首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The polyamine spermidine has recently been reported to be a substantial component of the RNA phage particle. Its effect on the isolated RNA-A protein complex of the phage MS2 is investigated here. This complex infects intact Escherichia coli cells via F-pili, as does the whole phage. It is shown that the infectivity of the complex on intact E. coli cells was enhanced by incubation with spermidine. Optimal stimulation (20-fold) of the complex infectivity was achieved by incubation with 3 x 10(-4) M spermidine for 20 to 30 min at 37 degrees C. This gave a more compact structure to the complex, as could be seen by its faster sedimentation in sucrose gradients. Although spermidine and Mg2+ are known to partially replace one another in several systems, no enhancement of the infectivity of the complex, but only its considerably faster sedimentation in sucrose gradients, occurred after incubation with 3 x 10(-4) M Mg2+. Only if the Mg2+ concentration was raised by more than one order of magnitude could increased infectivity of the complex be observed. At concentrations of spermidine and Mg2+ that maximally stimulated the infectivity of the complex on intact E. coli cells, no increase in infectivity of phenol-extracted RNA to E. coli spheroplasts was detected. From these in vitro results, the role of the polyamine spermidine in the RNA phage particle for the infecting, RNA-A protein complex molecules in phage infection is discussed.  相似文献   

2.
Influenza A virus matrix protein (M1) is the most abundant conservative protein that regulates the replication, assembly and budding of the viral particles upon infection. Several host cell factors have been determined to interact with M1 possibly in regulating influenza virus replication. By yeast two-hybrid screening, the isomerase cyclophilin A (CypA) was identified to interact with the M1 protein. CypA specifically interacted with M1 both in vitro and in vivo . The mutagenesis results showed CypA bound to the functional middle (M) domain of M1. The depletion of endogenous CypA by RNA interference resulted in the increase of influenza virus infectivity while overexpression of CypA caused decreasing the infectivity in affected cells. The immunofluorescence assays indicated that overexpressed CypA deduced the infectivity and inhibited the translocation of M1 protein into the nucleus while did not affect nucleoprotein entering the nucleus. Further studies indicated that overexpression of CypA significantly increased M1 self-association. Western blot with purified virions confirmed that CypA was encapsidated within the virus particle. These results together indicated that CypA interacted with the M1 protein and affected the early stage of the viral replication.  相似文献   

3.
Assembly protein was isolated by DEAE cellulose chromatography from disrupted R17 bacteriophage and reconstituted with purified R17 phage RNA. Following reconstitution, 125I labeled assembly protein co-sediments with 27S R17 phage RNA in a sucrose gradient. SDS-polyacrylamide gel analysis of the 27S 125I labeled protein-RNA complex confirmed that assembly protein was the only phage protein associated with the RNA. The specific infectivity (PFU/μg RNA) of the R17 phage RNA-assembly protein complex was 35-fold greater than that of R17 phage RNA when assayed on Escherichia coli spheroplasts. Infectivity of both preparations was destroyed by treatment with pancreatic ribonuclease A. Furthermore, the assembly protein-RNA complex was infectious for intact cells whereas phage RNA was not infectious. Infectivity of this 27S complex for intact cells was totally eliminated by pretreatment with ribonuclease.  相似文献   

4.
Synthesis and Cleavage of Influenza Virus Proteins   总被引:5,自引:2,他引:3       下载免费PDF全文
The NWS strain of influenza virus grows rapidly in and kills the MDCK dog kidney cell strain. Within 1 to 2 hr, the virus inhibits host cell protein synthesis and for 3 to 4 hr more it directs the synthesis of influenza virus proteins at a rate about twice that of uninfected cell synthesis. The rates of virus ribonucleic acid (RNA) and protein synthesis reach a maximum within the first few hours after infection and then drop. Plaque assays exhibit a linear dose-response, indicating that only one virion is necessary for productive infection. We have confirmed earlier reports regarding the fragmented nature of the RNA genome of purified influenza virions. However, high resolution gel electrophoresis indicated that each size class of viral RNA is heterogenous, so that there are at least 10 and probably more fragment sizes of RNA in these virions. Repeated attempts to detect infectivity in preparations of extracted viral RNA were completely negative (over a 10(8)-fold loss of infectivity after extraction). Even infection of the "infectious" RNA-treated cells with intact, related, influenza viruses failed to support infectivity of the isolated RNA or to rescue a host range genetic marker of the RNA. Purified influenza virions exhibit only three major protein peaks based on separation according to molecular weights. These three major virion proteins are the only major virion proteins synthesized in infected cells. This is true throughout the infectious cycle from several hours after infection until the cells are dying. However, the molecular weight of these virion proteins differs slightly depending upon the cell type in which the virus is grown. No host membrane proteins are incorporated into the virions as they bud through the cell membrane. Pulse-chase labeling early after infection or prolonged chase experiments indicate that influenza virus proteins are cleaved from one or more precursor polypeptides. In fact, each of the three major peaks seems to be a heterogeneous mixture of polypeptides in various stages of cleavage. Peptide analysis confirms that the three major peaks share common peptides, but the exact precursor product relationships are not clear. There may be one or several precursor proteins. Also there could be overlapping messenger RNA molecules of varying length giving rise to polypeptides of various sizes and overlapping sequences. Late in infection, amino acid labeling shows a preponderance of internal nucleocapsid protein synthesis, indicating that either this protein is much more stable to cleavage in infection or it is made from a more stable messenger. There is no obvious relationship between virion RNA fragments and viral protein sizes, so these fragments may be artifacts.  相似文献   

