首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Akpo  Léonard-Elie 《Plant Ecology》1997,131(2):241-248
This study was conducted during the 1990 planting cycle and focused on interactions between trees and the herbaceous layer caused by their phenological behaviour in a Sahelian semi-arid savanna.The results show that (1) the plant phenological development (tree and grassy group) was synchronous; (2) the tree phenological behaviours were most clearly differentiated because reproduction, flowering and fructification phases were spread out throughout the year and (3) the herbaceous species cycle was then essentially determined by the short biologically damp period, 60 days in 1990. The foliage stage of the ligneous species spread on the considered period, with a reduced realization rate (30 to 40%) due to an invasion of locusts.At the grassy group level, the considerable growth rate in every development stage indicated that there was apparently no competition for soil water. Both trees and grass used the available soil water with grass only exploiting the upper soil layer.Mots-clés: Arbre, Compétition, Couvert, Sahel, Stades phénologiques, Strate herbacéeRésumé Cette étude se propose d'établir les interactions Herbe/Arbre à travers les stades phénologiques des principales espèces ligneuses et de la strate herbacée établie sous l'arbre à partir d'observations menées au cours du cycle 1990.Les résultats montrent une superposition des cycles phénologiques du peuplement ligneux et du groupement herbeux. La phase de feuillaison des espèces ligneuses étudiées s'étale sur toute la période considérée. Le taux d'accomplissement des différentes phénophases est généralement faible (30 à 40%) en raison de l'invasion par des criquets.Le taux d'accomplissement des phénophases au niveau du groupement herbeux indique qu'il n'y a apparemment pas de compétition pour l'eau; le partage de l'eau du sol entre l'herbe et l'arbre se faisant principalement dans l'espace.  相似文献   

2.
3.
Although growth and productivity of most crops are significantly reduced by exposure to temperatures in excess of 35 °C, some plants thrive in geothermally heated soils characterized by chronic temperatures in excess of 40 °C. The morphological adaptations that enable these plants to colonize thermal environments are poorly understood. We characterized trichome development, silica accumulation, stomatal density, and waxy cuticle development in populations of Dichanthelium lanuginosum var sericeum (Schmoll) isolated from thermal and non-thermal environments to determine whether morphological changes existed in populations adapted to thermal environments. Plants isolated from thermal environments of Yellowstone National Park developed an extensive series of trichomes when exposed to chronic temperatures of 45/35 °C (day/night). In contrast, isolates from non-thermal environments of western Oregon showed minimal trichome development during exposure to the elevated temperatures. Leaves that developed during exposure to elevated temperatures had reduced thickness, though the reduction was less marked in plants from populations isolated from thermal environments. Plants isolated from thermal environments also had greater numbers of stomata on adaxial leaf surfaces relative to biotypes isolated from non-thermal environments. These results suggest phenotypic characteristics that may be useful in selection of new varieties of crop species with improved tolerance to supraoptimal temperatures.  相似文献   

4.
5.
Species of Ceratocystis are well-known wound related pathogens of many tree species, including commercially planted Acacia spp. Recently, several Ceratocystis isolates were collected from wilting A. mangium in plantations in Indonesia. The aim of this study was to identify these Ceratocystis isolates and to investigate their ability to cause disease on two plantation-grown Acacia spp. using greenhouse and field inoculation experiments. For identification, morphological characteristics and comparisons of DNA sequence data for the ITS, β-tubulin and TEF 1-α gene regions, was used. Ceratocystis isolates were identified as C. manginecans, a serious pathogen of mango trees in Oman and Pakistan and a previously undescribed species, described here as C. acaciivora sp. nov. Both fungi produced significant lesions in inoculation experiments on A. mangium and A. crassicarpa, however, C. acaciivora was most pathogenic suggesting that this fungus is the primary cause of the death of trees under natural conditions.  相似文献   

