首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solution structures of complexes between the isolated A (IIA(Man)) and B (IIB(Man)) domains of the cytoplasmic component of the mannose transporter of Escherichia coli have been solved by NMR. The complex of wild-type IIA(Man) and IIB(Man) is a mixture of two species comprising a productive, phosphoryl transfer competent complex and a non-productive complex with the two active site histidines, His-10 of IIA(Man) and His-175 of IIB(Man), separated by approximately 25A. Mutation of the active site histidine, His-10, of IIA(Man) to a glutamate, to mimic phosphorylation, results in the formation of a single productive complex. The apparent equilibrium dissociation constants for the binding of both wild-type and H10E IIA(Man) to IIB(Man) are approximately the same (K(D) approximately 0.5 mM). The productive complex can readily accommodate a transition state involving a pentacoordinate phosphoryl group with trigonal bipyramidal geometry bonded to the Nepsilon2 atom of His-10 of IIA(Man) and the Ndelta1 atom of His-175 of IIB(Man) with negligible (<0.2A) local backbone conformational changes in the immediate vicinity of the active site. The non-productive complex is related to the productive one by a approximately 90 degrees rotation and approximately 37A translation of IIB(Man) relative to IIA(Man), leaving the active site His-175 of IIB(Man) fully exposed to solvent in the non-productive complex. The interaction surface on IIA(Man) for the non-productive complex comprises a subset of residues used in the productive complex and in both cases involves both subunits of IIA(Man). The selection of the productive complex by IIA(Man)(H10E) can be attributed to neutralization of the positively charged Arg-172 of IIB(Man) at the center of the interface. The non-productive IIA(Man)-IIB(Man) complex may possibly be relevant to subsequent phosphoryl transfer from His-175 of IIB(Man) to the incoming sugar located on the transmembrane IIC(Man)-IID(Man) complex.  相似文献   

2.
The solution structure of the 48-kDa IIA(Man)-HPr complex of the mannose branch of the Escherichia coli phosphotransferase system has been solved by NMR using conjoined rigid body/torsion angle-simulated annealing on the basis of intermolecular nuclear Overhauser enhancement data and residual dipolar couplings. IIA(Man) is dimeric and has two symmetrically related binding sites per dimer for HPr. A convex surface on HPr, formed primarily by helices 1 and 2, interacts with a deep groove at the interface of the two subunits of IIA(Man). The interaction surface on IIA(Man) is predominantly helical, comprising helix 3 from the subunit that bears the active site His-10 and helices 1, 4, and 5 from the other subunit. The total buried accessible surface area at the protein-protein interface is 1450 A(2). The binding sites on the two proteins are complementary in terms of shape and distribution of hydrophobic, hydrophilic, and charged residues. The active site histidines, His-10 of IIA(Man) and His-15 (italics indicate HPr residues) of HPr, are in close proximity. An associative transition state involving a pentacoordinate phosphoryl group with trigonal bipyramidal geometry bonded to the N-epsilon2 atom of His-10 and the N-delta1 atom of His-15 can be readily formed with negligible displacement in the backbone coordinates of the residues immediately adjacent to the active site histidines. Comparing the structures of complexes of HPr with three other structurally unrelated phosphotransferase system proteins, enzymes I, IIA(glucose), and IIA(mannitol), reveals a number of common features that provide a molecular basis for understanding how HPr specifically recognizes a wide range of diverse proteins.  相似文献   

3.
A method for protein structure prediction has been developed, which evaluates the compatibility of an amino acid sequence with known 3-dimensional structures and identifies the most likely structure. The method was applied to a large number of sequences in a database, and the structures of the following proteins were predicted: (1) shikimate kinase (SKase), (2) the hydrophilic subunit of mannose permease (IIABMan), (3) rat tyrosine aminotransferase (Tyr AT), and (4) threonine dehydratase (TDH). The functional and evolutionary implications of the predictions are discussed. (1) The structural similarity between SKase and adenylate kinase was predicted. Alignment of their sequences reveals that the ATP-binding type A sequence motif and 2 ATP-binding arginine residues are conserved. The prediction suggests a similarity in their functional mechanisms as well as an evolutionary relationship. (2) The structural similarity between IIABMan and galactose/glucose-binding protein (GGBP) was predicted. The IIA and IIB domains are aligned with the N- and C-terminal domains of GGBP, respectively. The 2 phosphorylated residues, His 10 and His 175, of IIABMan are threaded onto loops located in the substrate-binding cleft of GGBP. The prediction accounts for the phosphoryl transfer from His 10 to His 175, and to the sugar substrate. (3) The structural similarity between rat Tyr AT and Escherichia coli aspartate AT was predicted, as well as (4) the structural similarity between TDH and the tryptophan synthase beta subunit. Predictions (3) and (4) support the previous predictions based on observations of the functional similarities between the proteins.  相似文献   

