首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
White-rot fungi (WRF) are ubiquitous in nature with their natural ability to compete and survive. WRF are the only organisms known to have the ability to degrade and mineralize recalcitrant plant polymer lignin. Their potential to degrade second most abundant carbon reserve material lignin on the earth make them important link in global carbon cycle. WRF degrade lignin by its unique ligninolytic enzymatic machinery including lignin peroxidase, manganese peroxidase, laccase, cellobiose dehydrogenase, H2O2-generating enzymes, etc. The ligninolytic enzymes system is non-specific, extracellular and free radical based that allows them to degrade structurally diverse range of xenobiotic compounds. Lignin peroxidase and manganese peroxidase carry out direct and indirect oxidation as well as reduction of xenobiotic compounds. Indirect reactions involved redox mediators such as veratryl alcohol and Mn2+. Reduction reactions are carried out by carboxyl, superoxide and semiquinone radicals, etc. Methylation is used as detoxification mechanism by WRF. Highly oxidized chemicals are reduced by transmembrane redox potential. Degradation of a number of environmental pollutants by ligninolytic system of white rot fungi is described in the present review.  相似文献   

2.
The discovery in 1983 of fungal lignin peroxidases able to catalyze the oxidation of nonphenolic aromatic lignin model compounds and release some CO2 from lignin has been seen as a major advance in understanding how fungi degrade lignin. Recently, the fungus Trametes versicolor was shown to be capable of substantial decolorization and delignification of unbleached industrial kraft pulps over 2 to 5 days. The role, if any, of lignin peroxidase in this biobleaching was therefore examined. Several different assays indicated that T. versicolor can produce and secrete peroxidase proteins, but only under certain culture conditions. However, work employing a new lignin peroxidase inhibitor (metavanadate ions) and a new lignin peroxidase assay using the dye azure B indicated that secreted lignin peroxidases do not play a role in the T. versicolor pulp-bleaching system. Oxidative activity capable of degrading 2-keto-4-methiolbutyric acid (KMB) appeared unique to ligninolytic fungi and always accompanied pulp biobleaching.  相似文献   

3.
Many ligninolytic basidiomycete fungi have been shown to secrete a group of peroxidase isozymes whose sole function appears to be the peroxide-dependent oxidation of manganous [Mn(II)] to manganic [Mn(III)] ions. Manganic chelates and these Mn peroxidases have been implicated as central to the degradation of various natural and synthetic lignins and lignin-containing effluents by white rot (ligninolytic) fungi. Another group of enzymes, the laccases, are commonly secreted by wood-rotting fungi, but are generally regarded as being able to oxidize (and usually polymerize) only phenolic substrates. In this report it is shown that in the presence of appropriate oxidizable phenolic accessory substances or primary substrates, a variety of laccases and peroxidases catalyzing one-electron oxidations can also produce Mn(III) chelates from Mn(II).  相似文献   

4.
Many ligninolytic basidiomycete fungi have been shown to secrete a group of peroxidase isozymes whose sole function appears to be the peroxide-dependent oxidation of manganous [Mn(II)] to manganic [Mn(III)] ions. Manganic chelates and these Mn peroxidases have been implicated as central to the degradation of various natural and synthetic lignins and lignin-containing effluents by white rot (ligninolytic) fungi. Another group of enzymes, the laccases, are commonly secreted by wood-rotting fungi, but are generally regarded as being able to oxidize (and usually polymerize) only phenolic substrates. In this report it is shown that in the presence of appropriate oxidizable phenolic accessory substances or primary substrates, a variety of laccases and peroxidases catalyzing one-electron oxidations can also produce Mn(III) chelates from Mn(II).  相似文献   

