首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-rays were used to investigate the influence of dose fractionation on the induction of pink and colorless somatic mutations in stamen hair cells of Tradescantia clone 02. Inflorescences were exposed to a single acute dose of 60 rad, two acute doses of 30 rad, or three acute doses of 20 rad. The dose rate in all cases was 30 rad/min. Intervals between dose fractions were varied from 35 sec to 48 h and the mutation frequency was compared with that resulting after the single dose of 60 rad. The data show a reduction in mutation frequency for fractionation intervals longer than 15 and 6 min for pink and colorless mutations, respectively, but not for shorter intervals.One interpretation of the data predicts that pink mutation frequencies are reduced by 11% for fraction intervals of from 30 min to 6 h, and that colorless mutation frequencies are reduced by 24% for intervals of from 15 min to 6 h. The corresponding sparing effect of dose fractionation is equal to 6 rad for pink mutations and 9 rad at the colorless mutation endpoint. A calculation has been made which indicates that the percentages of the total repairable (presumably two-hit) damage that is repaired during fraction intervals up to 6 h, are 16 and 35% for pink and colorless mutations respectively.  相似文献   

2.
A study was made of induction of mutations, resistant to 6-thioguanine (TGr), and reproductive death of Chinese hamster cells after irradiation by fission-spectrum fast neutrons (mean energy of 0.75 MeV) with doses of 10-130 cGy. A high relative biological effectiveness (RBE) of fast neutrons was shown. The maximum RBE values (13-16) were within the dose range inducing minimum mutagenic and lethal effects. RBE decreased with the dose increase. Inspite of high mutagenic effectiveness of neutrons, estimated according to TGr mutation frequency per cell per dose unit, their relative mutagenic effectiveness, estimated per cell per one lethal event, did not substantially differ from that of X-radiation.  相似文献   

3.
With L-cells exposed to neutrons and X-rays the RBE of fission spectrum neutrons (1.2 MeV) was 2.8, and that of high-energy neutrons (22 MeV), 1.3. X-Irradiation with small doses (0.25 to 0.50 Gy) exerted a stimulatory effect on the growth and division of cells.  相似文献   

4.
Dose-response curves were determined for pulmonary adenomas and adenocarcinomas in mice after single acute doses of 200 kVp X-rays and cyclotron neutrons (E = 7.5 MeV). A serial-killing experiment established that the radiation induces the tumours and does not merely accelerate the appearance of spontanoeus cancers [corrected]. The dose versus incidence (I) of tumours in male and female mice for X-ray doses between 0.25 and 7.5 Gy is 'bell-shaped' and best fitted with a purely quadratic induction and exponential inactivation terms, i.e. I = A + BD2e-alpha D. In contrast, the tumour dose-response after 0.1-4.0 Gy of neutrons is best fitted by I = A + BDe-alpha D and is steeply linear less than or equal to 1 Gy, peaks between 1 and 3 Gy and sharply declines at 4.0 Gy. The data for the female mice less than or equal to 1 Gy neutrons are best fitted to the square root of the dose. A major objective of the experiments was to derive neutron RBE values. Because of the differences between the X-ray (quadratic) and neutron (linear) curves, the RBEn will vary inversely with decreasing X-ray dose. The RBE values at 1 Gy of X-rays derived from the B coefficients in the above equations are 7.4 +/- 3.2 (male and female); 8.6 +/- 3.6 (female) and 4.7 +/- 1.8 (male). These are high values and imply even higher values at the doses of interest to radiation protection. If, however, one restricts the analysis to the initial, induction side of the response (less than or equal to 1 Gy neutrons, less than or equal to 3 Gy X-rays) then good linear fits are obtainable for both radiations and indicate neutron RBE values of 7.4 +/- 2.3 for female mice and 4.5 +/- 1.8 for males, and these are independent of dose level.  相似文献   

