首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and Aims Although mycorrhizal associations are predominantly generalist, specialized mycorrhizal interactions have repeatedly evolved in Orchidaceae, suggesting a potential role in limiting the geographical range of orchid species. In particular, the Australian orchid flora is characterized by high mycorrhizal specialization and short-range endemism. This study investigates the mycorrhizae used by Pheladenia deformis, one of the few orchid species to occur across the Australian continent. Specifically, it examines whether P. deformis is widely distributed through using multiple fungi or a single widespread fungus, and if the fungi used by Australian orchids are widespread at the continental scale.Methods Mycorrhizal fungi were isolated from P. deformis populations in eastern and western Australia. Germination trials using seed from western Australian populations were conducted to test if these fungi supported germination, regardless of the region in which they occurred. A phylogenetic analysis was undertaken using isolates from P. deformis and other Australian orchids that use the genus Sebacina to test for the occurrence of operational taxonomic units (OTUs) in eastern and western Australia.Key Results With the exception of one isolate, all fungi used by P. deformis belonged to a single fungal OTU of Sebacina. Fungal isolates from eastern and western Australia supported germination of P. deformis. A phylogenetic analysis of Australian Sebacina revealed that all of the OTUs that had been well sampled occurred on both sides of the continent.Conclusions The use of a widespread fungal OTU in P. deformis enables a broad distribution despite high mycorrhizal specificity. The Sebacina OTUs that are used by a range of Australian orchids occur on both sides of the continent, demonstrating that the short-range endemism prevalent in the orchids is not driven by fungal species with narrow distributions. Alternatively, a combination of specific edaphic requirements and a high incidence of pollination by sexual deception may explain biogeographic patterns in southern Australian orchids.  相似文献   

2.
The antagonistic fungus Trichoderma harzianum is widely recognized as a potential biocontrol agent against several soil-borne plant pathogens. T. harzinum is rich source of chitinoltic enzymes. In vitro screening of 5 isolates of T. harzinum, one isolate of Chaetomium globosum and one isolate of Conetherium mentance, revealed that all of them had reduced growth area of Macrophomina phaseolina, Fusarium solaniand Rhizoctonia solani on PDA medium, significantly. The inhibition percentage ranged from 77.9 % to 55.9% for M. phaseolina and 59.2% to 40.4% for R. solani by T. harzinum and C. mentance, respectively. Inhibition for F. solani ranged from 76.5% to 55.7% by T. harzinum and C. globosum, respectively. Isozyme gel electrophoresis was used to assess chitinase activity secreted by selected isolates of T. harzinum under different pH degrees and temperatures. Obtained results indicated that activity of chitinase isozyme produced at 30 °C was higher than 15–20 °C for all tested isolates and activity of chitinase produced by isolates No. 4 and 5 of T. harzinum at pH (7–7.5) was higher than at pH 6, respectively.  相似文献   

3.
Symbiotic seed germination is a critical stage in orchid life histories. Natural selection may act to favor plants that efficiently use mycorrhizal fungi. However, the necessary conditions for natural selection – variation, heritability, and differences in fitness – have not been demonstrated for either orchid or fungus. With the epiphytic orchid Tolumnia variegata as a model system, we ask the following questions: (1) Do seeds from different individuals in a population differ in germination and seedling development in the presence of the same fungi? (2) Do different mycorrhizal fungi (Ceratobasidium spp.) differ in ability to stimulate seed germination and growth in T. variegata? And (3) are the Ceratobasidium isolates that best induce seed germination and seedling development more closely related to each other than to isolates that are less effective? We performed symbiotic seed germination experiments in vitro. The experiments were done using mycorrhizal fungi isolated from T. variegata; relationships among the fungi were inferred from nuclear ribosomal ITS sequences. We found significant variation for both symbiotic germination and seedling growth among biparental seed crops obtained from a population of T. variegata plants. Differences among Ceratobasidium fungi in seed germination were significant. The fungi that induced highest seed germination and seedling development belonged to two of four clades of Ceratobasidium. The two experiments show that there is potential for natural selection to act on orchid–fungus relationships. Given that orchids vary in performance, and that mycorrhizal fungi are not geographically distributed homogeneously, mycorrhizae may affect population size, distribution and evolution of orchids.  相似文献   

