首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of grazing by the bacterivorous nanoflagellate Ochromonas sp. strain DS on the taxonomic and morphological structures of a complex bacterial community was studied in one-stage chemostat experiments. A bacterial community, consisting of at least 30 different strains, was fed with a complex carbon source under conditions of low growth rate (0.5 day(-1) when nongrazed) and low substrate concentration (9 mg liter(-1)). Before and after the introduction of the predator, the bacterial community composition was studied by in situ techniques (immunofluorescence microscopy and fluorescent in situ hybridization), as well as by cultivation on agar media. The cell sizes of nonspecifically stained and immunofluorescently labeled bacteria were measured by image analysis. Grazing by the flagellate caused a bidirectional change in the morphological structure of the community. Medium-size bacterial cells, which dominated the nongrazed community, were largely replaced by smaller cells, as well as by cells contained in large multicellular flocs. Cell morphological changes were combined with community taxonomic changes. After introduction of the flagellate, the dominating strains with medium-size cells were largely replaced by single-celled strains with smaller cells on the one hand and, on the other hand, by Pseudomonas sp. strain MWH1, which formed the large, floc-like forms. We assume that size-selective grazing was the major force controlling both the morphological and the taxonomic structures of the model community.  相似文献   

2.
The influence of grazing by the bacterivorous nanoflagellate Ochromonas sp. strain DS on the taxonomic and morphological structures of a complex bacterial community was studied in one-stage chemostat experiments. A bacterial community, consisting of at least 30 different strains, was fed with a complex carbon source under conditions of low growth rate (0.5 day−1 when nongrazed) and low substrate concentration (9 mg liter−1). Before and after the introduction of the predator, the bacterial community composition was studied by in situ techniques (immunofluorescence microscopy and fluorescent in situ hybridization), as well as by cultivation on agar media. The cell sizes of nonspecifically stained and immunofluorescently labeled bacteria were measured by image analysis. Grazing by the flagellate caused a bidirectional change in the morphological structure of the community. Medium-size bacterial cells, which dominated the nongrazed community, were largely replaced by smaller cells, as well as by cells contained in large multicellular flocs. Cell morphological changes were combined with community taxonomic changes. After introduction of the flagellate, the dominating strains with medium-size cells were largely replaced by single-celled strains with smaller cells on the one hand and, on the other hand, by Pseudomonas sp. strain MWH1, which formed the large, floc-like forms. We assume that size-selective grazing was the major force controlling both the morphological and the taxonomic structures of the model community.  相似文献   

3.
Flagellates are important bacterial grazers in most planktonicfood webs. The prey-size preference of the mixotrophic flagellate,Ochromonas sp. (Chrysophyceae), isolated from an extremely acidiclake, Lake 111 (pH 2.6), was determined using fluorescentlylabelled microspheres (beads). According to grazing experimentswith cultured bacteria, also isolated from Lake 111, the potentialgrazing impact on Lake 111’s single-celled bacterial productionwas calculated. Ochromonas sp. ingested the smallest beads offered(0.5 µm diameter) at the highest rate. Ingestion ratedeclined with increasing bead size. The highest prey volume-specificingestion was measured for Ochromonas sp. feeding on intermediate-sizedbeads (1.9 µm). Ingestion rates were low due in part tothe large fraction of inactive flagellates observed. Accordingto the bacterial ingestion rate, a mean of 88% (epilimnion)and 68% (hypolimnion) of in situ single-celled bacterial productionis potentially grazed daily by Ochromonas sp. In the epilimnionof Lake 111, the heterotrophic carbon gain is three times higherthan the autotrophic production. Alongside carbon uptake, Ochromonassp. also benefits from ingesting bacteria through the uptakeof phosphorus. A biovolume minimum corresponding to the preysize at which Ochromonas sp. feeds most efficiently occurredin the Lake 111 epilimnetic bacterial community, implying top-downcontrol of the bacterial community by Ochromonas sp.  相似文献   

