首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Aquatic Botany》2007,86(3):223-228
Leaf anatomical changes of Bruguiera gymnorrhiza (L.) Lamk seedlings grown in experimental equipment that simulated semidiurnal tides with salinities of 15‰ under greenhouse conditions were studied. Compared with the 0 h treatments, leaf thickness, palisade parenchyma thickness, spongy parenchyma thickness, palisade–spongy thickness ratio, xylem length of the vascular system and number of vessels and vessel lines under the 12 h treatments declined 31.9%, 59.1%, 21.7%, 47.1%, 48.9%, 67.1% and 51.6%, respectively. However, the upper and lower epidermis to leaf thickness ratio, upper and lower hypodermis to leaf thickness ratio and stomatal density of 12 h treatments showed increases of 47.9%, 50.9%, 14.3%, 21.4% and 104.3% over those of 0 h treatments, respectively. The cuticle to leaf thickness ratio (inundated for 0–6 h) decreased significantly with waterlogging duration at first and then increased. Moreover, the percentage of intercellular spaces in spongy tissue decreased from 4 to 10 h treatment and then tended to increase by nearly 20% in the 12 h treatment. Tannin cells that were distributed in the vascular tissue, crystalliferous cells and phloem fibers were more abundant in the short-duration waterlogging treatments than in the long-duration waterlogging treatment. It was concluded that significant changes in the leaf anatomical features as a result of periods of immersion would have come at the cost of reduction of photosynthesis and water transport when waterlogging duration was longer than 2 h. These anatomical characteristics further proved that B. gymnorrhiza had a relatively low tolerance to waterlogging at the seedling stage.  相似文献   

2.
This study was aimed to evaluate anatomical responses to waterlogging of mangrove seedlings (Avicennia marina (Forsk.) Vierh.) grown in experimentally simulated semidiurnal tides. The following treatments were used: 0, 2, 4, 6, 8, 10 and 12 h submergence period with two daily tidal cycles. With increasing waterlogging duration, the leaf thickness, mesophyll thickness, palisade parenchyma thickness, palisade–spongy ratio and hypodermis thickness decreased, but the mesophyll to leaf thickness ratio, stem and pith diameter, and cortex thickness increased. The tangential vessel diameter, vessel wall thickness in stem and leaf and fiber wall thickness in stem showed a similar tendency in response to waterlogging, remaining constant between 0 and 4 h waterlogging duration, but decreasing with more prolonged waterlogging. When the waterlogging duration exceeded 4 h, no sclerenchyma cells in leaves or gelatinous fibers in stems were observed. The response of these leaf and stem features indicated that water transport and mechanical support could remain relatively stable in the 0–4 h waterlogging duration, but they would be negatively influenced by longer flooding. Tissues for gas exchange were stimulated by waterlogging, while the functions of water storage, photosynthesis, mesophyll conductance were weakened with increasing waterlogging.  相似文献   

3.
The effects of bunker fuel oil on morphological and physiological responses of Avicennia marina and Bruguiera gymnorrhiza were investigated in glasshouse and field experiments. In the glasshouse study, 15-month-old seedlings of A. marina were subjected to oiling or debarking treatments for 6 months. Oiling or debarking of a 5 cm ring of the basal portion of the stem, alone and in combination, reduced leaf CO2 exchange by over 50% and resulted in the production of adventitious roots immediately above the debarked and/or oiled stem 8–12 weeks after the commencement of treatments. In the field study, sediment oiling at a single dose of 5 l m−2 of A. marina and B. gymnorrhiza trees reduced electron transport rate (ETR) through Photosystem II (PSII) and PSII quantum yield. Oiling also reduced the photochemical efficiency of PSII (Fv/im) in B. gymnorrhiza, but not in A. marina. After 15 weeks of oiling, adventitious roots developed at the base of the stem in A. marina, but not in B. gymnorrhiza. Naturally occurring A. marina seedlings with adventitious roots exhibited lower leaf CO2 exchange rates, photochemical efficiency of PSII and leaf chlorophyll content than similar seedlings without these roots. These results indicate that bunker fuel oil adversely affects photosynthetic performance of A. marina and B. gymnorrhiza mangroves. A. marina responds to oiling by producing adventitious roots at the base of the stem. Adventitious root production at the base of the stem may be a useful biological indicator of oil or other toxic pollutants in A. marina.  相似文献   