5.
RNA-binding properties of influenza A virus matrix protein M1.   总被引:13,自引:0,他引:13       下载免费PDF全文
  相似文献   

6.
During inactivation of poliovirus type 1 (PV-1) by exposure to UV, hypochlorite, and heat (72 degrees C), the infectivity of the virus was compared with that of its RNA. DEAE-dextran (1-mg/ml concentration in Dulbecco's modified Eagle medium buffered with 0.05 M Tris, pH 7.4) was used to facilitate transfecting PV-1 RNA into FRhK-4 host cells. After interaction of PV-1 RNA with cell monolayer at room temperature (21 to 22 degrees C) for 20 min, the monolayers were washed with 5 ml of Hanks balanced salt solution. The remainder of the procedure was the same as that for the conventional plaque technique, which was also used for quantifying the PV-1 whole-particle infectivity. Plaque formation by extracted RNA was approximately 100,000-fold less efficient than that by whole virions. The slopes of best-fit regression lines of inactivation curves for virion infectivity and RNA infectivity were compared to determine the target of inactivation. For UV and hypochlorite inactivation the slopes of inactivation curves of virion infectivity and RNA infectivity were not statistically different. However, the difference of slopes of inactivation curves of virion infectivity and RNA infectivity was statistically significant for thermal inactivation. The results of these experiments indicate that viral RNA is a primary target of UV and hypochlorite inactivations but that the sole target of thermal inactivation is the viral capsid.  相似文献   

7.
Evidence is presented for the presence of a protein covalently bound to the 5' termini of both M and B RNA components of CPMV. The protein is found to be linked in both cases to the 5' phosphate of the dinucleotide pUpAp, derived by ribonuclease digestion of the RNA. The intact protein is not required for infectivity or for in vitro translation of the RNA in cell-free extracts.  相似文献   

8.
存在于宿主细胞质中的亲环素A(Cyclophilin A,CypA)对HIV-1的感染性具有重要影响。在病毒颗粒的脱壳过程中,CypA与衣壳蛋白的相互作用可破坏病毒衣壳的稳定性,加快病毒颗粒的解装配,并将病毒RNA释放出来进行逆转录,从而促进HIV-1的增殖。阻断CypA与衣壳蛋白的相互作用可以降低HIV-1的感染性,因此CypA极有可能成为抗HIV-1药物开发的新靶点。本综述主要介绍CypA的结构及功能,并对一些具有抗HIV-1活性的CypA抑制剂做一简要介绍。  相似文献   

9.
Host protein synthesis in poliovirus-infected HeLa cells is interrupted, but the host mRNA appears to remain completely intact and unmodified. The average size and poly (A) content of host mRNA was previously known to be unchanged (Koschel, 1974; Leibowitz and Penman, 1971), and this was confirmed. In addition, the 5' terminal methylated "cap" structures remained intact, and no further base modifications at the level of 1 base in 1,000 could be detected. Poliovirus RNA from viruses was previously shown not to have "caps" (Wimmer, 1972), and in this work poliovirus RNA from polyribosomes was found to have pUp at its 5' end. Since, initiation of protein synthesis is probably the basis for the inhibition of cellular protein synthesis in infected cells, the difference in the 5' ends of the host cell and viral RNA could be the basis of selective translation of viral RNA during infection.  相似文献   

