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that both strains showed the higher similarity values with Chromohalobacter israelensis ATCC 43985T (95.2–94.8%) and Chromohalobacter salexigens DSM 3043T (95.0–94.9%), and similarity values lower than 94.6% with other species of the genera Chromohalobacter, Kushneria, Cobetia or Halomonas. Multilocus sequence analysis (MLSA) based on the partial sequences of atpA, rpoD and secA housekeeping genes indicated that the new isolates formed an independent and monophyletic branch that was related to the peripheral genera of the family Halomonadaceae, Halotalea, Carnimonas and Zymobacter, supporting their placement as a new genus of the Halomonadaceae. The DNA–DNA hybridization between both strains was 82%, whereas the values between strain M1-18T and the most closely related species of Chromohalobacter and Kushneria were equal or lower to 48%. The major cellular fatty acids were C18:1ω7c/C18:1ω6c, C16:0, and C16:1ω7c/C16:1ω6c, a profile that differentiate this new taxon from species of the related genera. We propose the placement of both strains as a novel genus and species, within the family Halomonadaceae, with the name Larsenia salina gen. nov., sp. nov. The type strain is M1-18T (= CCM 8464 = CECT 8192T = IBRC-M 10767T = LMG 27461T).  相似文献   

12.
In the work described here, a biotrickling filter with Thiobacillus thioparus (ATCC 23645) immobilized on polyurethane foam is proposed for the removal of hydrogen sulfide contained in air. The effect of surface velocity of the recirculation medium (5.9–1.2 m/h), sulfate concentration inhibition (3.0–10.7 g/L), pH (6.0–8.2), empty bed residence time (EBRT) (150–11 s) for constant loads of 11.5 and 2.9 g S/m3/h, and pressure drop of the system were investigated.  相似文献   

13.
RIG-I (retinoic acid-inducible gene I) is an essential cytosolic pathogen recognition receptor that binds to a variety of viral RNA or DNA to induce type I interferons. In the present study, insert–deletion polymorphisms in promoter and introns of CiRIG-I (Ctenopharyngodon idella RIG-I) were explored, their associations with resistance/susceptibility to grass carp reovirus (GCRV) were analyzed. To this end, genomic sequence of CiRIG-I gene was obtained, and twenty pairs of primers were prepared for the detection of insert–deletion polymorphisms. Five insert–deletion mutations were found, a 2-bp mutation and an 8-bp mutation existed in the promoter and other three sizes in 74 bp, 146 bp and 53 bp were sited in the intron 8. After a challenge experiment, only the genotype and allele of − 740 insert–deletion mutation in the promoter and allele of 6804 insert–deletion mutation were significantly associated with resistance/susceptibility to GCRV among the five mutations (P < 0.05). To further identify this correlation, another independent challenge test was carried out. The result revealed that the cumulative mortality in ins/ins genotype individuals (43.75%) at − 740 insert–deletion mutation was significantly lower than that in ins/del (72.09%) and del/del (74.19%) genotypes (P < 0.05). Linkage disequilibrium and haplotype analysis showed 6610 insert–deletion mutation and 6804 insert–deletion mutation were linkage disequilibrium. The haplotype ins–ins (6610ins–6804ins) was significantly susceptible to GCRV, and ins–del (6610ins–6804del) was significantly resistant to GCRV (P < 0.05). Those could be potential gene markers for the future molecular selection of strains that are resistant to GCRV.  相似文献   

14.
Combined and/or interactive effects of inorganic nitrogen (as ammonium) and irradiance on the accumulation of nitrogenous compounds, like UV-absorbing mycosporine-like amino acids (MAAs), chlorophyll a and phycobiliproteins, were examined in the red alga Grateloupia lanceola (J. Agardh) J. Agardh in a high irradiance laboratory exposure and a subsequent recovery period under low light. Also, photosynthetic activity as in vivo chlorophyll fluorescence of photosystem II, i.e. optimum quantum yield (Fv/Fm), electron transport rate (ETR) and quantum efficiency, were examined. Photosynthetic activity, phycobiliproteins and internal nitrogen content declined during the 3-day PAR (photosynthetically active radiation; 600 μmol s−1 m−2) and PAR + UVR (ultraviolet radiation; UVB 280–315 nm 0.8 W m−2, UVA 315–400 nm 16 W m−2) exposure. Ammonium supplied in the culture medium (0, 100 and 300 μM NH4Cl) modified the responses of the alga to high irradiance exposures in a concentration dependent manner, mainly with respect to recovery, as the highest recovery during a 10-day low light period was produced under elevated concentration of ammonium (300 μM). The recovery of photosynthetic activity and phycobiliproteins was enhanced in the algae previously incubated under PAR + UVR as compared to exposure to only PAR, suggesting a beneficial effect of UVR on recovery or photoprotective processes under enriched nitrogen conditions. However, the content of MAAs did not follow the same pattern and thus it could not be concluded as the cause of observed enhanced recovery.  相似文献   