4.
Predation and competition are two main factors that determine the size and composition of aquatic bacterial populations. Using a simplified bacterial community, composed of three strains characterized by different responses to predation, a short-term laboratory experiment was performed to evaluate adaptations and relative success in communities with experimentally controlled levels of predation and nutrient availability. A strain with a short generation time (Pseudomonas putida), one with high plasticity in cell morphology (Flectobacillus sp. GC5), and one that develops microcolonies (Pseudomonas sp. CM10), were selected. The voracious flagellate Ochromonas sp. was chosen as a predator. To describe adaptations against grazing and starvation, abundance, biomass and relative heterogeneity of bacteria were measured. On the whole, the strains in the predation-free cultures exhibited unicellular growth, and P. putida represented the largest group. The presence of Ochromonas strongly reduced bacterial abundance, but not always the total biomass. The activity of grazers changed the morphological composition of the bacterial communities. Under grazing pressure the relative composition of the community depended on the substrate availability. In the presence of predators, P. putida abundance declined in both high and low nutrient treatments, and Pseudomonas CM10 developed colonies. Flectobacillus was only numerically codominant in the nutrient-rich environments.  相似文献   

5.
A BSTRACTThe defense strategy of the aquatic bacterium Pseudomonas sp. MWH1 against flagellate grazing was investigated in chemostat and batch experiments. The influence of predation on the Pseudomonas population was studied in the absence and presence of a potential competitor ( Vibrio sp. CB5), as well as under starvation conditions and in a situation of unlimited growth. In the competition experiment the two bacterial strains were distinguished by immunofluorescence microscopy. When the Pseudomonas strain was cultured in the absence of the predator Ochromonas sp. DS, only mobile single cells were detectable. Grazing by this bacterivorous flagellate resulted in all experiments in the occurrence of a Pseudomonas subpopulation, which grew as floclike, suspended microcolonies. These microcolonies consisted of up to approximately 1,000 cells and were, because of their large size, protected against flagellate grazing. The microcolony subpopulation dominated the total Pseudomonas population in situations of high grazing pressure at a wide range of bacterial growth conditions. Thus, the formation of the microcolonies is interpreted as a successful grazing-defense strategy, which is effective under several growth conditions, allowing for the survival of the strain even when substrate depletion is combined with strong grazing pressure. Batch culture experiments demonstrated that the change in morphology of Pseudomonas sp. MWH1 is not controlled by growth rate, although no formation of microcolonies was observed after the addition of 0.2-&mgr;m-filtered flagellate cultures to Pseudomonas cultures, indicating that a chemical trigger released by the flagellate is not involved in the control of this defense mechanism.  相似文献   

6.
The elemental composition and growth rate of Rhodomonas andheterotrophic bacteria were studied in batch cultures in thepresence and absence of Daphnia and at two different levelsof phosphorus limitation. The elemental content of single cellswas measured with X-ray microanalysis. Simultaneously, dilutionexperiments were performed in order to estimate grazing losses,growth rates and dominant nutrient sources for bacteria andRhodomonas. The phosphorus:carbon (P:C) ratios of the bacteriawere generally higher in the experiment with the stronger Plimitation of the system. High P:C ratios were taken as an indicationthat bacteria were carbon limited. The presence of Daphnia resultedin a further increase in bacterial P:C ratios and increasedspecific growth rates. Thus, grazing increased the availabilityboth of inorganic nutrients and organic substrates, stimulatingthe growth of the bacteria. P:C ratios of Rhodomonas decreasedwith increasing P limitation of the system. Only at strong Plimitation did the presence of Daphnia result in increased P:Cratios of Rhodomonas compared with the control without daphnids.This study shows that the elemental content and growth rateof heterotrophic bacteria and Rhodomonas are influenced by grazingand nutrient regeneration by daphnids. The response is dynamicand depends on the level of nutrient limitation of the system. Present address: Department of Microbiology, University of BergenJahnebakken 5, NO-5020 Bergen, Norway  相似文献   

7.
Three physiological states of a single bacterial strain, namely, balanced, phosphorus-rich, and nitrogen-rich bacteria, were obtained by culturing a bacterial strain in chemostats under three different nutrient regimens. Each was shown to be distinctly different in elemental composition with respect to C/N/P ratio. These bacteria were fed to four species of heterotrophic nanoflagellates in batch culture grazing experiments, and the percent regeneration efficiencies of bacterium-bound nitrogen and phosphorus by the flagellates were compared. All flagellate species regenerated comparable amounts of nitrogen, which was thought to be due to their similar internal C/N ratios. There was, however, interspecies variation with regard to phosphorus regeneration: the two faster-growing species (Paraphysomonas imperforata and Bodo designis) released significantly more phosphorus than the two slower-growing species (Stephanoeca diplocostata and Jakoba libera). The observed differences were thought to have been influenced by a combination of life cycle strategies and internal C/P ratios.  相似文献   