5.
To investigate the potential efficacy of fission neutrons from a fast-neutron reactor for the treatment of radioresistant tumors, the relative biological effectiveness (RBE) and tolerance dose of fission neutrons in canine skin were determined. The forelimbs of 34 healthy mongrel dogs received a single dose of fission neutrons (5.6, 6.8, 8.2, 9.6 or 11 Gy) or 137Cs gamma rays (10, 15, 20, 25 or 30 Gy). Based on observations of radiodermatitis for each radiation, the single-fraction RBE of fission neutrons in the sixth month was calculated as approximately 3. The tolerance doses of fission neutrons and gamma rays, defined as the highest doses giving no moist desquamation on the irradiated skin in the recovery phase, were estimated as 7.6 Gy and 20 Gy, respectively. The tolerance dose of 7.6 Gy of fission neutrons included 5.0 Gy of fast neutrons possessing high anti-tumor effects and 1.4 x 10(12) n/cm2 of thermal neutrons, which could be applicable to neutron capture therapy (NCT). The combination of fast-neutron therapy and NCT using a fast-neutron reactor might be useful for the treatment of radioresistant tumors.  相似文献   

6.
The induction of somatic mutations in the stamen hair cells of Tradescantia KU 9 has been used to investigate the effects of combined exposure to 1,2-dibromoethane (DBE) and X-rays. At low radiation doses a synergistic interaction has been found between the two agents for both DBE exposure followed by acute X-rays and chronic simultaneous exposures. The synergism is discussed in terms of an interaction of single strand lesions in the DNA. It is concluded that although this type of interaction should not be too important for radiological protection, it could be of significance in evaluating the effects of chemicals at low exposure rates.  相似文献   

7.
(C57B1/Cne X C3H/Cne)F1 male mice were irradiated with single acute doses of 0.4 MeV neutrons (from 0.11 to 0.72 Gy) or 250 kV X-rays (from 0.25 to 3 Gy) and sacrificed 5 days later. Chromosome preparations of secondary spermatocytes, irradiated at the stage of pachytene, were analysed and the incidence of hyper-haploidies and chromosome fragments was recorded. Data on numerical aberrations were fitted by highly significant linear relationships for both types of radiation. A relative biological effectiveness (RBE) value of 5.65 was estimated by the ratio between the slopes of the two regression lines. The same linear fitting was applied to frequencies of cells with fragments, even if in this case other types of functions could not be excluded. An RBE value was estimated in the same way as for numerical aberrations and yielded a comparable figure of 5.23. A significant correlation was also found between the incidence of numerical and structural aberrations, which points to the chromosome itself as the prevalent target for radiation-induced non-disjunction (ND). In addition, the highly significant linearity of the dose-effect relationship observed for the induction of aneuploidies suggests, as the simplest hypothesis, a single-hit mechanism of radiation action, possibly through pre-non-disjunctional damage to the centromeric region, rather than an indirect induction of segregational difficulties after primarily induced chromatid interchanges.  相似文献   

8.
A modified mouse splenocyte culture system was standardized after testing different mitogens (i.e., phytohemagglutinin (PHA), concanavalin A (Con A)). The mitotic index was determined for comparison between different mitogens. Following selection of appropriate mitogen (PHA 16, Flow), a series of experiments were conducted to evaluate the application of a cytokinesis-block for scoring micronuclei and assays for chromosomal aberrations produced by treatment in G0 and G2 for the purposes of biological dosimetry following in vivo and/or in vitro exposure to X-rays, fission neutrons and bleomycin. In the X-irradiation studies, the frequencies of micronuclei and chromosomal aberrations (i.e., dicentrics and rings) increased in a dose-dependent manner. These data could be fitted to a linear-quadratic model. No difference was observed between irradiation in vivo and in vitro, suggesting that measurement of dicentrics and micronuclei in vitro after X-irradiation can be used as an in vivo dosimeter. Following in vivo irradiation with 1 MeV fission neutrons and in vitro culturing of mouse splenocytes, linear dose-response curves were obtained for induction of micronuclei and chromosomal aberrations. The lethal effects of neutrons were shown to be significantly greater than for a similar dose of X-rays. The relative biological effectiveness (RBE) was 6-8 in a dose range of 0.25-3 Gy for radiation-induced asymmetrical exchanges (dicentrics and rings), and about 8 for micronuclei in a dose range of 0.25-2 Gy. Furthermore, the induction of chromosomal aberrations by bleomycin was investigated in mouse G0 splenocytes (in vitro) and compared with X-ray data. Following bleomycin treatment (2 h) a similar pattern of dose-response curve was obtained as with X-rays. In this context a bleomycin rad equivalent of 20 micrograms/ml = 0.50 Gy was estimated.  相似文献   