4.
The interrelationships between reniform nematode (Rotylenchulus reniformis) and the cotton (Gossypium hirsutum) seedling blight fungus (Rhizoctonia solani) were studied using three isolates of R. solani, two populations of R. reniformis at multiple inoculum levels, and the cotton cultivars Dehapine 90 (DP 90) and Dehapine 41 (DP 41). Colonization of cotton hypocotyl tissue by R. solani resulted in increases (P ≤ 0.05) in nematode population densities in soil and in eggs recovered from the root systems in both 40- and 90-day-duration experiments. Increases in soil population densities resulted mainly from increases in juveniles. Enhanced reproduction of R. reniformis in the presence of R. solani was consistent across isolates (1, 2, and 3) of R. solani and populations (1 and 2) and inoculum levels (0.5, 2, 4, and 8 individuals/g of soil) of R. reniformis, regardless of cotton cultivar (DP 90 or DP 41). Severity of seedling blight was not influenced by the nematode. Rhizoctonia solani caused reductions (P ≤ 0.05) in cotton growth in 40- and 90-day periods. Rotylenchulus reniformis reduced cotton growth at 90 days. The relationship between nematode inoculum levels and plant growth reductions was linear. At 90 days, the combined effects of these pathogens were antagonistic to plant growth.  相似文献   

5.
Fully subterranean Rhizanthella gardneri (Orchidaceae) is obligately mycoheterotrophic meaning it is nutritionally dependent on the fungus it forms mycorrhizas with. Furthermore, R. gardneri purportedly participates in a nutrient sharing tripartite relationship where its mycorrhizal fungus simultaneously forms ectomycorrhizas with species of Melaleuca uncinata s.l. Although the mycorrhizal fungus of R. gardneri has been morphologically identified as Thanatephorus gardneri (from a single isolate), this identification has been recently questioned. We sought to clarify the identification of the mycorrhizal fungus of R. gardneri, using molecular methods, and to identify how specific its mycorrhizal relationship is. Fungal isolates taken from all sites where R. gardneri is known to occur shared almost identical ribosomal DNA (rDNA) sequences. The fungal isolate rDNA most closely matched that of other Ceratobasidiales species, particularly within the Ceratobasidium genus. However, interpretation of results was difficult as we found two distinct ITS sequences within all mycorrhizal fungal isolates of R. gardneri that we assessed. All mycorrhizal fungal isolates of R. gardneri readily formed ectomycorrhizas with a range of M. uncinata s.l. species. Consequently, it is likely that R. gardneri can form a nutrient sharing tripartite relationship where R. gardneri is connected to autotrophic M. uncinata s.l. by a common mycorrhizal fungus. These findings have implications for better understanding R. gardneri distribution, evolution and the ecological significance of its mycorrhizal fungus, particularly in relation to nutrient acquisition.  相似文献   

6.
带叶兜兰种子原地共生萌发及有效菌根真菌的分离与鉴定   总被引:1,自引:0,他引:1  
为获得带叶兜兰(Paphiopedilum hirsutissimum)种子萌发的共生真菌,采用原地共生萌发技术获得了2株自然萌发的小幼苗,并分离和筛选出了有效的种子萌发共生菌——瘤菌根菌(Epulorhiza sp.)。为验证分离菌株对带叶兜兰种子萌发的有效性,将Phs34号菌株与带叶兜兰种子在灭菌后的原生境基质上进行室内共生萌发试验,结果表明,经过6周的培养,对照组没有观察到种子的萌发;接菌的种子胚明显膨大,突破种皮,形成原球茎,平均萌发率为(58.35±3.41)%。这表明分离得到的瘤菌根菌能促进带叶兜兰的种子萌发。  相似文献   