8.
A modified fluorescence in situ hybridization (FISH) method was used to analyze bacterial prey composition in protistan food vacuoles in both laboratory and natural populations. Under laboratory conditions, we exposed two bacterial strains (affiliated with beta- and gamma-Proteobacteria -- Aeromonas hydrophila and Pseudomonas fluorescens, respectively) to grazing by three protists: the flagellates Bodo saltans and Goniomonas sp., and the ciliate Cyclidium glaucoma. Both flagellate species preferably ingested A. hydrophila over P. fluorescens, while C. glaucoma showed no clear preferences. Differences were found in the digestion of bacterial prey with B. saltans digesting significantly faster P. fluorescens compared to two other protists. The field study was conducted in a reservoir as part of a larger experiment. We monitored changes in the bacterial prey composition available compared to the bacteria ingested in flagellate food vacuoles. Bacteria detected by probe HGC69a (Actinobacteria) and R-BT065 were negatively selected by flagellates. Bacteria detected by probe CF319a were initially positively selected but along with a temporal shift in bacterial cell size, this trend changed to negative selection during the experiment. Overall, our analysis of protistan food vacuole content indicated marked effects of flagellate prey selectivity on bacterioplankton community composition.  相似文献   

9.
We tested the impact of bacterial swimming speed on the survival of planktonic bacteria in the presence of protozoan grazers. Grazing experiments with three common bacterivorous nanoflagellates revealed low clearance rates for highly motile bacteria. High-resolution video microscopy demonstrated that the number of predator-prey contacts increased with bacterial swimming speed, but ingestion rates dropped at speeds of >25 microm s(-1) as a result of handling problems with highly motile cells. Comparative studies of a moderately motile strain (<25 microm s(-1)) and a highly motile strain (>45 microm s(-1)) further revealed changes in the bacterial swimming speed distribution due to speed-selective flagellate grazing. Better long-term survival of the highly motile strain was indicated by fourfold-higher bacterial numbers in the presence of grazing compared to the moderately motile strain. Putative constraints of maintaining high swimming speeds were tested at high growth rates and under starvation with the following results: (i) for two out of three strains increased growth rate resulted in larger and slower bacterial cells, and (ii) starved cells became smaller but maintained their swimming speeds. Combined data sets for bacterial swimming speed and cell size revealed highest grazing losses for moderately motile bacteria with a cell size between 0.2 and 0.4 microm(3). Grazing mortality was lowest for cells of >0.5 microm(3) and small, highly motile bacteria. Survival efficiencies of >95% for the ultramicrobacterial isolate CP-1 (< or =0.1 microm(3), >50 microm s(-1)) illustrated the combined protective action of small cell size and high motility. Our findings suggest that motility has an important adaptive function in the survival of planktonic bacteria during protozoan grazing.  相似文献   

10.
The influence of grazing by a mixed assemblage of soil protozoa (seven flagellates and one amoeba) on bacterial community structure was studied in soil microcosms amended with a particulate resource (sterile wheat roots) or a soluble resource (a solution of various organic compounds). Sterilized soil was reinoculated with mixed soil bacteria (obtained by filtering and dilution) or with bacteria and protozoa. Denaturing gradient gel electrophoresis (DGGE) of PCR amplifications of 16S rRNA gene fragments, as well as community level physiological profiling (Biolog plates), suggested that the mixed protozoan community had significant effects on the bacterial community structure. Excising and sequencing of bands from the DGGE gels indicated that high-G+C gram-positive bacteria closely related to Arthrobacter spp. were favored by grazing, whereas the excised bands that decreased in intensity were related to gram-negative bacteria. The percentages of intensity found in bands related to high G+C gram positives increased from 4.5 and 12.6% in the ungrazed microcosms amended with roots and nutrient solution, respectively, to 19.3 and 32.9% in the grazed microcosms. Protozoa reduced the average bacterial cell size in microcosms amended with nutrient solution but not in the treatment amended with roots. Hence, size-selective feeding may explain some but not all of the changes in bacterial community structure. Five different protozoan isolates (Acanthamoeba sp., two species of Cercomonas, Thaumatomonas sp., and Spumella sp.) had different effects on the bacterial communities. This suggests that the composition of protozoan communities is important for the effect of protozoan grazing on bacterial communities.  相似文献   