9.
Using the neutral filter elution technique, the induction of DNA double-strand breaks (dsb) has been measured in 250 kVp X-irradiated V79-379A Chinese hamster cells irradiated under air or nitrogen. The dose-effect curves for induced dsb were curvilinear, mirroring cell survival curves, such that there was an approximately linear relationship between induced dsb and lethal lesions (-In (cell survival)) which was independent of oxygen. With cells irradiated with 2.3 MeV neutrons or 238Pu alpha-particles the correlations between lethal events and dsb, although also approximately linear, do not match those for X-rays. With neutrons there is approximately a 2.5-fold reduction in the level of dsb induction per lethal event. Thus either the apparently linear relationships found are spurious, and there is no general correlation between induced dsb and lethal effect, or there are qualitative differences between neutron, alpha-particle and X-ray induced dsb that give them differing probabilities of cell kill.  相似文献   

10.
Summary Exponentially growing and plateau phase cultures of Ehrlich ascites tumor cells (suspension strain) were treated with either fast electrons, X-rays, fast neutrons or Am-241-alpha-particles in a dose range from about 0.02 Gy to 1 Gy and for comparison also at higher doses. After the first post-irradiation division, cells were scored for the presence of micronuclei and the micronucleus fraction as well as the number of micronuclei/cell was determined. Micronuclei were counted using the DNA specific stain H 33258 in a fluorescence microscope. A comparison with cytofluorometric measurements established that microscopic detection accounted for up to 90% of all micronuclei present within a sample, the rest probably being hidden in direct observation by the main nucleus.Dose response curves based on the micronucleus fraction as well as on the number of micronuclei/cell were found to be linear in the whole dose range tested at low and at high ionization density. Linearity was maintained also when repair of primary lesions was promoted or suppressed. The RBE of alpha-particles compared with X-rays was dependent on the time of fixation and was at a maximum immediately after the first division (RBE = 4.8 ± 0.5). Micronucleus distribution showed overdispersion relative to Poissonian statistics with every radiation quality used, in accordance with earlier observations on the distribution of acentric fragments in irradiated cultures.  相似文献   

11.
While there is significant clinical experience using both low- and high-dose-rate 252Cf brachytherapy, there are minimal data regarding values for the neutron relative biological effectiveness (RBE) with both modalities. The aim of this research was to derive a radiobiological model for 252Cf neutron RBE and to compare these results with neutron RBE values used clinically in Russia. The linear-quadratic (LQ) model was used as the basis to characterize cell survival after irradiation, with identical cell killing rates (S(N) = S(gamma)) between 252Cf neutrons and photons used for derivation of RBE. Using this equality, a relationship among neutron dose and LQ radiobiological parameter (i.e., alpha(N), beta(N), alpha(gamma), beta(gamma)) was obtained without the need to specify the photon dose. These results were used to derive the 252Cf neutron RBE, which was then compared with Russian neutron RBE values. The 252Cf neutron RBE was determined after incorporating the LQ radiobiological parameters obtained from cell survival studies with fast neutrons and teletherapy photons. For single-fraction high-dose-rate neutron doses of 0.5, 1.0, 1.5 and 2.0 Gy, the total biologically equivalent doses were 1.8, 3.4, 4.7 and 6.0 RBE Gy with 252Cf neutron RBE values of 3.2, 2.9, 2.7 and 2.5, respectively. Using clinical data for late-responding reactions from 252Cf, Russian investigators created an empirical model that predicted high-dose-rate 252Cf neutron RBE values ranging from 3.6 to 2.9 for similar doses and fractionation schemes and observed that 252Cf neutron RBE increases with the number of treatment fractions. Using these relationships, our results were in general concordance with high-dose-rate 252Cf RBE values obtained from Russian clinical experience.  相似文献   