5.
6.
Endophytic fungi, mostly belonging to the Ascomycota, are found in the intercellular spaces of the aerial plant parts, particularly in leaf sheaths, sometimes even within the bark and root system without inducing any visual symptoms of their presence. These fungi appear to have a capacity to produce a wide range of enzymes and secondary metabolites exhibiting a variety of biological activities. However, they have been only barely exploited as sources of enzymes of industrial interest. This review emphasizes the suitability and possible advantages of including the endophytic fungi in the screening of new enzyme producing organisms as well as in studies aiming to optimize the production of enzymes through well-known culture processes. Apparently endophytic fungi possess the two types of extracellular enzymatic systems necessary to degrade the vegetal biomass: (1) the hydrolytic system responsible for polysaccharide degradation consisting mainly in xylanases and cellulases; and (2) the unique oxidative ligninolytic system, which degrades lignin and opens phenyl rings, comprises mainly laccases, ligninases and peroxidases. The obvious ability of endophytic fungi to degrade the complex structure of lignocellulose makes them useful in the exploration of the lignocellulosic biomass for the production of fuel ethanol and other value-added commodity chemicals. In addition to this, endophytic fungi may become new sources of industrially useful enzymes such as lipases, amylases and proteases.  相似文献   

7.
Role of fungal peroxidases in biological ligninolysis   总被引:2,自引:0,他引:2  
The degradation of lignin by filamentous fungi is a major route for the recycling of photosynthetically fixed carbon, and the oxidative mechanisms employed have potential biotechnological applications. The lignin peroxidases (LiPs), manganese peroxidases (MnPs), and closely related enzymes of white rot basidiomycetes are likely contributors to fungal ligninolysis. Many of them cleave lignin model compounds to give products consistent with those found in residual white-rotted lignin, and at least some depolymerize synthetic lignins. However, none has yet been shown to delignify intact lignocellulose in vitro. The likely reason is that the peroxidases need to act in concert with small oxidants that can penetrate lignified tissues. Recent progress in the dissolution and NMR spectroscopy of plant cell walls may allow new inferences about the nature of the oxidants involved. Furthermore, increasing knowledge about the genomes of ligninolytic fungi may help us decide whether any of the peroxidases has an essential role.  相似文献   

8.
Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research.  相似文献   

9.
White rot fungi efficiently degrade lignin, a complex aromatic polymer in wood that is among the most abundant natural materials on earth. These fungi use extracellular oxidative enzymes that are also able to transform related aromatic compounds found in explosive contaminants, pesticides and toxic waste. We have sequenced the 30-million base-pair genome of Phanerochaete chrysosporium strain RP78 using a whole genome shotgun approach. The P. chrysosporium genome reveals an impressive array of genes encoding secreted oxidases, peroxidases and hydrolytic enzymes that cooperate in wood decay. Analysis of the genome data will enhance our understanding of lignocellulose degradation, a pivotal process in the global carbon cycle, and provide a framework for further development of bioprocesses for biomass utilization, organopollutant degradation and fiber bleaching. This genome provides a high quality draft sequence of a basidiomycete, a major fungal phylum that includes important plant and animal pathogens.  相似文献   

10.
The degradation of lignocellulose and the secretion of extracellular oxidoreductases were investigated in beech-wood (Fagus sylvatica) microcosms using 11 representative fungi of four different ecophysiological and taxonomic groups causing: (1) classic white rot of wood (e.g. Phlebia radiata), (2) 'nonspecific' wood rot (e.g. Agrocybe aegerita), (3) white rot of leaf litter (Stropharia rugosoannulata) or (4) soft rot of wood (e.g. Xylaria polymorpha). All strong white rotters produced manganese-oxidizing peroxidases as the key enzymes of ligninolysis (75-2200 mU g(-1)), whereas lignin peroxidase activity was not detectable in the wood extracts. Interestingly, activities of two recently discovered peroxidases - aromatic peroxygenase and a manganese-independent peroxidase of the DyP-type - were detected in the culture extracts of A. aegerita (up to 125 mU g(-1)) and Auricularia auricula-judae (up to 400 mU g(-1)), respectively. The activity of classic peroxidases correlated to some extent with the removal of wood components (e.g. Klason lignin) and the release of small water-soluble fragments (0.5-1.0 kDa) characterized by aromatic constituents. In contrast, laccase activity correlated with the formation of high-molecular mass fragments (30-200 kDa). The differences observed in the degradation patterns allow to distinguish the rot types caused by basidiomycetes and ascomycetes and may be suitable for following the effects of oxidative key enzymes (ligninolytic peroxidases vs. laccases, role of novel peroxidases) during wood decay.  相似文献   