11.
We examined the influence of small-scale turbulence and its associated shear on bacterioplankton abundance and cell size. We incubated natural microbial assemblages and bacteria-only fractions and subjected them to treatments with turbulence and additions of mineral nutrients and/or organic carbon. Bacterial abundance was not affected directly by turbulence in bacteria-only incubations. In natural microbial assemblage incubations, bacterial concentrations were higher under turbulence than in still-water controls when nutrients were added. In general, in the turbulence treatments bacteria increased significantly in size, mainly due to elongation of cells. The addition of inorganic nutrients had a negative effect on bacterial size, but a significantly positive effect on abundance independently of other factors such as turbulence and the presence of predators. Flagellate grazing did not trigger an increase in bacterial size as a grazing resistance response in unmixed containers. With the addition of organic carbon, bacteria elongated and partly settled to the bottom of the containers, in both the turbulent and still treatment, but bacterial abundance did not further increase. Furthermore, bacteria aggregated in the turbulence treatments after the second day of incubation even in the absence of other components of the microbial community. We found that turbulence and the associated shear increase bacterial size and change bacterial morphology, at least under certain nutrient conditions. This might be due to a physiological response (enhanced growth rate and/or unbalanced growth) or due to the selection of opportunistic strains when organic carbon is in excess compared to mineral nutrients. We suggest that shear associated with turbulent flow enhances the DOM flux to bacteria directly as well as indirectly through enhanced grazing activity and photosynthetic release. The formation of bacterial aggregates and filaments under turbulence might give selective advantage to bacteria in terms of nutrient uptake and grazing resistance.  相似文献   

12.
Bacterial community composition, enzymatic activities, and carbon dynamics were examined during diatom blooms in four 200-liter laboratory seawater mesocosms. The objective was to determine whether the dramatic shifts in growth rates and ectoenzyme activities, which are commonly observed during the course of phytoplankton blooms and their subsequent demise, could result from shifts in bacterial community composition. Nutrient enrichment of metazoan-free seawater resulted in diatom blooms dominated by a Thalassiosira sp., which peaked 9 days after enrichment ( approximately 24 microg of chlorophyll a liter(-1)). At this time bacterial abundance abruptly decreased from 2.8 x 10(6) to 0.75 x 10(6) ml(-1), and an analysis of bacterial community composition, by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments, revealed the disappearance of three dominant phylotypes. Increased viral and flagellate abundances suggested that both lysis and grazing could have played a role in the observed phylotype-specific mortality. Subsequently, new phylotypes appeared and bacterial production, abundance, and enzyme activities shifted from being predominantly associated with the <1.0-microm size fraction towards the >1.0-microm size fraction, indicating a pronounced microbial colonization of particles. Sequencing of DGGE bands suggested that the observed rapid and extensive colonization of particulate matter was mainly by specialized alpha-Proteobacteria- and Cytophagales-related phylotypes. These particle-associated bacteria had high growth rates as well as high cell-specific aminopeptidase, beta-glucosidase, and lipase activities. Rate measurements as well as bacterial population dynamics were almost identical among the mesocosms indicating that the observed bacterial community dynamics were systematic and repeatable responses to the manipulated conditions.  相似文献   

13.
Bacterial grazing was measured from June to August 1995 in Lake Ortrasket, a deep brown-water lake in northern Sweden. Mixotrophic chrysophytes were the dominating bacterivores at all times, grazing 3-14% of bacterial standing stock daily. The effects of altered nutrient supply and light availability on grazing activity and growth were studied in two mesocosm experiments. Incubation in the dark did not stimulate phagotrophy, which would otherwise be expected if bacteria were mainly being used as an energy source. Furthermore, clearance rates were not reduced after alleviation of nutrient limitation conditions. Rather, phagotrophy may work as a relatively fixed attribute of the mixotrophic community in this lake. When availability of dissolved nutrients is restricted, phagotrophy permits the mixotrophs to outcompete other phytoplankton, but they become less competitive at high nutrient concentrations. The relative share of mixotrophs in relation to total phytoplankton decreased considerably after enrichment with nitrogen + phosphorus.   相似文献   