10.
The "host shutoff" function of bacteriophage T7 involves an inactivation of the host Escherichia coli RNA polymerase by an inhibitor protein bound to the enzyme. When this inhibitor protein, termed I protein, was removed from the inactive RNA polymerase complex prepared from T7-infected cells by glycerol gradient centrifugation in the presence of 1 M KCl, the enzyme recovered its activity equivalent to about 70 to 80% of the activity of the enzyme from uninfected cells. Analysis of the activity of E. coli RNA polymerase from E. coli cells infected with various T7 mutant phages indicated that the T7 gene 2 codes for the inhibitor I protein. The activity of E. coli RNA polymerase from gene 2 mutant phage-infected cells, which was about 70% of that from uninfected cells, did not increase after glycerol gradient centrifugation in the presence of 1 M KCl, indicating that the salt-removable inhibitor was not present with the enzyme. It was found that the reduction in E. coli RNA polymerase activity in cells infected with T7(+) or gene 2 mutant phage, i.e., about 70% of the activity of the enzyme compared to that from uninfected cells after glycerol gradient centrifugation in the presence of 1 M KCl, results from the function of T7 gene 0.7. E. coli RNA polymerase from gene 0.7 mutant phage-infected cells was inactive but recovered a full activity equivalent to that from uninfected cells after removal of the inhibitor I protein with 1 M KCl. E. coli RNA polymerase from the cells infected with newly constructed mutant phages having mutations in both gene 2 and gene 0.7 retained the full activity equivalent to that from uninfected cells with or without treatment of the enzyme with 1 M KCl. From these results, we conclude that both gene 2 and gene 0.7 of T7 are involved in accomplishing complete shutoff of the host E. coli RNA polymerase activity in T7 infection.  相似文献   

11.
Infectivity of RNA from Inactivated Poliovirus   总被引:2,自引:1,他引:1       下载免费PDF全文
During inactivation of poliovirus type 1 (PV-1) by exposure to UV, hypochlorite, and heat (72°C), the infectivity of the virus was compared with that of its RNA. DEAE-dextran (1-mg/ml concentration in Dulbecco's modified Eagle medium buffered with 0.05 M Tris, pH 7.4) was used to facilitate transfecting PV-1 RNA into FRhK-4 host cells. After interaction of PV-1 RNA with cell monolayer at room temperature (21 to 22°C) for 20 min, the monolayers were washed with 5 ml of Hanks balanced salt solution. The remainder of the procedure was the same as that for the conventional plaque technique, which was also used for quantifying the PV-1 whole-particle infectivity. Plaque formation by extracted RNA was approximately 100,000-fold less efficient than that by whole virions. The slopes of best-fit regression lines of inactivation curves for virion infectivity and RNA infectivity were compared to determine the target of inactivation. For UV and hypochlorite inactivation the slopes of inactivation curves of virion infectivity and RNA infectivity were not statistically different. However, the difference of slopes of inactivation curves of virion infectivity and RNA infectivity was statistically significant for thermal inactivation. The results of these experiments indicate that viral RNA is a primary target of UV and hypochlorite inactivations but that the sole target of thermal inactivation is the viral capsid.  相似文献   

12.
13.
14.
The Tm-1 gene of tomato confers resistance to Tomato mosaic virus (ToMV). Tm-1 encodes a protein that binds ToMV replication proteins and inhibits the RNA-dependent RNA replication of ToMV. The replication proteins of resistance-breaking mutants of ToMV do not bind Tm-1, indicating that the binding is important for inhibition. In this study, we analyzed how Tm-1 inhibits ToMV RNA replication in a cell-free system using evacuolated tobacco protoplast extracts. In this system, ToMV RNA replication is catalyzed by replication proteins bound to membranes, and the RNA polymerase activity is unaffected by treatment with 0.5 M NaCl-containing buffer and remains associated with membranes. We show that in the presence of Tm-1, negative-strand RNA synthesis is inhibited; the replication proteins associate with membranes with binding that is sensitive to 0.5 M NaCl; the viral genomic RNA used as a translation template is not protected from nuclease digestion; and host membrane proteins TOM1, TOM2A, and ARL8 are not copurified with the membrane-bound 130K replication protein. Deletion of the polymerase read-through domain or of the 3′ untranslated region (UTR) of the genome did not prevent the formation of complexes between the 130K protein and the host membrane proteins, the 0.5 M NaCl-resistant binding of the replication proteins to membranes, and the protection of the genomic RNA from nucleases. These results indicate that Tm-1 binds ToMV replication proteins to inhibit key events in replication complex formation on membranes that precede negative-strand RNA synthesis.  相似文献   