15.
Psathyrostachys huashanica Keng., a species endemic to China, is only distributed in Huashan Mountain in Shaanxi Province. It has been listed as “national first-class protected rare species.” In this study, the microsatellites of barley were used to analyze genetic diversity of P. huashanica populations sampled from three valleys (Huangpu, Xian and Huashan Valleys) in Mt. Huashan. A total of 33 alleles of 11 loci were detected from 266 individuals. The observed average number of alleles (A) is 2.75; the effective number of alleles (Ae) is 1.67. The percentage of polymorphic loci (PPB) is 58.33% in Huangpu Valley, 75% in Xian Valley, 83.33% in Huashan Valley, and the total PPB is 83.33%. About 77.6% of (FST = 0.324) genetic diversity was observed within the subpopulations. Genetic differentiation within each subpopulations was higher than that among the subpopulations. Mean genetic distance is 0.17 (range: 0.010–0.401). Correlation analysis detected significant correlation between genetic distance and vertical distance of altitude in Huashan Valley. Differentiation mainly occurred between the higher altitude subpopulations and the lower altitude subpopulations, suggesting that altitude might be the major factor that restricted the gene flow between different altitude subpopulations and resulted in differentiation of subpopulations.  相似文献   

16.
Many epidemiological studies have investigated IL1α and IL1β polymorphisms with SLE risk, but no conclusions are available because of conflicting results. This meta-analysis was performed to more precisely estimate the relationships. The databases of PubMed updated to September 1st, 2012 were retrieved. Odds ratio (OR) and corresponding 95% confidence interval (95% CI) as effect size were calculated by a fixed- or random-effect model. In total, six case–control studies for IL1β − 511C/T, four studies for IL1β + 3953C/T, three studies for IL1α − 889C/T and three studies for IL1α + 4845G/T were involved in this analysis. The results indicated that for IL1α − 889C/T polymorphism T allele was associated with decreased risk of SLE (OR (95% CI)) (T vs. C: 0.802 (0.679–0.949); TT + CT vs. CC: 0.615 (0.380–0.995); TT vs. CC: 0.679 (0.466–0.989)). However, when analysis for TT vs. CT + CC was conducted, the result indicated that IL1α − 889C/T polymorphism was not associated with SLE (OR (95% CI): 0.847 (0.595–1.205)). Combined analysis indicated that IL1β − 511C/T polymorphism was not overall associated with risk of SLE (OR (95% CI)) (T vs. C: 1.113 (0.954–1.298); TT vs. CT + CC: 1.146 (0.889–1.447); TT + CT vs. CC: 1.145 (0.903–1.452); TT vs. CC: 1.255 (0.928–1.698)). When subgroup analysis for Asian ethnicity was conducted, the results indicated that IL1β − 511C/T polymorphism was associated with SLE only for TT vs. CT + CC (OR (95% CI): 1.468 (1.001–2.152)), but was not associated for T vs. C (OR (95% CI): 1.214 (0.955–1.544)), TT + CT vs. CC (OR (95% CI): 1.112 (0.765–1.615)) and TT vs.CC (OR (95% CI): 1.411 (0.896–2.222)). In addition, overall analyses indicated that IL1β + 3953C/T and IL1α + 4845G/C polymorphisms were also not associated with risk of SLE (OR (95% CI)) (for IL1β + 3953C/T T vs. C: 0.996 (0.610–1.626), TT vs. CT + CC: 0.658 (0.318–1.358), TT + CT vs. CC: 1.021 (0.618–1.687), TT vs. CC: 0.640 (0.309–1.325); for IL1α + 4845G/T T vs. G: 1.067 (0.791–1.440), TT + GT vs. GG: 0.934 (0.646–1.351)).This study inferred that IL1α − 889C/T polymorphism might be moderately associated with SLE, but no sufficient evidence was available to support any associations between IL1β + 3953C/T or IL1α + 4845G/C polymorphisms and SLE. We could not draw a definite conclusion between IL1β − 511C/T polymorphism and risk of SLE owing to the limited data. Further large sample-sized studies should be required.  相似文献   