4.
Responses of Kandelia candel and Bruguiera gymnorrhiza in loamy-sandy (coarse) and silty (fine) soils to water level rise and prolonged inundation were investigated under mesocosm and field conditions. Acidity due to simulated sea level rise of 30 cm was more serious in fine soil than that in coarse soil. Propagules of K. candel had more rapid establishments under high water level and prolonged inundation, but establishments of B. gymnorrhiza were not significantly influenced by tide condition. Water level rise of 30 cm and prolonged inundation stimulated early growth especially in stem height increments during the first 2 months for K. candel and B. gymnorrhiza. However, relative growth rates (RGRs) during the second 2 months did not significantly change for K. candel and even decreased for B. gymnorrhiza with water level rise. The root/shoot biomass ratio in both K. candel and B. gymnorrhiza treated with high water level was significantly lower than that treated with low water level, especially in coarse soil. Biomass percentages of coarse roots of K. candel and B. gymnorrhiza seedlings significantly increased with water level rise. Water level rise led to decreases in Chl. a/b ratios in leaves of K. candel seedlings, but the ratios did not significantly change with water level for B. gymnorrhiza. Decreases in RGRs of B. gymnorrhiza were due to decreases in total leaf area resulting from increases in stomatal density. Contents of N and P in roots tended to increase with water level rise and prolonged inundation. Under both high and low water levels, all propagules of K. candel and B. gymnorrhiza successfully established and the seedlings survived throughout the mesocosm experiment. For the field trial, K. candel seedlings had similar high survival rates of over 90%, while B. gymnorrhiza seedlings had much less survival in lower intertidal zones than in upper intertidal zones. These differences were ascribed to stronger tidal action and more sedimentation in the field than under mesocosm conditions. Survived seedlings of K. candel and B. gymnorrhiza from both propagule plantation and seedling transplantation in field trial also showed higher stem increments during the first 4 months in lower intertidal zones.  相似文献   

5.
The present study demonstrates the influence of the duration of periodical waterlogging with artificial seawater on the photosynthetic and physiological responses of Kandelia candel L. Druce seedlings, the pre-dominant species of subtropical mangroves in China. Artificial tidal fluctuations applied here closely mimicked the twice daily tidal inundation which mangroves experience in the field. All the seedlings were immersed in artificial seawater during 70-day cultivation. Similar trends with increasing duration of immersion occurred in photosynthetic rate, transpiration rate, stomatal conductance and intercellular CO2 concentration, where significant decreases occurred only in long time treatments of 10 or 12 h. Water used efficiency and chlorophyll contents showed lower in medium periods and higher in long periods of immersion. This indicates that the increase in pigment contents of leaves was ineffective in promoting Pn under long time immersion. Light saturation points under short time waterlogging (0–4 h) occurred at light intensities of 800–1000 μmol/m2/s, and at around 400 μmol/m2/s in long time treatments (8–12 h). Long periods of tidal immersion therefore significantly inhibited photosynthesis of mature leaves. Alcohol dehydrogenase and oxidase activity in roots both increased under longer immersion periods, suggesting that roots are sensitive to anaerobiosis under long term waterlogging. The activities of peroxidase and superoxide dismutase in mature leaves increased in 8 h and 10 h treatments, respectively. The content of malondialdehyde in mature leaves increased under long time treatments. Abscisic acid accumulation in mature leaves also had a sharp increase from 8 h to 12 h inundation. Even though the anti-oxidative enzymes were induced by waterlogging, this was not sufficient to protect the seedlings from senescence. The results suggested that K. candel seedlings completely tolerated tidal immersion by seawater up to about 8 h in each cycle, which matches the natural distribution of K. candel in inter-tidal zones of China.  相似文献   