12.
Relative biological effectiveness (RBE) of 252Cf, with respect to 192Ir, has been determined at the low dose rates commonly used in interstitial and intracavitary therapy. The biological criterion was growth reduction in Vicia faba bean roots. Two varieties of Vicia faba were used. For Vicia faba Sutton's seeds, an RBE of 5.7 to 6.6 was obtained for 252Cf Dn + gamma doses of 0.5 to 0.2 Gy respectively and at a Dn + gamma dose rate of 0.11 Gy-1. The gamma contribution D gamma/Dn + gamma at the level of the root tipes was 0.35 and the derived RBE of the neutron emission of 252Cf was then 8.2 to 9.7. For Vicia faba Be1B and in the same irradiation conditions, an RBE of 5.1 to 6.2 was obtained for the total (n + gamma) 252Cf emission and for Dn + gamma doses of 0.4 to 0.2 Gy respectively. These values lead to an RBE of 7.4 to 9.0 for the neutron emission of 252Cf. For Vicia faba BelB, but for another source arrangement (Dn + gamma dose rate of 0.13 Gy . h-1 for 252Cf), an RBE of 5.6 to 7.5 was obtained for the total (n + gamma) emission of 252Cf and for Dn + gamma doses of 0.4 to 0.1 Gy respectively. The gamma contribution (D gamma/Dn + gamma) at the level of the root tips was 0.42, and the derived RBE of the neutron emission of 252Cf was then 8.9-12.3.  相似文献   

13.
Chinese hamster ovary (CHO) cells were exposed to thermal and epithermal neutrons, and the occurrence of mutations at the HPRT locus was investigated. The Kyoto University Research Reactor (KUR), which has been improved for use in neutron capture therapy, was the neutron source. Neutron energy spectra ranging from nearly pure thermal to epithermal can be chosen using the spectrum shifters and thermal neutron filters. To determine mutant frequency and cell survival, cells were irradiated with thermal and epithermal neutrons under three conditions: thermal neutron mode, mixed mode with thermal and epithermal neutrons, and epithermal neutron mode. The mutagenicity was different among the three irradiation modes, with the epithermal neutrons showing a mutation frequency about 5-fold that of the thermal neutrons and about 1.5-fold that of the mixed mode. In the thermal neutron and mixed mode, boron did not significantly increase the frequency of the mutants at the same dose. Therefore, the effect of boron as used in boron neutron capture therapy (BNCT) is quantitatively minimal in terms of mutation induction. Over 300 independent neutron-induced mutant clones were isolated from 12 experiments. The molecular structure of HPRT mutations was determined by analysis of all nine exons by multiplex polymerase chain reaction. In the thermal neutron and mixed modes, total and partial deletions were dominant and the fraction of total deletions was increased in the presence of boron. In the epithermal neutron mode, more than half of the mutations observed were total deletions. Our results suggest that there are clear differences between thermal and epithermal neutron beams in their mutagenicity and in the structural pattern of the mutants that they induce. Mapping of deletion breakpoints of 173 partial-deletion mutants showed that regions of introns 3-4, 7/8-9 and 9-0 are sensitive to the induction of mutants by neutron irradiation.  相似文献   

14.
Microtus males were exposed to different doses of 250 kV X-rays or fast fission neutrons of 1 MeV mean energy. Early (= round) spermatids were analyzed for the presence of extra sex chromosomes, diploidy and micronuclei at different time intervals corresponding with treated differentiating spermatogonia and spermatocytes. Induction of nondisjunction of sex chromosomes could not be detected. In contrast, induction of diploids by both types of radiation was statistically significant at all sampling times. Dose-effect relationships for most of the sampling times were linear and sometimes linear-quadratic concave upward or downward. There were pronounced stage-specific differences in sensitivity as reflected by differences in doubling doses that ranged from 4 to 22 cGy for X-rays and from 0.4 to 4 cGy for neutrons. Spermatocytes at pachytene were the most sensitive cells and proliferating spermatogonia the least sensitive ones. The relative biological effectiveness (RBE) of neutrons depended on the cell stage treated and fluctuated between 1.4 and 9.2. Evidence for radiation-induced chromosomal breakage events was obtained via detection of micronuclei. Induction of micronuclei by X-rays or neutrons was statistically significant at all spermatocyte stages tested. There was no effect in spermatogonia. With a few exceptions dose-effect relationships were linear. Differences in stage sensitivity were clearly present as evidenced by doubling dose which ranged from 5 to 29 cGy for X-rays and from 1 to 3 cGy for neutrons. RBE values varied from 5.2 to 12.7. Maximum sensitivity was detected in spermatocytes at diakinesis, MI and MII. Resting primary spermatocytes (G1 and S phase) were somewhat less sensitive and actively proliferating spermatogonia were the least sensitive cells. The pattern of stage sensitivity for induction of diploids was distinctly different from that for induction of chromosomal breakage.  相似文献   