7.
We isolated Rhizoctonia-like fungi from populations of the threatened orchid Cypripedium macranthos. In ultrastructural observations of the septa, the isolates had a flattened imperforate parenthesome consisting of two electron-dense membranes bordered by an internal electron-lucent zone, identical to the septal ultrastructure of Rhizoctonia repens (teleomorph Tulasnella), a mycorrhizal fungus of many orchid species. However, hyphae of the isolates did not fuse with those of known tester strains of R. repens and grew less than half as fast as those of R. repens. In phylogenetic analyses, sequences for rDNA and internal transcribed spacer (ITS) regions of the isolates were distinct from those of the taxonomically identified species of Tulasnella. On the basis of the ITS sequences, the isolates clustered into two groups that corresponded exactly with the clades demonstrated for other Cypripedium spp. from Eurasia and North America despite the geographical separation, suggesting high specificity in the Cypripedium–fungus association. In addition, the two phylogenetic groups corresponded to two different plant clones at different developmental stages. The fungi from one clone constituted one group and did not belong to the other fungal group isolated from the other clone. The possibility of switching to a new mycorrhizal partner during the orchid’s lifetime is discussed.  相似文献   

8.
Summay Soil samples were taken from 48 fields in the southern part of Thailand in which either bambara groundnut (Vigna subterranea) or groundnut (Arachis hypogeae) had been planted. Bacillus spp. were isolated using soil dilution plates and heat treatment to screen for endospore-producing bacteria. Among 342 Bacillus spp. isolates tested, 168 isolates were not antagonistic to Bradyrhizobium sp. strain NC-92 using dual culture technique. Further testing found 16 isolates of Bacillus spp. had the ability to inhibit mycelial growth of Rhizoctonia solani, a causal agent of leaf blight of bambara groundnut. Among these isolates, Bacillus spp. isolate TRV 9-5-2 had the greatest activity in anti-microbial tests against R. solani. This isolate was later identified as B. firmus. A powder formulation of B. firmus was developed by mixing bacterial endospores, talcum, sodium carboxymethylcellulose (SCMC) and polyvinylpyrolidone (PVP). The formulations contained bacterial levels ranging from 108 to 1010 c.f.u./g and the viability of bacteria in all formulations remained high after 1 year storage at room temperature (26–32 °C). All formulations showed satisfactory effectiveness in vitro in suppressing mycelial growth of R. solani using dual culture technique. The application of formulations as seed treatment showed that these formulations did not cause abnormality of seedling shape and had no effect on the germination of bambara groundnut seeds.  相似文献   

9.
A disease complex involving Meloidogyne incognita and Rhizoctonia solani was associated with stunting of grapevines in a field nursery. Nematode reproduction was occurring on both susceptible and resistant cultivars, and pot experiments were conducted to determine the virulence of this M. incognita population, and of M. javanica and M. hapla populations, to V. vinifera cv. Colombard (susceptible) and to V. champinii cv. Ramsey (regarded locally as highly resistant). The virulence of R. solani isolates obtained from roots of diseased grapevines also was determined both alone and in combination with M. incognita. Ramsey was susceptible to M. incognita (reproduction ratio 9.8 to 18.4 in a shadehouse and heated glasshouse, respectively) but was resistant to M. javanica and M. hapla. Colombard was susceptible to M. incognita (reproduction ratio 24.3 and 41.3, respectively) and M. javanica. Shoot growth was suppressed (by 35%) by M. incognita and, to a lesser extent, by M. hapla. Colombard roots were more severely galled than Ramsey roots by all three species, and nematode reproduction was higher on Colombard. Isolates of R. solani assigned to putative anastomosis groups 2-1 and 4, and an unidentified isolate, colonized and induced rotting of grapevine roots. Ramsey was more susceptible to root rotting than Colombard. Shoot growth was inhibited by up to 15% by several AG 4 isolates and by 20% by the AG 2-1 isolate. AG 4 isolates varied in their virulence. Root rotting was higher when grapevines were inoculated with both M. incognita and R. solani and was highest when nematode inoculation preceded the fungus. Shoot weights were lower when vines were inoculated with the nematode 13 days before the fungus compared with inoculation with both the nematode and the fungus on the same day. It was concluded that both the M. incognita population and some R. solani isolates were virulent against both Colombard and Ramsey, and that measures to prevent spread in nursery stock were therefore important.  相似文献   