6.
Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis   总被引:1,自引:1,他引:1  
MicroRNA398 targets two Cu/Zn superoxide dismutases (CSD1 and CSD2) in higher plants. Previous investigations revealed both decreased miR398 expression during high Cu2+ or paraquat stress and increased expression under low Cu2+ or high sucrose in the growth medium. Here, we show that additional abiotic stresses such as ozone and salinity also affect miR398 levels. Ozone fumigation decreased miR398 levels that were gradually restored to normal levels after relieved from the stress. Furthermore, miR398 levels decreased in Arabidopsis leaves infiltrated with avirulent strains of Pseudomonas syringae pv. tomato, Pst DC3000 (avrRpm1 or avrRpt2) but not the virulent strain Pst DC3000. To our knowledge, miR398 is the first miRNA shown to be down-regulated in response to biotic stress (P. syringae). CSD1, but not CSD2, mRNA levels were negatively correlated with miR398 levels during ozone, salinity and biotic stress, suggesting that CSD2 regulation is not strictly under miR398 control during diverse stresses. Overall, this study further establishes a link between oxidative stress and miR398 in Arabidopsis.  相似文献   

7.
Involvement of polyamines in plant response to abiotic stress   总被引:21,自引:0,他引:21  
Environmental stresses are the major cause of crop loss worldwide. Polyamines are involved in plant stress responses. However, the precise role(s) of polyamine metabolism in these processes remain ill-defined. Transgenic approaches demonstrate that polyamines play essential roles in stress tolerance and open up the possibility to exploit this strategy to improve plant tolerance to multiple environmental stresses. The use of Arabidopsis as a model plant enables us to carry out global expression studies of the polyamine metabolic genes under different stress conditions, as well as genome-wide expression analyses of insertional-mutants and plants over-expressing these genes. These studies are essential to dissect the polyamine mechanism of action in order to design new strategies to increase plant survival in adverse environments.  相似文献   

8.
Chickpea (Cicer arietinum L.) is an important food legume crop, particularly for the arid regions including Indian subcontinent. Considering the detrimental effect of drought, temperature and salt stress on crop yield, efforts have been initiated in the direction of developing improved varieties and designing alternate strategies to sustain chickpea production in adverse environmental conditions. Identification of genes that confer abiotic stress tolerance in plants remains a challenge in contemporary plant breeding. The present study focused on the identification of abiotic stress responsive genes in chickpea based on sequence similarity approach exploiting known abiotic stress responsive genes from model crops or other plant species. Ten abiotic stress responsive genes identified in other plants were partially amplified from eight chickpea genotypes and their presence in chickpea was confirmed after sequencing the PCR products. These genes have been functionally validated and reported to play significant role in stress response in model plants like Arabidopsis, rice and other legume crops. Chickpea EST sequences available at NCBI EST database were used for the identification of abiotic stress responsive genes. A total of 8,536 unique coding long sequences were used for identification of chickpea homologues of these abiotic stress responsive genes by sequence similarity search (BLASTN and BLASTX). These genes can be further explored towards achieving the goal of developing superior chickpea varieties providing improved yields under stress conditions using modern molecular breeding approaches.  相似文献   

9.
Biotic and abiotic stresses impose a major threat to agriculture. Therefore, the efforts to develop stress-tolerant plants are of immense importance to increase crop productivity. In recent years, tissue culture based in vitro selection has emerged as a feasible and cost-effective tool for developing stress-tolerant plants. Plants tolerant to both the biotic and the abiotic stresses can be acquired by applying the selecting agents such as NaCl (for salt tolerance), PEG or mannitol (for drought tolerance) and pathogen culture filtrate, phytotoxin or pathogen itself (for disease resistance) in the culture media. Only the explants capable of sustaining such environments survive in the long run and are selected. In vitro selection is based on the induction of genetic variation among cells, tissues and/or organs in cultured and regenerated plants. The selection of somaclonal variations appearing in the regenerated plants may be genetically stable and useful in crop improvement. This review focuses on the progress made towards the development of stress-tolerant lines through tissue culture based in vitro selection. Plants have evolved many biochemical and molecular mechanisms to survive under stress conditions. The mechanisms of ROS (reaction oxygen species) generation and removal in plants under biotic and abiotic stress conditions have also been reviewed.  相似文献   