6.
Effects of duration of waterlogging on growth and physiological responses of two mangrove species, Bruguiera gymnorrhiza and Kandelia candel, were investigated. The relative growth rate of B. gymnorrhiza decreased significantly with waterlogged time, with the highest value found for drained plants and the lowest in plants under 12 weeks waterlogging. On the contrary, no significant difference was found between waterlogged and drained K. candel plants. The shoot to root biomass ratio of K. candel increased when subjected to 8 or 12 weeks waterlogging but little change was recorded in B. gymnorrhiza, indicating a shift in biomass allocation from roots to shoots in K. candel under prolonged waterlogging but not in B. gymnorrhiza. These different growth responses between the two mangrove species supported the hypothesis that K. candel is more tolerant to waterlogging than B. gymnorrhiza. Under 12 weeks waterlogged treatment, root oxidase activity significantly decreased in B. gymnorrhiza but increased in K. candel. Chlorophyll contents of K. candel increased more rapidly in response to waterlogging than B. gymnorrhiza. Activities of both peroxidase and superoxide dismutase increased significantly in leaves of K. candel when the waterlogging period was longer than 8 weeks, while only the peroxidase activity of B. gymnorrhiza showed a significant increase, indicating that K. candel had stronger resistance to the oxidant damage resulting from waterlogging. These physiological indicators further supported the hypothesis that K. candel is more tolerant to waterlogging than B. gymnorrhiza.  相似文献   

7.
Experiments were conducted in an outdoor facility to quantify growth responses of six mangrove species to rates of dissolved inorganic nitrogen and phosphorus supply mimicking the range of N and P mineralization rates in natural soils. Growth of all six species on nitrogen was nonlinear. Stem extension rates of Rhizophora apiculata and Xylocarpus granatum were enhanced to the highest rate of N supply (50 mmol m− 2 d− 1); Bruguiera gymnorrhiza, Avicennia marina, and Xylocarpus moluccensis stem growth leveled off by 10 mmol m− 2 d− 1. Stem growth of Ceriops tagal peaked at 24-26 mmol N m− 2 d− 1. Except for A. marina and C. tagal, rates of biomass increase declined at the highest supply rate, indicating NH4+ toxicity. At different rates of P supply, stem extension rates and rates of biomass increase of R. apiculata and C. tagal best-fit Gaussian curves and B. gymnorrhiza stem growth and biomass increase best-fit sigmoidal and Gaussian curves, respectively; X. moluccensis stem and biomass growth increased linearly, but stem and biomass growth rates of A. marina did not vary in relation to P supply. Stem growth of X. granatum was Gaussian but rates of biomass increase best-fit a quadratic equation. Changes in leaf and root N and P content mirrored the growth responses. As rates of N and P mineralization in natural mangrove soils overlap with the lowest rates of N and P supplied in these experiments, the growth responses imply that mangroves are intrinsically nutrient-limited at mineralization rates often encountered in nature. Such species specificity may have significant implications for recruitment success and the establishment of species gradients within mangrove forests.  相似文献   

8.
The root anatomical features of eight mangrove species in Hong Kong were similar, with large aerenchymal lacunae in the cortex for efficient internal oxygen transfer and an outer barrier consisting of an epidermis and hypodermis to prevent oxygen loss. The spatial pattern of radial oxygen loss (ROL) was also comparable, with more oxygen lost from the tip than that from the basal and mature zones. However, the aerenchyma in the cortex, the barrier and the extent of ROL varied along the root and these variations were species-specific. The whole root of Avicennia marina (Forsk.) Vierh., Acanthus ilicifolius L., Aegiceras corniculatum (Linn.) Blanco, Kandelia obovata Sheue, Liu & Yong (previously known as Kandelia candel (L.) Druce) and Heriteria littoralis Dryand. ex W. Ait. had schizogenous aerenchyma, while the aerenchyma of Lumnitzera racemosa Willd. and Bruguiera gymnorrhiza (L.) Poir changed from schizogenous in the root tip to lysigenous in the other parts of the root. Excoecaria agallocha L. displayed the opposite pattern, from lysigenous in the root tip to schizogenous further up. Among the eight species, the roots of A. marina and A. ilicifolius had the largest areas of aerenchyma air spaces, but they also had the weakest barrier. On the other hand, H. littoralis had the least longitudinal oxygen transfer because of its smaller area of aerenchyma air spaces in its root. The tolerance of mangrove species to waterlogged soil followed the order of A. marina (most foreshore species) > A. ilicifolius > K. obovata > A. corniculatum > B. gymnorrhiza > E. agallocha > L. racemosa > H. littoralis (most landward species), which is related to their anatomical features of root cortex, epidermis and hypodermis.  相似文献   