14.
Many phytoplankton taxa function on multiple trophic levels by combining photosynthesis and ingestion of bacteria, termed mixotrophy. Despite the recognition of mixotrophy as a universal functional trait, we have yet to fully resolve how environmental conditions influence community grazing rates in situ. A microcosm study was used to assess bacterivory by mixotrophic nanoflagellates following nutrient enrichment and light attenuation in a temperate lake. We found contrasting results based on assessment of mixotroph abundance or bacterivory. Despite an interactive effect of nutrient enrichment and light attenuation on mixotroph abundance, significant differences within light treatments were observed only after enrichment with P or N + P. The greatest abundance of mixotrophs across treatments occurred under co-nutrient enrichment with full exposure to irradiance. However, bacterivory by mixotrophic nanoflagellates was greatest under shaded conditions after either N or P enrichment. We suggest that PAR availability dampened the stimulatory effect of nutrient limitation, and bacterivory supplemented a suboptimal photosynthetic environment. In a saturating light regime, the mixotrophic community was less driven to ingest bacteria because photosynthesis was able to satisfy energetic demands. These findings quantify community bacterivory in response to environmental drivers that may characterize future ecosystem conditions and highlight the importance of considering grazing rates in conjunction with abundance of mixotrophic protists.  相似文献   

15.
River biofilms that grow on wet benthic surface are mainly composed of bacteria, algae, cyanobacteria and protozoa embedded in a polysaccharide matrix. The effects of increased river water temperature on biofilm formation were investigated. A laboratory experiment was designed employing two temperatures (11.1-13.2°C, night-day; 14.7-16.0°C, night-day) and two nutrient levels (0.054 mg P l(-1), 0.75 mg N l(-1); 0.54 mg P l(-1), 7.5 mg N l(-1)). Biofilm formation at the higher temperature was faster, while the biomass of the mature biofilm was mainly determined by nutrient availability. The specific response of the three microbial groups that colonized the substrata (algae, bacteria and ciliates) was modulated by interactions between them. The greater bacterial growth rate and earlier bacterial colonization at the higher temperature and higher nutrient status was not translated into the accrual of higher bacterial biomass. This may result from ciliates grazing on the bacteria, as shown by an earlier increase in peritrichia at higher temperatures, and especially at high nutrient conditions. Temperature and ciliate grazing might determine the growth of a distinctive bacterial community under warming conditions. Warmer conditions also produced a thicker biofilm, while functional responses were much less evident (increases in the heterotrophic utilization of polysaccharides and peptides, but no increase in primary production and respiration). Increasing the temperature of river water might lead to faster biofilm recolonization after disturbances, with a distinct biofilm community structure that might affect the trophic web. Warming effects would be expected to be more relevant under eutrophic conditions.  相似文献   

16.
Temperature and phosphorus positively interacted in controlling picoplankton biomass production and its transfer towards higher trophic levels. Two complementary approaches (experimental and field study) indicated several coherent patterns: (1) the impact of temperature on heterotrophic bacteria was high at temperatures lower than 16°C and levelled off at higher temperatures, whereas this impact on autotrophic picoplankton was linear along the entire range of the investigated temperatures; (2) the addition of phosphorus increased the values of picoplankton production and grazing, but did not change the nature of their relationships with temperature substantially; (3) the picoplankton carbon flux towards higher trophic levels was larger during the warmer months (grazing by HNF dominated during the warmer period and by ciliates during the colder period) and also strengthened in conditions without phosphorus limitation; (4) the hypothesis that the available phosphorus can be better utilized at higher temperatures was confirmed for both autotrophic and heterotrophic picoplankton; (5) the hypothesis that the rise in temperature stimulates growth only in conditions of sufficient phosphorus was confirmed only for heterotrophic bacteria. Therefore, in the global warming scenario, an increase of the picoplankton carbon flux towards higher trophic levels can be expected in the Adriatic Sea, particularly under unlimited phosphorus conditions.  相似文献   