17.
Importance to know and understand diversity of Himalayan plants is increasingly recognized considering the fact that various natural and anthropogenic pressures might bring about serious influences to morphological and genetic diversity of the vegetation in the region. In this context, Valeriana jatamansi was investigated in detail, taking into account its importance in various Ayurvedic and modern medicines. Randomly selected mature plants from twenty five different populations (located between 1215 m to 2775 m asl) of V. jatamansi were analysed for their morphological attributes. Further, ISSR markers were used to detect genetic variation among 151 plants of selected 25 populations. Use of 20 primers yielded 125 reproducible polymorphic loci which were used to estimate different parameters of genetic diversity. These parameters were in turn applied to develop relationships with habitat types and altitude range. Significant variation (p < 0.05) in above ground dry weight (AGDW) and below ground dry weight (BGDW) across the populations was observed. Nei's genetic diversity index (He) ranged from 0.25 to 0.37 across the populations, with a mean of 0.31. Genetic diversity exhibited a decreasing trend with increasing altitude, and maximum diversity (He = 0.325) was observed in the range of 1201–1500 m asl. Among the different habitat conditions, highest genetic diversity (He = 0.334; Pp = 84.38) was observed in grassland habitats while minimum in mixed forest habitats (He = 0.285; Pp = 72.433). The genetic diversity (He) had significant negative relationships with AGDW, BGDW and rhizome diameter (Pearson r = −0.359, −0.424 and −0.317, respectively; p < 0.05). The genetic characterization of V. jatamansi from the western Himalaya by this study suggests influences of habitat types and the altitudinal range upon genetic diversity, and based on these proposals for conservation strategies in favour of the species are made.  相似文献   

18.
The resting metabolic rate (RMR) of seasonally-acclimated Mabuya brevicollis of various body masses was determined at 20, 25, 30, 35 and 40 °C, using open-flow respirometry. RMR (ml g−1 h−1) decreased with increasing mass at each temperature. RMRs increaProd. Type: FTPsed as temperature increased. The highest and lowest Q10 values were obtained for the temperature ranges 20–25 °C and 30–35 °C for the summer-acclimated lizards. The exponent of mass “b” in the metabolism-body mass relation ranged from 0.41 to 0.61. b values were lower in the autumn and winter-acclimated lizards than in spring and summer-acclimated lizards. Seasonal acclimation effects were evident at all temperatures (20–40 °C) for M. brevicollis. Winter-acclimated skinks had the lowest metabolic rates at different temperatures. The pattern of acclimation exhibited by M. brevicollis may represent a useful adaptation for lizards inhabiting subtropical deserts to promote activity during their active seasons.  相似文献   

19.
Studies investigating the association between interleukin-13 (IL-13) single nucleotide polymorphism (SNP) rs20541 and allergic rhinitis (AR) risk have reported conflicting results. The aim of the present study was to conduct a meta-analysis assessing the possible association of IL-13 SNP rs20541 with AR risk. Eight studies were included in the present meta-analysis (2153 cases and 3931 controls). The combined results based on all studies showed that IL-13 SNP rs20541 was associated with increased AR risk (Gln versus Arg: odds ratio (OR) = 1.18, 95% confidence interval (CI) = 1.08–1.30; Gln/Gln versus Arg/Arg: OR = 1.52, 95% CI = 1.20–1.92; Arg/Gln + Gln/Gln versus Arg/Arg: OR = 1.19, 95% CI = 1.06–1.33; Gln/Gln versus Arg/Gln + Arg/Arg: OR = 1.42, 95% CI = 1.13–1.79). When stratifying for race, IL-13 SNP rs20541 exhibited increased AR risk in Asians (Gln versus Arg: OR = 1.20, 95% CI = 1.06–1.36; Gln/Gln versus Arg/Arg: OR = 1.57, 95% CI = 1.17–2.12; Arg/Gln + Gln/Gln versus Arg/Arg: OR = 1.22, 95% CI = 1.04–1.44; Gln/Gln versus Arg/Gln + Arg/Arg: OR = 1.45, 95% CI = 1.09–1.93), while no significant association was detected in Caucasians (Gln versus Arg: OR = 1.28, 95% CI = 0.93 ~ 1.78; Gln/Gln versus Arg/Arg: OR = 1.42, 95% CI = 0.96–2.11; Arg/Gln + Gln/Gln versus Arg/Arg: OR = 1.35, 95% CI = 0.89–2.05; Gln/Gln versus Arg/Gln + Arg/Arg: OR = 1.37, 95% CI = 0.93–2.02). This meta-analysis supported that IL-13 SNP rs20541 was associated with AR, particularly in Asians.  相似文献   

20.
RNA binding proteins control gene expression by the attenuation/antitermination mechanism. HutP is an RNA binding antitermination protein. It regulates the expression of hut operon when it binds with RNA by modulating the secondary structure of single-stranded hut mRNA. HutP necessitates the presence of l-histidine and divalent metal ion to bind with RNA. Herein, we report the crystal structures of ternary complex (HutP–l-histidine–Mg2+) and EDTA (0.5 M) treated ternary complex (HutP–l-histidine–Mg2+), solved at 1.9 Å and 2.5 Å resolutions, respectively, from Geobacillus thermodenitrificans. The addition of 0.5 M EDTA does not affect the overall metal-ion mediated ternary complex structure and however, the metal ions at the non-specific binding sites are chelated, as evidenced from the results of structural features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号