11.
Biopulping can be an alternative to the traditional methods of pulping. Biopulping use fungi that are known to be able to degrade wood as well as lignin constituent of wood. Amongst these white rot fungi are the most proficient biodegrader. The fungus is non sporulating and is a selective lignin degrader. It colonizes either on living or dead wood and decomposes all wood polymers including lignin and extractives making it to be extremely potential to be used in biopulping. The process of biopulping reduces the utilization of chemical in pulping industry and help in decreasing the environmental hazard caused by normal pulping. The present review deals with diverse aspects of biopulping and their ecological as well as economic significances.  相似文献   

12.
13.
Degradation of anthracene by selected white rot fungi   总被引:5,自引:0,他引:5  
Abstract Approximately 60% of the originally supplied anthracene (AC) was degraded in ligninolytic stationary cultures of selected white rot fungi within 21 days. All the white rot fungi tested oxidized AC to anthraquinone (AQ). Unlike Phanerochaete chrysosporium and strain Px, with Pleurotus ostreatus, Coriolopsis polyzona and Trametes versicolor , AQ did not accumulate in the cultures, indicating that AQ was degraded further and its degradation did not appear to be a rate-limiting step. However, P. ostreatus and C. polyzona failed to degrade AQ in the absence of AC. P. ostreatus, T. versicolor and strain Px did not produce lignin peroxidase (ligninase) (LIP) under the test conditions but oxidized AC to AQ suggesting that white rot fungi produce enzyme(s) other than LIP capable of oxidizing compounds with high ionization potential like AC. Moreover, in the case of Ph. chrysosporium and C. polyzona , AC degradation started earlier than the production of LIP. Veratryl alcohol (VA) seemed to be playing a role in AC oxidation catalyzed by LIP in Ph. chrysosporium .  相似文献   

14.
There has been increasing interest in extracellular enzymes from white rot fungi, such as lignin and manganese peroxidases, and laccases, due to their potential to degrade both highly toxic phenolic compounds and lignin. The optimum cultivation conditions for laccase production in semi-solid and liquid medium by Trametes versicolor, Trametes villosa, Lentinula edodes and Botrytis cinerea and the effects of laccase mediator system in E1 effluent were studied. The higher laccase activity (12756 U) was obtained in a liquid culture of T. versicolor in the presence of 1 mM of 2,5-xylidine and 0.4 mM copper salt as inducers. The effluent biotreatments were not efficient in decolorization with any fungal laccases studied. Maximum phenol reduction was approximately 23% in the absence of mediators from T. versicolor. The presence of 1-hydroxybenzotriazole did not increase phenol reduction. However, acetohydroxamic acid, which was not degraded by laccase, acted very efficiently on E1 effluent, reducing 70% and 73% of the total phenol and total organic carbon, respectively. Therefore, acetohydroxamic acid could be applied as a mediator for laccase bioremediation in E1 effluent.  相似文献   

15.
The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe3+-reductants. Phenolates were the major compounds with Fe3+-reducing activity in both fungi and displayed Fe3+-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe3+ and H2O2 (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum—a model brown rot fungus—other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.  相似文献   

16.
贝壳状革耳菌和黄孢平革菌固体培养酶系比较   总被引:13,自引:0,他引:13  
白腐菌黄孢平革菌(Phanerochaete chrysosporium) 与贝壳状革耳菌(Panus conchatus)在类似自然状态的固体培养条件下酶的分泌情况有 较大差异。P.conchatus和P.chrysosporium的主要木素降解酶分别是漆酶和锰过氧化物酶 ;两种菌均产生较高水平的木聚糖酶;P.conchatus在整个培养过程中所产生的内切葡 聚糖酶、微晶纤维素酶和纤维二糖酶活力均比P.chrysosporium相应酶的活力低得多, 尤其是内切葡聚糖酶。研究结果初步揭示了P.conchaus降解木素的主要酶系及选择性降 解木素的原因。  相似文献   