15.
A new model of secondary and tertiary structure of higher plant 5S RNA is proposed. It consists of three helical domains: domain alpha includes stem I; domain beta contains stems II and III and loops B and C; domain gamma consists of stems IV and V and loops D and E. Except for, presumably, a canonical RNA-A like domain alpha, the two remaining domains apparently adopt a perturbed RNA-A structure due to irregularities within internal loops B and E and three bulges occurring in the model. Bending of RNA could bring loops B and E and/or C and D closer making tertiary interactions likely. The model differs from that suggested for eukaryotic 5S rRNA, by organization of domain gamma. Our model is based on the results of partial digestion obtained with single- and double-strand RNA specific nucleases. The proposed secondary structure is strongly supported by the observation that crude plant 5S rRNA contains abundant RNA, identified as domain gamma of 5S rRNA. Presumably it is excised from the 5S rRNA molecule by a specific nuclease present in lupin seeds. Experimental results were confirmed by computer-aided secondary structure prediction analysis of all higher plant 5S rRNAs. Differences observed between earlier proposed models and our proposition are discussed.  相似文献   

16.
17.
18.
Human immunodeficiency virus type 1 (HIV-1) Gag and the cellular protein cyclophilin A form an essential complex in the virion core: virions produced by proviruses encoding Gag mutants with decreased cyclophilin A affinity exhibit attenuated infectivity, as do virions produced in the presence of the competitive inhibitor cyclosporine. The A224E Gag mutant has no effect on cyclophilin A affinity but renders HIV-1 replication cyclosporine resistant in Jurkat T cells. In contrast, A224E mutant virus is dead in H9 T cells, although replication is rescued by cyclosporine or by expression in cis of a Gag mutant that decreases cyclophilin A-affinity. The observation that disruption of the Gag-cyclophilin A interaction rescues A224E mutant replication in H9 cells prompted experiments which revealed that, relative to Jurkat cells, H9 cells express greater quantities of cyclophilin A. The resulting larger quantity of cyclophilin A shown to be packaged into virions produced by H9 cells is presumably disruptive to the A224E mutant virion core. Further evidence that increased cyclophilin A expression in H9 cells is of functional relevance was provided by the finding that Gag mutants with decreased cyclophilin A affinity are dead in Jurkat cells but capable of replication in H9 cells. Similarly, cyclosporine concentrations which inhibit wild-type HIV-1 replication in Jurkat cells stimulate HIV-1 replication in H9 cells. These results suggest that HIV-1 virion infectivity imposes narrow constraints upon cyclophilin A stoichiometry in virions and that infectivity is finely tuned by host cyclophilin A expression levels.  相似文献   

19.
Tomatidine, a natural steroidal alkaloid from unripe green tomatoes has been shown to exhibit many health benefits. We recently provided in vitro evidence that tomatidine reduces the infectivity of Dengue virus (DENV) and Chikungunya virus (CHIKV), two medically important arthropod-borne human infections for which no treatment options are available. We observed a potent antiviral effect with EC50 values of 0.82 μM for DENV-2 and 1.3 μM for CHIKV-LR. In this study, we investigated how tomatidine controls CHIKV infectivity. Using mass spectrometry, we identified that tomatidine induces the expression of p62, CD98, metallothionein and thioredoxin-related transmembrane protein 2 in Huh7 cells. The hits p62 and CD98 were validated, yet subsequent analysis revealed that they are not responsible for the observed antiviral effect. In parallel, we sought to identify at which step of the virus replication cycle tomatidine controls virus infectivity. A strong antiviral effect was seen when in vitro transcribed CHIKV RNA was transfected into Huh7 cells treated with tomatidine, thereby excluding a role for tomatidine during CHIKV cell entry. Subsequent determination of the number of intracellular viral RNA copies and viral protein expression levels during natural infection revealed that tomatidine reduces the RNA copy number and viral protein expression levels in infected cells. Once cells are infected, tomatidine is not able to interfere with active RNA replication yet it can reduce viral protein expression. Collectively, the results delineate that tomatidine controls viral protein expression to exert its antiviral activity. Lastly, sequential passaging of CHIKV in presence of tomatidine did not lead to viral resistance. Collectively, these results further emphasize the potential of tomatidine as an antiviral treatment towards CHIKV infection.  相似文献   

20.
A plasmid‐based reverse genetics system for human astrovirus type 1 (HAstV1) is examined. Upon transfection into 293T cells, the plasmid vector, which harbors a HAstV1 expression cassette, expressed astroviral RNA that appeared to be capable of viral RNA replication, as indicated by the production of subgenomic RNA and capsid protein expression irrespective of the heterologous 5′ ends of the transcribed RNA. Particles infectious to Caco‐2 cells were made in this system; however, their infectivity was much lower than would be expected from the amount of particles apparently produced. Using Huh‐7 cells as the transfection host with the aim of improving viral capsid processing for virion maturation partially restored the efficiency of infectious particle formation. Our results support the possibility that the DNA transfection process induces a cellular response that targets late, but not early, stages of HAstV1 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号