9.
Mangroves will either face longer tidal inundation or retreat landwards in response to on-going accelerated sea level rise. However, little is known about the growth, regeneration or colonization of mangrove seedlings under the different tidal inundation regimes associated with accelerated sea level rise. In the present study, a field survey and a greenhouse mesocosm experiment were conducted to evaluate possible effects of accelerated sea level rise on colonization, establishment and seedling growth of a mangrove pioneer species, Avicennia marina. Avicennia populations at different elevations of the intertidal zone on Xiamen Island in Fujian Province, China showed distinctive patterns in both seedling density and plant age. The seedlings at lower elevations had less annual biomass accumulation and population productivity, but higher shoot to root ratios, suggesting that elevation has positive effects on seedling growth. The greenhouse mesocosm experiment with 1-year-old A. marina seedlings utilized five inundation periods (0, 2, 4, 6 and 12 h in a semidiurnal tidal cycle) and two inundation depths (root immersion and canopy immersion). Both inundation period and depth exerted significant and negative effects on biomass accumulation, photosynthetic rate, leaf electron transportation and water use efficiency. However, the negative effects of canopy immersion were more profound than root immersion. Canopy immersion exacerbated the effects of prolonged inundation, with no seedlings surviving under canopy immersion at the 12-hour treatment. These results suggest that at lower elevations with higher sea level, canopy immersion will have greater negative effects on seedling colonization, establishment and early growth of A. marina. This finding is instrumental in predicting the future dynamics of mangrove forests under increasing sea levels.  相似文献   

10.
The rice stem borer, Chilo suppressalis, enters facultative diapause as fully grown larvae in response to short-day conditions during the autumn. Our results showed that the critical night length for diapause induction in C. suppressalis was between 10 h 22 min and 10 h 45 min at 22, 25 and 28 °C, 11 h 18 min at 31 °C, and between 10 h 5 min and 10 h 20 min under field conditions (average temperature ranged from 27.2 to 30.7 °C). The diapause incidence declined in ultra-long nights (18-22 h scotophases) and DD, and increased in ultra-short nights (2-6 h scotophases) and LL. Moreover, we found that the third instar was the stage most sensitive to the photoperiod, and night length played an essential role in the initiation of diapause. Night-interruption experiments with a 1-h light pulse at LD 12:12 (light 12:dark 12) exhibited two troughs of diapause inhibition, with one occurring in early scotophase and the other in late scotophase. Field observations for six years showed that most larvae entered winter diapause in August in response to declining day lengths, despite the high temperatures prevailing during August. By periodically transferring the field-collected overwintering larvae to different photoperiods and temperatures, the results showed that photoperiod had a significant influence on diapause development during the early phase of diapause, while high temperature significantly accelerated the termination of larval diapause.  相似文献   

11.
Six perennial species endemic to South West Western Australia (Acacia trulliformis, Austrostipa geoffreyi, Banksia oligantha, B. mucronulata, Hakea tuberculata and Orthrosanthus muelleri) were screened for salt tolerance and recovery during seed germination. Growth and survival of 6-month old seedlings of these six plus a further vegetatively propagated species (Myoporum turbinatum) were subsequently examined in response to salt and waterlogging application. Water uptake under elevated saline conditions (200 and 400 mM NaCl) was slow, but not restrictive to germination. Moreover, a large proportion of seeds that were unable to germinate under saline conditions recovered after being transferred to non-saline conditions. Germination, growth and survival varied with species and the salt concentration used. Increasing salt concentrations tended to increase time to germination. Germination of Acacia trulliformis seeds declined exponentially with increasing salinity, and seedlings suffered reduced growth under saline and non-saline waterlogging. Austrostipa geoffreyi seeds were sensitive to saline treatments but seedlings were highly tolerant of both saline and/or waterlogged conditions. Germination of the three proteaceous species declined significantly under highly saline conditions (400 mM NaCl) with seedlings of the two Banksia species not surviving any treatment with the exception of non-saline waterlogging. Seedlings of H. tuberculata were more resilient to treatment conditions. Orthrosanthus muelleri was sensitive to salt stress during germination but was highly resistant to waterlogging, both saline and non-saline. This study provides an insight into the response and resilience of components of the vegetation understorey of saline-affected regions of Western Australia not usually evaluated allowing for more informed restoration.  相似文献   

12.