10.
Penicillium verrucosum contaminates temperate cereals with ochratoxin A (OTA) during harvesting and storage. We examined the effect of temperature (25 vs 30 oC), CO2 (400 vs 1000 ppm) and matric/solute stress (-2.8 vs -7.0 MPa) on (i) growth, (ii) key OTA biosynthetic genes and (iii) OTA production on a milled wheat substrate. Growth was generally faster under matric than solute stress at 25 oC, regardless of CO2 concentrations. At 30 oC, growth of P. verrucosum was significantly reduced under solute stress in both CO2 treatments, with no growth observed at -2.8 MPa (=0.98 water activity, aw) and 1000 ppm CO2. Overall, growth patterns under solute stress was slower in elevated CO2 than under matric stress when compared with existing conditions. The otapksPV gene expression was increased under elevated CO2 levels in matric stress treatments. There was fewer effects on the otanrpsPV biosynthetic gene. This pattern was paralleled with the production of OTA under these conditions. This suggest that P. verrucosum is able to actively grow and survive in both soil and on crop debris under three way interacting climate-related abiotic factors. This resilience suggests that they would still be able to pose an OTA contamination risk in temperate cereals post-harvest.  相似文献   

11.
Polyamines(mainly putrescine(Put),spermidine(Spd),and spermine(Spm))have been widely found in a range of physiological processes and in almost all diverse environmental stresses.In various plant species,abiotic stresses modulated the accumulation of polyamines and related gene expression.Studies using loss-of-function mutants and transgenic overexpression plants modulating polyamine metabolic pathways confirmed protective roles of polyamines during plant abiotic stress responses,and indicated the possibility to improve plant tolerance through genetic manipulation of the polyamine pathway.Additionally,putative mechanisms of polyamines involved in plant abiotic stress tolerance were thoroughly discussed and crosstalks among polyamine,abscisic acid,and nitric oxide in plant responses to abiotic stress were emphasized.Special attention was paid to the interaction between polyamine and reactive oxygen species,ion channels,amino acid and carbon metabolism,and other adaptive responses.Further studies are needed to elucidate the polyamine signaling pathway,especially polyamine-regulated downstream targets and the connections between polyamines and other stress responsive molecules.  相似文献   

12.
Expression of baculovirus anti-apoptotic p35 gene in plants on biotic stress responses has been well studied but its function on abiotic stress has not been documented. In the present study, the p35 gene from Autographa californica multiple nucleopolyhedrovirus (AcMNPV) was expressed in tobacco. A detached leaf assay was used to test tolerance of p35 transgenic plants to various abiotic stress responses. Expression of p35 gene in tobacco gave tolerance to treatment with methanol and H2O2 and also delayed leaf senescence under starvation in the dark. Germination of T0 seeds on NaCl-containing medium also demonstrated to increase salt tolerance.  相似文献   

13.
14.
15.
This study presents first hand data on the cloning and heterologous expression of Anabaena PCC 7120 all3940 (a dps family gene) in combating nutrients limitation and multiple abiotic stresses. The Escherichia coli transformed with pGEX-5X-2-all3940 construct when subjected to iron, carbon, nitrogen, phosphorus limitation and carbofuron, copper, UV-B, heat, salt and cadmium stress registered significant increase in growth over the cells transformed with empty vector under iron (0%), carbon (0.05%), nitrogen (3.7 mM) and phosphorus (2 mM) limitation and carbofuron (0.025 mg ml−1), CuCl2 (1 mM), UV-B (10 min), heat (47 °C), NaCl (6% w/v) and CdCl2 (4 mM) stress. Enhanced expression of all3940 gene measured by semi-quantitative RT-PCR at different time points under above mentioned treatments clearly demonstrates its role in tolerance against aforesaid abiotic stresses. This study opens the gate for developing transgenic cyanobacteria capable of growing successfully under above mentioned stresses.  相似文献   