15.
S Pampfer  C Streffer 《Teratology》1988,37(6):599-607
Female mice (strain: "Heiligenberger Stamm") were irradiated with neutrons (7 MeV) or X-rays when embryos were at the early zygote stage; uterine contents were examined on gestation day 19 for prenatal mortality and malformed fetuses. For both radiation qualities, the dose-dependent survival curve fitted well to a simple exponential equation; the neutron relative biological efficiency (RBE) value was 2.3. The major fraction of deaths induced by exposure to neutrons or X-rays occurred before implantation. Aside from dead embryos, malformed fetuses were observed 19 days p.c. (postconception). The number of malformed fetuses increased with a linear-quadratic function of neutron or X-ray dose. Malformations were mainly gastroschisis, although omphaloceles and anencephalies were also observed. The neutron RBE value for the induction of malformations varied from 2.0 to 2.8 in the dose range tested. Except after 75-cGy neutrons, no significant increase in the proportion of stunted or skeletally malformed fetuses was noted. Our results indicated that the reaction of preimplantation embryos to irradiation could be more complex than the simple "all-or-none" response considered so far.  相似文献   

16.
The induction of reciprocal translocations in rhesus monkey stem-cell spermatogonia was studied using multivalent analysis at metaphase of primary spermatocytes. Animals were exposed to 1 Gy gamma-rays at dose rates of 140 and 0.2 mGy/min or to 0.25 Gy acute 2 MeV neutrons. Reduction of the dose rate from 140 mGy/min to 0.2 mGy/min did not result in a lowering of the frequencies of recovered translocations of 0.43%. The neutron data indicated an RBE (neutrons vs. X-rays) of 2.1, which is clearly lower than the value of 4 obtained in the mouse. It is made plausible that in general mammalian species with high sensitivities for the cytotoxic effects of ionizing radiation, such as the rhesus monkey, will exhibit relatively high threshold dose rates below which no further reduction in aberration yield occurs, whereas in more resistant species, such as the mouse, the threshold dose rate will be at a very low level. Similarly, resistant species will show relatively high RBE values for neutron irradiation and sensitive species low ones.  相似文献   

17.
J C Fox 《Mutation research》1990,235(2):41-47
The repair of ionising-radiation-induced DNA double-strand break type damage was measured by Kohn neutral elution in an X-ray-sensitive mutant of V79-4, irs1. This was done in order to investigate further the likelihood that irs1 carries a defect which leads to error-prone repair of DNA damage, and not simply a reduced ability to rejoin DNA double-strand breaks. The mutant displayed an equal increase in sensitivity to the lethal effects of neutrons, as compared to X-rays. Both irs1 and V79-4 showed an increased sensitivity to the killing effects of neutrons of around 2 at 10% survival. irs1 also showed an exponential survival after either X-rays or neutrons. The induction of DNA double-strand breaks was measured in both cell lines over a dose range of 10-40 Gy using Kohn neutral filter elution. Induction of breaks by X-rays in irs1 seemed to increase slightly with dose, relative to induction in V79-4, so that at 40 Gy 1.5 times more DNA double-strand breaks were measured in irs1 cells than in V79-4. Neutron irradiation resulted in a more similar level of induction in either strain after 10-40 Gy. This difference in induction of damage may be due to a different cell-cycle composition in either cell line. The rejoining of X-ray induced double-strand breaks showed a very similar pattern (on a percentage rejoined basis) in both cell lines, although from the induction data at 40 Gy, the dose at which rejoining was measured, fewer breaks were rejoined in V79-4 but also fewer breaks remained unsealed. Neutron-induced breaks, however, were rejoined more efficiently in irs1 again on a percentage basis, but also in absolute terms since similar induction was seen after 40 Gy. This data, together with the differences seen in the rejoining of X-ray compared to neutron induced breaks, may indirectly support the proposal that irs1 is a misrepair mutant.  相似文献   