Background

5-Fluorouracil (5-FU) is a cornerstone of chemotherapy for colorectal cancer (CRC), and the major targets of 5-FU are thymidylate synthase (TS), methylenetetrahydrofolate reductase (MTHFR), and reduced folate carrier 1 (RFC1). We hypothesized that polymorphisms in the genes encoding these proteins would be associated with CRC patient survival.

Patients and methods

We genotyped the following polymorphisms in 372 CRC patients: TS enhancer region (TSER), TS 1494del6, MTHFR 677C > T and 1298A > C, and RFC1 − 43T > C, 80G > A, and 696C > T. Using Kaplan–Meier curves, log-rank tests, and Cox proportional hazard models, we evaluated associations between these polymorphisms and overall survival (OS).

Results

The combined TS 1494 0bp6bp + 6bp6bp genotype was associated with reduced OS compared to the TS 1494 0bp0bp genotype. Among rectal cancer patients, the RFC1 − 43CC and 80AA genotypes were associated with favorable OS.

Conclusions

Our data suggest that TS and RFC1 polymorphisms are associated with CRC prognosis in Korean patients. Further studies are needed to verify these findings.  相似文献   

13.
We determined leaf and stem strength for Arundo donax from plants grown in different geographic areas and at different times within their growing cycle. Mean leaf strength for plants collected within California was 1.72 Newtons (N) and ranged from 0.36 to 6.32 N, based on 1170 individual determinations. For leaves collected from 30 plants within four states between July 11 and 20, 2007, mean leaf strength was 1.58 N based on 936 determinations. Values ranged from 0.24 to 4.90 N. Overall, leaf strength showed statistically significant changes depending on the sampling date, sampling location, type of leaf sampled, and position within the leaf where the measurement was taken. In general leaf strength was greater near the base of the leaf and decreased with distance away from the base; leaf strength changed as the growing season progressed; and first year leaves had leaf strength values about 25% greater than leaves produced on stems >1-year old. This represents two of the three age categories of leaves which may be present on giant reed at any one time. Stem strength and stem wall thickness were strongly correlated (Kendall's Tau b = 0.92, P < 0.0001, N = 26). Linear regression indicated that mean stem strength decreased by approximately 6.8% (95% confidence limits 5.8-7.7%) from one node to the successive node progressing from the stem base to the shoot tip. These results imply that the ability of biological control agents to damage A. donax leaves may not be the same across the locations this plant occurs or at all times during the growing season within a given location.  相似文献   

14.
Li X  Wang Y  Yan X F 《农业工程》2007,27(1):58-63
Amur corktree (Phellodendron amurense) is one of the important associated species in broadleaved-Korean pine forests, and in the pharmaceutical resource plants of famous Chinese traditional medicine, named cortex phellodendri. Berberine, jatrorrhizine and palmatine are the main alkaloids to which high attention is paid by the researchers. In the present study, water stress treatments with four conditions, that is, mild drought, severe drought, waterlogging, and control (soil water potentials were controlled in the ranges of-40—-20 KPa,-80—-60 KPa, <-80 KPa and-20—0 KPa), were performed using the technique of root-sphere osmotic irrigation in a soil pond. The changes in the main medicinal compositions of berberine, jatrorrhizine and palmatine contents under different water conditions were discussed. As for the annual growing of amur corktree seedlings, mild drought was generally beneficial to the synthesis and accumulation of the three above-mentioned alkaloid contents. The three alkaloid contents did not show great changes under severe drought whereas those contents had significantly reduced under waterlogging compared with controls. Meanwhile, the growth of amur corktree seedlings was inhibited by the treatments of drought and waterlogging. The height, diameter and biomass of amur corktree seedlings were significantly lower than those of the control seedlings, which meant that the three alkaloid contents in a single seedling still kept the highest in control seedlings. Stem cortex was the medical part in Chinese traditional medicine and also kept the most abundant of the three alkaloid contents in amur corktree. Results indicated that short periods of mild drought could improve the berberine contents in the stem cortex, which might have reference value for the cultivation of amur corktree seedlings to obtain alkaloids.  相似文献   