17.
The white rot fungus Phanerochaete chrysosporium is unique in its ability to totally degrade a wide variety of recalcitrant pollutants. We have investigated the degradation of biphenyl and two model chlorinated biphenyls, 2,2',4,4'-tetrachlorobiphenyl and 2-chlorobiphenyl by suspended cultures of P. chrysosporium grown under conditions that maximize the synthesis of lignin-oxidizing enzymes. Radiolabeled biphenyl and 2'-chlorobiphenyl added to cultures at concentrations in the range 260 nM to 8.8 muM were degraded extensively to CO(2) within 30 days. In addition, from 40% to 60% of the recovered radioactivity was found in water-soluble compounds. A correlation between the rate of degradation and the synthesis of ligninases or Mn-dependent peroxidases could not be observed, indicating that yet unknown enzymatic system may be resonsible for the initial oxidation of PCBs. The more heavily chlorinated PCB congener, 2,2',4,4'-tetrachlorobiphenyl was converted to CO(2) less readily; approximately 9% and 0.9% mineralization was observed in cultures incubated with 40 nM and 5.3 muM, respectively. Overall, our results indicate that P. chrysosporium is a promising organism for the treatment of wastes contaminatd with lightly and moderately chlorinated PCBs. (c) 1992 John Wiley & Sons, Inc.  相似文献   

18.
Fungal biodegradation of lignopolystyrene graft copolymers.   总被引:2,自引:1,他引:1       下载免费PDF全文
White rot basidiomycetes were able to biodegrade styrene (1-phenylethene) graft copolymers of lignin containing different proportions of lignin and polystyrene [poly(1-phenylethylene)]. The biodegradation tests were run on lignin-styrene copolymerization products which contained 10.3, 32.2, and 50.4% (wt/wt) lignin. The polymer samples were incubated with the white rot fungi Pleurotus ostreatus, Phanerochaete chrysosporium, and Trametes versicolor and the brown rot fungus Gloeophyllum trabeum. White rot fungi degraded the plastic samples at a rate which increased with increasing lignin content in the copolymer sample. Both polystyrene and lignin components of the copolymer were readily degraded. Polystyrene pellets were not degradable in these tests. Degradation was verified for both incubated and control samples by weight loss, quantitative UV spectrophotometric analysis of both lignin and styrene residues, scanning electron microscopy of the plastic surface, and the presence of enzymes active in degradation during incubation. Brown rot fungus did not affect any of the plastics. White rot fungi produced and secreted oxidative enzymes associated with lignin degradation in liquid media during incubation with lignin-polystyrene copolymer.  相似文献   

19.
White rot basidiomycetes were able to biodegrade styrene (1-phenylethene) graft copolymers of lignin containing different proportions of lignin and polystyrene [poly(1-phenylethylene)]. The biodegradation tests were run on lignin-styrene copolymerization products which contained 10.3, 32.2, and 50.4% (wt/wt) lignin. The polymer samples were incubated with the white rot fungi Pleurotus ostreatus, Phanerochaete chrysosporium, and Trametes versicolor and the brown rot fungus Gloeophyllum trabeum. White rot fungi degraded the plastic samples at a rate which increased with increasing lignin content in the copolymer sample. Both polystyrene and lignin components of the copolymer were readily degraded. Polystyrene pellets were not degradable in these tests. Degradation was verified for both incubated and control samples by weight loss, quantitative UV spectrophotometric analysis of both lignin and styrene residues, scanning electron microscopy of the plastic surface, and the presence of enzymes active in degradation during incubation. Brown rot fungus did not affect any of the plastics. White rot fungi produced and secreted oxidative enzymes associated with lignin degradation in liquid media during incubation with lignin-polystyrene copolymer.  相似文献   

20.
Heidrun Anke 《Mycologist》2006,20(3):83-89
White-rot fungi possess a unique oxidative mechanism by which the recalcitrant lignin component of wood is mineralised. The activity of lignin-degrading enzymes, chiefly lignin and manganese peroxidases, depends on several small organic molecules. Some of these (e.g. chloroanisyl alcohols) are chloroaromatics and may act as environmental pollutants in the forest soil, whereas the synthesis of others (e.g. veratryl alcohol) requires chloromethane. Certain white-rot genera, notably Phellinus and Inonotus, release excess quantities of chloromethane into the atmosphere where it acts as a greenhouse gas. On the other hand, their powerful ligninolytic system enables white-rot fungi to degrade a wide range of man-made environmental pollutants, including recalcitrant chloroaromatics such as DDT, PCP, 2,4-D and 2,4,5-T. This review describes the multifarious interactions of white-rot fungi with their environment via the chlorine cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号