10.
The orchid–fungus relationship has been studied since the discovery that the minute seeds of orchids depend on fungi to support the germination process. With the aim of describing the biodiversity of cultivable endophytic and mycorrhizal fungi from the orchid Dichaea andina, we isolated pure fungal cultures from its roots and identified them by sequencing the internal transcribed spacer. We recorded 22 fungal operational taxonomic units belonging to eight orders of Ascomycota: Eurotiales, Hypocreales, Xylariales, Helotiales, Boliniales, Chaetothyriales, Chaetosphaeriales and Pleosporales. The only Basidiomycota isolated belonged to the genus Ceratobasidium from the order Cantharellales, whose members are known as orchid mycorrhizal fungi. At the genus level, we identified 16 genera, the most common of which were Byssochlamys, Camarops, Trichoderma, Cladophialophora, Fusarium and Xylaria; some of them had been reported previously as orchid endophytes. The relevance of endophytic fungi to their hosts is still unclear, but this widely distributed interaction deserves further investigation.  相似文献   

11.
Hidetaka Umata 《Mycoscience》1997,38(3):335-339
To test the mycorrhizal function of heterobasidiomycetous fungi on achlorophyllous orchids and to examine the symbiotic fungal range of a myco-heterotrophic orchid,Erythrorchis ochobiensis, synthetic cultures of the orchid seed were carried out withAuricularia polytricha isolates from Japan and Mexico. After three and a half mo of incubation, 57.0–70.7% of seeds germinated but none of them showed further growth. When cultured on peat moss at 25°C, the germination rate was 8.7% in the presence of Mexican isolate and 18.0% in the presence of Japanese isolate. Some germinated seeds developed into protocorms, and several seeds incubated with the Mexican isolate developed into plantlets after 5 mo. Pelotons were observed in the cells of protocorms and roots. The results indicated that some heterobasidiomycetous fungi could form endomycorrhizas with a myco-heterotrophic orchid. The results also showed that the symbiont ofE. ochobiensis extends, at least experimentally, to Heterobasidiomycetes. The variances of germination rate and seedling growth were suggested to be affected by the difference of isolates and culture conditions.  相似文献   

12.

Background and Aims

Mycorrhizal specialization has been shown to limit recruitment capacity in orchids, but an increasing number of orchids are being documented as invasive or weed-like. The reasons for this proliferation were examined by investigating mycorrhizal fungi and edaphic correlates of Microtis media, an Australian terrestrial orchid that is an aggressive ecosystem and horticultural weed.

Methods

Molecular identification of fungi cultivated from M. media pelotons, symbiotic in vitro M. media seed germination assays, ex situ fungal baiting of M. media and co-occurring orchid taxa (Caladenia arenicola, Pterostylis sanguinea and Diuris magnifica) and soil physical and chemical analyses were undertaken.

Key Results

It was found that: (1) M. media associates with a broad taxonomic spectrum of mycobionts including Piriformospora indica, Sebacina vermifera, Tulasnella calospora and Ceratobasidium sp.; (2) germination efficacy of mycorrhizal isolates was greater for fungi isolated from plants in disturbed than in natural habitats; (3) a higher percentage of M. media seeds germinate than D. magnifica, P. sanguinea or C. arenicola seeds when incubated with soil from M. media roots; and (4) M. media–mycorrhizal fungal associations show an unusual breadth of habitat tolerance, especially for soil phosphorus (P) fertility.

Conclusions

The findings in M. media support the idea that invasive terrestrial orchids may associate with a diversity of fungi that are widespread and common, enhance seed germination in the host plant but not co-occurring orchid species and tolerate a range of habitats. These traits may provide the weedy orchid with a competitive advantage over co-occurring orchid species. If so, invasive orchids are likely to become more broadly distributed and increasingly colonize novel habitats.  相似文献   