15.
Nipa palm (Nypa fruticans) is the only palm that grows in mangrove vegetation. We investigated the effect of salt stress on the growth and physiology of 6-month-old seedlings of Nipa palm exposed to different degrees of salt stress (as NaCl) in pot culture. The overall growth performance of Nipa palm was unaffected by mild salt stress (8.9−16.6 dS m−1), whereas seedlings grown under severe salt stress (EC = 57.2 dS m−1) had lower chlorophyll content and fluorescence, reduced net photosynthesis and transpiration, which resulted in reduced growth of the plants. Na+ contents in leaf, petiole, and root tissues increased considerably under salt stress, depending upon the NaCl levels in the soil solution. Under salt-stress K+ content declined, whereas Ca2+ content increased somewhat, in parallel to Na+. Free proline accumulated in plants growing under high salt stress (EC = 57.2 dS m−1). In contrast, soluble sugars were enriched under intermediate levels of salt stress (EC = 16.6 dS m−1). The results obtained in the present study suggest that, based on ecophysiological data, N. fruticans is a species best adapted to grow in mangrove coastal areas with moderate only salt load, and circumscribing quite well the actual areas of occurrence of this palm in the gradient from seawater habitats to inland sites. © 2014 Elsevier GmbH  相似文献   

16.
Complete profiling would substantially facilitate the fundamental understanding of tumor angiogenesis and of possible anti-angiogenesis cancer treatments. We developed an integrated synchrotron-based methodology with excellent performances: detection of very small vessels by high spatial resolution (~ 1 μm) and nanoparticle contrast enhancement, in vivo dynamics investigations with high temporal resolution (~ 1 ms), and three-dimensional quantitative morphology parametrization by computer tracing. The smallest (3–10 μm) microvessels were found to constitute > 80% of the tumor vasculature and exhibit many structural anomalies. Practical applications are presented, including vessel microanalysis in xenografted tumors, monitoring the effects of anti-angiogenetic agents and in vivo detection of tumor vascular rheological properties.  相似文献   

17.
As water stress, including drought and waterlogging, can severely affect plant growth, this study investigated the effects of an endophyte from the genus Epichloë on two different ecotypes of Festuca sinensis grass under five soil water conditions in a controlled greenhouse experiment. Changes in F. sinensis plants grown with (E+) and without the endophyte (E−) were evaluated as they were subjected to different water treatments (20%, 35%, 50%, 65% and 80% relative saturation moisture content, RSMC). Growth parameters such as plant height, number of tillers, blade width, stem diameter, root length, total biomass, root-shoot ratio and relative water content were determined. The results showed that drought and waterlogging significantly (P < 0.05) inhibited the growth of F. sinensis. The presence of the endophyte significantly (P < 0.05) increased plant growth and root-shoot ratio under drought and waterlogged conditions. In addition, the plant height, number of tillers, blade width, stem diameter and total biomass in seedlings of both ecotypes reached the maximum at 65% RSMC, which suggests the optimal water condition. These findings also show that moderate drought (35% and 50% RSMC) could promote root growth of grass seedlings. Therefore, endophytic infections can result in enhanced host plant resistance to drought and waterlogged conditions.  相似文献   