16.
The long-term persistence of populations and species depends on the successful recruitment of individuals. The generative recruitment of plants may be limited by a lack of suitable germination and establishment conditions. Establishment limitation may especially be caused by the competitive effect of surrounding dense vegetation, which is believed to restrict the recruitment success of many plant species to small open patches (‘safe sites’). We conducted experiments to clarify the roles of germination and seedling establishment as limiting processes in the recruitment of Juncus atratus Krock., a rare and threatened herbaceous perennial river corridor plant in Central Europe. Light intensity had a positive effect on germination. However, some seedlings emerged even in total darkness and the germination rate at 1% light intensity was more than half of that at 60% light intensity. Seedling establishment in the field after 10 weeks was 30% on bare ground, but it was close to zero in grassland. Establishment in the growth chamber after 8 weeks was close to 75% for seedlings that germinated underwater, but only about 35% for seedlings that germinated afloat. Furthermore, establishment decreased with flooding duration on bare ground, but increased with flooding duration in grassland. These data indicate that establishment, rather than germination, is a critical life stage in Central European populations of J. atratus. They furthermore indicate that the competition of surrounding vegetation for water limits seedling establishment under field conditions without flooding, largely restricting establishment success to bare ground habitats. In contrast, grassland is more suitable for the recruitment of J. atratus than bare ground under prolonged flooding. Grassland may facilitate the establishment of J. atratus seedlings during long-lasting floods by supplying oxygen to the soil through aerenchyma. The shift from competition to facilitation in grassland occurred after 30 days of flooding, i.e. within the ontogeny of individual plants. The specific recruitment requirements of J. atratus may be a main cause of its rarity in modern Central Europe. In order to prevent regional extinction of J. atratus, we suggest maintaining or re-establishing natural hydrodynamics in the species’ habitats.  相似文献   

17.
Stress associated proteins (SAP) have been already reported to play a role in tolerance acquisition of some abiotic stresses. In the present study, the role of MtSAP1 (Medicago truncatula) in tolerance to temperature, osmotic and salt stresses has been studied in tobacco transgenic seedlings. Compared to wild type, MtSAP1 overexpressors were less affected in their growth and development under all tested stress conditions. These results confirm that MtSAP1 is involved in the response processes to various abiotic constraints. In parallel, we have performed studies on an eventual link between MtSAP1 overexpression and proline, a major player in stress response. In an interesting way, the results for the transgenic lines did not show any increase of proline content under osmotic and salt stress, contrary to the WT which usually accumulated proline in response to stress. These data strongly suggest that MtSAP1 is not involved in signaling pathway responsible for the proline accumulation in stress conditions. This could be due to the fact that the overexpression of MtSAP1 provides sufficient tolerance to seedlings to cope with stress without requiring the free proline action. Beyond that, the processes by which the MtSAP1 overexpression lead to the suppression of proline accumulation will be discussed in relation with data from our previous study involving nitric oxide.  相似文献   

18.
As sessile organisms, plants have developed specific mechanisms that allow them to rapidly perceive and respond to stresses in the environment. Among the evolutionarily conserved pathways, the ABA (abscisic acid) signaling pathway has been identified as a central regulator of abiotic stress response in plants, triggering major changes in gene expression and adaptive physiological responses. ABA induces protein kinases of the SnRK family to mediate a number of its responses. Recently, MAPK (mitogen activated protein kinase) cascades have also been shown to be implicated in ABA signaling. Therefore, besides discussing the role of ABA in abiotic stress signaling, we will also summarize the evidence for a role of MAPKs in the context of abiotic stress and ABA signaling.  相似文献   

19.
As the alien species that most dominates space along the South African coast, the Mediterranean mussel Mytilus galloprovincialis has radically altered community composition on invaded shores. We experimentally assessed interspecific interactions between this invasive species and dominant indigenous species in conjunction with considering how wave action moderates such interactions. The density of both M. galloprovincialis and the limpet Scutellastra granularis increased with wave action. Conversely, the tube-building polycheate Gunnarea capensis was negatively affected by wave exposure, being most abundant on sheltered shores. The influence of wave action on the indigenous mussel Aulacomya ater, however, remains unclear. M. galloprovincialis outcompeted both G. capensis and A. ater at moderate to high exposure levels, whereas it had both positive and negative effects on S. granularis. It outcompeted adult limpets on primary rock space on semi-exposed and exposed shores, reducing densities of this portion of the population. However, recruitment of S. granularis was facilitated by M. galloprovincialis, as greater numbers recruited to the secondary substratum offered by mussel shells. Again this interaction intensified with wave action. Due to the extremely high density of recruits on secondary space, the net effect of M. galloprovincialis on S. granularis was positive. Thus, wave action not only influences the abundance of individual species, but also mediates both positive and negative interspecific interactions in rocky shore communities, including the impact of alien species such as M. galloprovincialis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号