17.
酸碱调控污泥厌氧发酵实现乙酸累积及微生物种群变化   总被引:2,自引:0,他引:2  
刘和  刘晓玲  张晶晶  陈坚 《微生物学报》2009,49(12):1643-1649
摘要:【目的】通过对污泥厌氧发酵pH调控,研究挥发性脂肪酸的累积、产酸微生物种群变化及产氢产乙酸菌群对乙酸产生的贡献。【方法】测定不同pH条件下污泥厌氧发酵过程中挥发性脂肪酸的累积;分别应用末端限制性片段长度多态性(T-RFLP)和荧光原位杂交技术(FISH)分析产酸系统中微生物种群结构的变化及产氢产乙酸菌的数量。【结果】 pH为10.0时,有机酸和乙酸的产率在发酵结束时分别达到652.6 mg COD/g-VS和322.4 mg COD/g-VS,显著高于其它pH条件。T-RFLP结果表明,pH值为12  相似文献   

18.
Bacterial community structure is influenced by vegetation, climate and soil chemical properties. To evaluate these influences, terminal restriction fragment length polymorphism (T-RFLP) and cloning of the 16S rRNA gene were used to analyze the soil bacterial communities in different ecosystems in southwestern China. We compared (1) broad-leaved forest, shrub and pastures in a high-plateau region, (2) three broad-leaved forests representing a climate gradient from high-plateau temperate to subtropical and tropical regions and (3) the humus and mineral soil layers of forests, shrub lands and pastures with open and restricted grazing activities, having varied soil carbon and nutrient contents. Principal component analysis of the T-RFLP patterns revealed that soil bacterial communities of the three vegetation types were distinct. The broad-leaved forests in different climates clustered together, and relatively minor differences were observed between the soil layers or the grazing regimes. Acidobacteria dominated the broad-leaved forests (comprising 62% of the total clone sequences), but exhibited lower relative abundances in the soils of shrub (31%) and pasture (23%). Betaproteobacteria was another dominant taxa of shrub land (31%), whereas Alpha- (19%) and Gammaproteobacteria (13%) and Bacteriodetes (16%) were major components of pasture. Vegetation exerted more pronounced influences than climate and soil chemical properties.  相似文献   

19.
In the experiment we investigated the effect of grazing by different sorts of zooplankton on the induction of defensive morphology in the cyanobacterium Microcystis aeruginosa. The results showed that protozoan flagellate Ochromonas sp. grazing could induce colony formation in M. aeruginosa, whereas M. aeruginosa populations in the control and the grazing treatments of copepod Eudiaptomus graciloides, cladoceran Daphnia magna, and rotifer Brachionus calyciflorus were still strongly dominated by unicells and paired cells and no colony forma occurred. In the protozoan grazing treatment, the proportion of unicells reduced from 83.2% to 15.7%, while the proportion of cells in colonial form increased from 0% to 68.7% of the population at the end of the experiment. The occurrence of a majority of colonial M. aeruginosa being in the treatment with flagellates, indicated that flagellate grazing on solitary cells could induce colony formation in M. aeruginosa. The colonies could effectively deter flagellate from further grazing and thus increase the survival of M. aeruginosa. The colony formation in M. aeruginosa may be considered as an inducible defense against flagellate grazing under the conditions that toxin cannot deter flagellate from grazing effectively.  相似文献   

20.
1. The relative importance of zooplankton grazing and nutrient limitation in regulating the phytoplankton community in the non-stratified Lake Kvie, Denmark, were measured nine times during the growing season.
2. Natural phytoplankton assemblage bioassays showed increasing importance of nutrient limitation during summer. Growth rates at ambient nutrient concentrations were continually below 0.12 per day, while co-enrichment with nitrogen (N) and phosphorus (P) to above concentration-saturated conditions enhanced growth rates from May to the end of July.
3. Stoichiometric ratios of important elements in seston (C : N, C : P, N : P), in lake water (TN : TP), in external loading (TN : TP) and in internal loading (DIN : DIP) were measured to determine whether N or P could be the limiting nutrient. TN : TP molar ratio of both lake water, benthic fluxes and external loading suggested P limitation throughout the growing season. However, seston molar ratios suggested moderate P-deficiency only during mid-summer.
4. Abundance and community structure of the zooplankton varied considerably through the season and proved to be important in determining the responses of algal assemblages to grazing. High abundance of cladocerans and rotifers resulted in significant grazing impact, while cyclopoid copepods had no significant effect on the phytoplankton biomass.
5. Regeneration of ammonium and phosphate by zooplankton were periodically important for phytoplankton growth. A comparison of nutrient regeneration by zooplankton with nutrient inputs from sediment and external sources indicated that zooplankton may contribute significantly in supplying N and P for the growth of phytoplankton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号