18.
In Amazonian floodplains, plant survival is determined by adaptations and growth strategies to effectively capture sunlight and endure extended periods of waterlogging. By measuring gas exchange, quantum efficiency of photosystem 2 (PSII), and growth parameters, we investigated the combined effects of flooding gradients and light on two common evergreen floodplain tree species, the light-tolerant Cecropia latiloba and the shade-tolerant Pouteria glomerata. Individual plants were subjected to different combinations of light and flooding intensity in short-term and long-term experiments. Plants of C. latiloba lost all their leaves under total submersion treatments (plants flooded to apex and with reduced irradiance) and showed highest maximum assimilation rates (Amax) in not flooded, high light treatments (6.1 μmol CO2 m−2 s−1). Individuals of P. glomerata showed similar patterns, with Amax increasing from 1.9 μmol CO2 m−2 s−1 under total flooding to 7.1 μmol CO2 m−2 s−1 in not flooded, high light treatments. During the long-term flooding experiment, quantum efficiency of PSII (Fv/Fm) of C. latiloba was not affected by partial flooding. In contrast, in P. glomerata Fv/Fm decreased to values below 0.73 after 120 days of total flooding. Moreover, total submergence led P. glomerata to reduce significantly light saturation point (LSP), as compared to C. latiloba. For both species morphological adjustments to long-term flooding, such as the production of adventitious roots, resulted in reduced total biomass, relative growth rate (RGR) and leaf mass ratio (LMR). Growth increase in C. latiloba seemed to be more limited by low-light than by flooding. Therefore, the predominant occurrence of this species is in open areas with high light intensities and high levels of inundation. In P. glomerata flooding induced high reductions of growth and photosynthesis, whereas light was not limiting. This species is more abundant in positions where irradiance is reduced and periods of submergence are slightly modest. We could show that the physiological requirements are directly responsible for the flooding (C. latiloba) and shade (P. glomerata) tolerance of the two species, which explains their local distribution in Amazonian floodplain forests.  相似文献   

19.
Although high-impact hemodynamic forces are thought to lead to cerebral aneurysmal change, little is known about the aneurysm formation on the inner aspect of vascular bends such as the internal carotid artery (ICA) siphon where wall shear stress (WSS) is expected to be low. This study evaluates the effect of vessel curvature and hemodynamics on aneurysm formation along the inner carotid siphon. Catheter 3D-rotational angiographic volumes of 35 ICA (10 aneurysms, 25 controls) were evaluated in 3D for radius of curvature and peak curvature of the siphon bend, followed by univariate statistical analysis. Computational fluid dynamic (CFD) simulations were performed on patient-derived models after aneurysm removal and on synthetic variants of increasing curvature. Peak focal siphon curvature was significantly higher in aneurysm bearing ICAs (0.36±0.045 vs. 0.30±0.048 mm−1, p=0.003), with no difference in global radius of curvature (p=0.36). In CFD simulations, increasing parametric curvature tightness (from 5 to 3 mm radius) resulted in dramatic increase of WSS and WSS gradient magnitude (WSSG) on the inner wall of the bend. In patient-derived data, the location of aneurysms coincided with regions of low WSS (<4 Pa) flanked by high WSS and WSSG peaks. WSS peaks correlated with the aneurysm neck. In contrast, control siphon bends displayed low, almost constant, WSS and WSSG profiles with little spatial variation. High bend curvature induces dynamically fluctuating high proximal WSS and WSSG followed by regions of flow stasis and recirculation, leading to local conditions known to induce destructive vessel wall remodeling and aneurysmal initiation.  相似文献   

20.
The effects of edaphic moisture in anatomical characters were evaluated in two different populations of Carex hirta L. with three watering treatment for 6 months to evaluate stability, and determined taxonomic value. Water availability increased (p < 0.001) leaf thickness from 239 to 289 μm, metaxylem vessel diameter from 17 to 23 μm, air cavity size from 10 to 24% and adaxial epidermal cell height from 18 to 34 μm, and abaxial from 11 to 16 μm, adaxial epidermal cell length from 54 to 105 μm, and abaxial from 35 to 86 μm, and adaxial epidermal cell width from 20 to 33 μm, and abaxial from 15 to 23 μm. Stomatal index and the number of cells in the girder of sclerenchyma did not vary with water availability, hence these traits have taxonomic value. Other characters (the length and amplitude of wall undulations in the epidermal cells, the number of bulliform cells) have a doubtful relation with water availability, because they are variable even in constant homogeneous conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号