13.
Orchids are the second most diverse plant family, recognized for their importance as ornamental species; this has driven research development in propagation. One of the most common culture methodologies is in vitro asymbiotic germination, in which the nutritional conditions that provide orchids with a fungal partner are emulated. Although Chile possesses more than 60 terrestrial orchid species, in vitro cultivation protocols have only been developed for Chloraea crispa. In Southern Chile, Chloraea gavilu stands out due to its floral characteristics. We evaluate different explants and cultivation conditions for C. gavilu. The best germination and development results were achieved in the MM medium +0.1% yeast extract +1% sucrose +0.454 µmol l?1 TDZ, using immature seeds of 24–30 days after pollination, which we cultivated into seedlings in order to be acclimatized and mycorrhized. In addition, induction of protocorm-like bodies was achieved from germinated seeds, using the same culture media as in the germination and development of immature C. gavilu seeds. This resulted in the successful asymbiotic germination of immature seeds, along with the micropropagation of a terrestrial, temperate orchid. We hope to use our protocol in the commercial production of Chilean orchid species as well as to propagate threatened species.  相似文献   

14.
15.
Orchids are obligate mycoheterotrophic plants, relying on fungal nutrient resources to grow for their entire life or until they develop into photosynthetic seedlings. In Chile, orchids are represented by 7 genera and 63 species, 27 of which are endemic. Some Chilean species are considered endangered or rare, but many are insufficiently known. This study aims to isolate, culture, and identify fungal species found in symbiosis with the endemic Chilean orchids Chloraea collicensis Kraenzl. and Chloraea gavilu Lindl. for their potential to be used in future conservation programs. Roots of both species of orchids were collected in the field and those presenting pelotons were firstly cultured in agar-water and thereafter sub-cultured in potato dextrose agar media. Fungal colony growth was measured under the dissecting microscope. Fungal isolates from C. gavilu showed a higher growth rate than isolates from C. collicensis and could be used as inoculum for seed germination in further studies. Isolated colonies showed morphological characteristics of the form genus Rhizoctonia and presented two nuclei per cell. The ITS-nrDNA sequences confirmed their morphological identification as species of Tulasnella.  相似文献   

16.
The nematode trapping and mycoparasitic potential of Arthrobotrys oligospora was tested in vitro against Meloidogyne graminicola and Rhizoctonia solani, respectively. Five isolates of A. oligospora were isolated from different locations of India. Diversity of the trapping structures is large and highly dependent on the environmental condition and nature of the fungus. In A. oligospora, a three-dimensional adhesive net (in response to nematode) and hyphal coils developed around the hyphae of R. solani. In vitro trap formation and predacity were tested against second-stage juveniles of M. graminicola (J2) and the interactions between A. oligospora and R. solani were recorded. Under field conditions, we demonstrated the biocontrol potential of A. oligospora against R. solani causing sheath blight of rice (Oryza sativa) for the first time. All the isolates of A. oligospora parasitized and killed M. graminicola and R. solani. Application of A. oligospora, isolate VNS-1, in soil infested with M. graminicola and R. solani reduced the number of root knot by 57.58–62.02%, sheath blight incidence by 55.68–59.32% and lesion length by 54.91–66.66% under green house and miniplot (field) conditions. Applications of A. oligospora to the soil increased plant growth: shoot length by 56.4–68.8%, root length by 44.0–54.55%, fresh weight of shoot and root by 62.91–65.4% and 38.9–44.19%, respectively, as compared to the plants grown in nematode infested soil.  相似文献   

17.
Seven isolates of orchid-associated bacteria (OAB) belonging to five species were tested for their effect on mycorrhiza-assisted germination of the terrestrial orchid Pterostylis vittata. Hormone standards were also tested to evaluate their potential roles in the germination and development of the orchid. Strains of Pseudomonas putida, Xanthomonas maltophilia and Bacillus cereus promoted symbiotic germination, whereas certain strains of P. putida and an Arthrobacter species reduced it. Symbiotic germination was enhanced by IAA, inhibited by gibberellic acid and suppressed by kinetin. Each species of OAB produced IAA, although the conditions of growth affected the production of the auxin. IAA was not produced by the mycorrhizal fungus from P. vittata under the test conditions. Enhancement of symbiotic germination development may have resulted either from the production of IAA by the OAB and/or by the induction of endogenous hormones in the orchid by the metabolites of the bacteria and/or mycorrhizal fungus.  相似文献   