18.
The induction of mutation by graded doses of monoenergetic neutrons was examined using the human-hamster hybrid cell system. The AL cells, formed by fusion of human fibroblasts with the gly- A mutant of the Chinese hamster ovary cells, contain the standard set of hamster chromosomes plus a single human chromosome, number 11. These cells contain specific human cell surface antigens that render them sensitive to killing by specific antisera in the presence of complement. Mutant AL cells that have lost the surface markers, however, would survive and give rise to scorable colonies. The cells were irradiated with neutrons produced at the Radiological Research Accelerator Facility of Columbia University. Doses corresponding to low, moderate, and high cytotoxicities and in energies ranging from 0.33 to 14 MeV were used. Neutrons induced a dose-dependent cytotoxicity and mutation frequency in the AL cells. Over the range of doses examined, it was found that the mutagenesis induced by neutrons was energy-dependent and the frequencies were a curvilinear function of dose for both the a1 and a2 antigenic loci examined. In comparison to gamma rays, the relative biological effectiveness (RBE) for cell lethality at the 10% survival level ranged from 5.2 for 0.33 MeV to 1.8 for 14 MeV neutrons. The RBE for mutation induction at the a1 locus, however, ranged from 30 for 0.33 MeV to 4.2 for 14 MeV neutrons at or around the lowest levels of effect examined. Results of the present study demonstrated that neutrons, when measured under conditions which permit detection of a spectrum of gene and chromosomal mutations, in fact, are more efficient mutagens than previously thought.  相似文献   

19.
Following whole-body irradiation of ICR mice with various doses of fission neutrons or X-rays, the frequency of micronuclei (MNs) in peripheral blood reticulocytes was measured at 12 h intervals beginning immediately after irradiation and ending at 72 h after irradiation. The resulting time-course curve of MN frequency had a clear peak 36 h after irradiation, irrespective of the type of radiation applied and the dose used. The MN frequency, averaged as the unweighted mean over the experimental time course, showed a linear increase with increasing dose of either fission neutrons or X-rays. The linear response to X-rays supports reported conclusion that induction of MN formation in reticulocytes is a dose-rate independent phenomenon. The relative biological effectiveness (RBE) of fission neutrons to X-rays for MN induction was estimated to be 1.9 +/- 0.3. This value is considerably lower than the RBE value of 4.6 +/- 0.5 reported for the same fission neutrons for induction of lymphocyte apoptosis in the thymus of ICR mice that represents dose-rate independent, one-track event. Based on these results, we propose that MNs increased in reticulocytes after irradiation mostly represent acentric fragments caused by single chromosome breaks, and that some confounding factor is operating in erythroblasts for the formation of aberrations from non-rejoining DNA double-strand breaks more severely after high-LET radiation than after low-LET radiation.  相似文献   

20.
Germline mutation induction at mouse minisatellite loci by paternal low-dose (0.125-1 Gy) exposure to chronic (1.66 x 10(-4) Gy min(-1)) low-linear energy transfer (low-LET) gamma-irradiation and high-LET fission neutrons (0.003 Gy min(-1)) was studied at pre-meiotic stages of spermatogenesis. Both types of radiation produced linear dose-response curves for mutation of the paternal allele. In contrast to previous results using higher doses, the pattern of induction of minisatellite mutation after chronic gamma-irradiation was similar to acute (0.5 Gy min(-1)) exposure to X-rays, indicating that the elevated mutation rate was independent of the ability of the cell to repair damage induced immediately or over a period of up to 100 h. Chronic exposure to fission neutrons was more effective than acute or chronic low-LET exposure (relative biological effectiveness, RBE=3.36). The data also provide strong support for the previous conclusion that increases in minisatellite mutation rate are not caused by radiation-induced DNA damage at minisatellite loci themselves, but rather from damage induced by ionising radiation elsewhere in the genome/cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号