18.
Orchids, particularly terrestrial taxa, rely mostly on basidiomycete fungi in the Cantharellales and Sebacinales that trigger the process of seed germination and/or initiate the full development of the seedling. During the course of development, orchids may associate with the same fungus, or they may enlist other types of fungi for their developmental needs leading to resilience in a natural setting. This study examined in vitro seed germination and seedling developmental behavior of Cynorkis purpurea, a terrestrial orchid from the Central Highlands of Madagascar. This species is mostly restricted to gallery forests in the Itremo Massif, in moist substrate between rocks bordering streams. The main objective was to understand the influence of diverse mycorrhizal fungi on seed germination and further development of C. purpurea. The study aims to compare symbiotic versus asymbiotic germination and seedling development with seeds and fungi collected from a 13-km2 area in the Itremo region. Seeds collected from the wild were sown with diverse orchid mycorrhizal fungi (OMF) spanning 12 operational taxonomic units (OTUs) in three genera (Tulasnella, Ceratobasidium, and Sebacina) acquired from different habitats. Treatments were assessed in terms of the percentage of germinated seeds and fully developed seedlings against those in asymbiotic control media treatments. Overall, OMF significantly improved seedling development within the 12-week experiment period. Sebacina as a genus was the most effective at promoting seedling development of C. purpurea, as well as having the ability to enter into successful symbiotic relationships with orchids of different life forms; this new knowledge may be especially useful for orchid conservation practiced in tropical areas like Madagascar. A Sebacina isolate from an epiphytic seedling of Polystachya concreta was the most effective at inducing rapid seedling development and was among the five that outperformed fungi isolated from roots of C. purpurea. C. purpurea was found to be a mycorrhizal generalist, despite its specific habitat preference, highlighting the complex interaction between the plant, fungi, and the environment. The potential impact on conservation strategies of understanding the requirements for orchid seed germination and development by identifying and using OMF from diverse sources is discussed in detail.  相似文献   

19.
Abstract

Although Rhizoctonia solani is a cosmopolitan soilborne pathogen, the genus includes isolates with different pathogenicity ranging from high virulence to avirulence. The biocontrol strain Pseudomonas fluorescens P190r and the arbuscular mycorrhizal (AM) fungus Glomus mosseae BEG12 were inoculated alone or in combination in tomato plants infested by the mildly virulent pathogen R. solani #235. Plant growth as well as root morphometric and topological parameters were evaluated. The infection of R. solani was significantly reduced by all the combinations of the beneficial microorganisms. Root systems of R. solani‐infected plants were weakly developed but highly branched with a herring‐bone pattern, while those inoculated with the AM fungus, alone or in combination with the bacterial strain, were longer and more developed, and displayed a dichotomous pattern. The interactions among these three microorganisms affected plant growth and root architecture of tomato plants.  相似文献   

20.
Terrestrial orchid germination, growth and development are closely linked to the establishment and maintenance of a relationship with a mycorrhizal fungus. Mycorrhizal dependency and specificity varies considerably between orchid taxa but the degree to which this underpins rarity in orchids is unknown. In the context of examining orchid rarity, large scale in vitro and in situ germination trials complemented by DNA sequencing were used to investigate ecological specialization in the mycorrhizal interaction of the rare terrestrial orchid Caladenia huegelii. Common and widespread sympatric orchid congeners were used for comparative purposes. Germination trials revealed an absolute requirement for mycorrhisation with compatibility barriers to germination limiting C. huegelii to a highly specific and range limited, efficacious mycorrhizal fungus. DNA sequencing confirmed fidelity between orchid and fungus across the distribution range of C. huegelii and at key life history stages within its life cycle. It was also revealed that common congeners could swap or share fungal partners including the fungus associated with the rare orchid but not vice versa. Data from this study provides evidence for orchid rarity as a cause and consequence of high mycorrhizal specialization. This interaction must be taken into account in efforts to mitigate the significant extinction risk for this species from anthropogenically induced habitat change and illustrates the importance of understanding fungal specificity in orchid ecology and conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号