4.
The hydrophilic subunit of the mannose transporter (IIAB(Man)) of Escherichia coli is a homodimer that contains four tryptophans per monomer, three in the N-terminal domain (Trp12, Trp33, and Trp69) and one in the C-terminal domain (Trp182). Single and double Trp-Phe mutants of IIABMan and of the IIA domain were produced. Fluorescence emission studies revealed that Trp33 and Trp12 are the major fluorescence emitters, Trp69 is strongly quenched in the native protein and Trp182 strongly blue shifted, indicative of a hydrophobic environment. Stabilities of the Trp mutants of dimeric IIA(Man) and IIAB(Man) were estimated from midpoints of the GdmHCl-induced unfolding transitions and from the amount of dimers that resisted dissociation by SDS (sodium dodecyl sulfate), respectively. W12F exhibited increased stability, but only 6% of the wild-type phosphotransferase activity, whereas W33F was marginally and W69F significantly destabilized, but fully active. Second site mutations W33F and W69F in the background of the W12F mutation reduced protein stability and suppressed the functional defect of W12F. These results suggest that flexibility is required for the adjustments of protein-protein contacts necessary for the phosphoryltransfer between the phosphorylcarrier protein HPr, IIA(Man), IIB(Man), and the incoming mannose bound to the transmembrane IIC(Man)-IID(Man) complex.  相似文献   

5.
The mannose permease of Escherichia coli is a component of the phosphotransferase system. It transports mannose and related hexoses by a mechanism that couples sugar transport with sugar phosphorylation. It is a complex consisting of two transmembrane subunits (II-PMan and II-MMan) and a hydrophilic subunit (IIIMan). IIIMan also exists in a soluble form as dimer in the cytoplasm. Each monomer of IIIMan consists of two structurally and functionally distinct domains which are linked by a flexible hinge of the sequence KAAPAPAAAAPKAAPTPAKP. Both domains are transiently phosphorylated. The NH2-terminal domain (P13) is phosphorylated at N-3 of His-10 by the cytoplasmic phosphorylcarrier protein phospho-HPr. The COOH-terminal domain (P20) is phosphorylated by P13 at N-1 of His-175. Phosphoryltransfer occurs not only between P13 and P20 on the same IIIMan subunit but also between isolated domains and between domains on different subunits of the dimer. In the presence of the IIMan subunits, the phosphoryl group is directly transferred from His-175 of P20 to the sugar substrates of the permease. The P13 domain contains the contact sites for dimerization of IIIMan. The P20 domain contains the contact sites for interaction with the IIMan subunits. By reconstructing the ptsL gene, the two domains were expressed as individual polypeptides and the length of the hinge between P13 and P20 was changed. The in vivo and in vitro activities of mutant IIIMan were little affected by these modifications. The hinge is highly sensitive to proteolytic cleavage in vitro and its specificity for proteases can be modified by introducing the appropriate specificity determinants.  相似文献   

6.
The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) includes a collection of proteins that accomplish phosphoryl transfer from phosphoenolpyruvate (PEP) to a sugar in the course of transport. The soluble proteins of the glucose transport pathway also function as regulators of diverse systems. The mechanism of interaction of the phosphoryl carrier proteins with each other as well as with their regulation targets has been amenable to study by nuclear magnetic resonance (NMR) spectroscopy. The three-dimensional solution structures of the complexes between the N-terminal domain of enzyme I and HPr and between HPr and enzyme IIA(Glc) have been elucidated. An analysis of the binding interfaces of HPr with enzyme I, IIA(Glc) and glycogen phosphorylase revealed that a common surface on HPr is involved in all these interactions. Similarly, a common surface on IIA(Glc) interacts with HPr, IIB(Glc) and glycerol kinase. Thus, there is a common motif for the protein-protein interactions characteristic of the PTS.  相似文献   

7.
Most strains of Escherichia coli K-12 are unable to use the enzyme IIA/IIB (enzyme IIMan) complex of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in anaerobic growth and therefore cannot utilize glucosamine anaerobically. Introduction into these strains of a ptsG mutation, which eliminates activity of the enzyme IIIGlc/IIB' complex of the PTS, resulted in inability to grow anaerobically on glucose and mannose. Derivative strains able to grow anaerobically on glucosamine had mutations at a locus close to man, the gene coding for phosphomannose isomerase, and had higher enzyme IIA/IIB activities during anaerobic growth than did the parental strain. These results establish a locus affecting function of enzyme IIA/IIB that maps distant from ptsM, the probable structural gene for enzyme IIB.  相似文献   

8.
The solution structure of the complex of enzyme IIA of the N,N'-diacetylchitobiose (Chb) transporter with the histidine phosphocarrier protein HPr has been solved by NMR. The IIA(Chb)-HPr complex completes the structure elucidation of representative cytoplasmic complexes for all four sugar branches of the bacterial phosphoryl transfer system (PTS). The active site His-89 of IIA(Chb) was mutated to Glu to mimic the phosphorylated state. IIA(Chb)(H89E) and HPr form a weak complex with a K(D) of ~0.7 mM. The interacting binding surfaces, concave for IIA(Chb) and convex for HPr, complement each other in terms of shape, residue type, and charge distribution, with predominantly hydrophobic residues, interspersed by some uncharged polar residues, located centrally, and polar and charged residues at the periphery. The active site histidine of HPr, His-15, is buried within the active site cleft of IIA(Chb) formed at the interface of two adjacent subunits of the IIA(Chb) trimer, thereby coming into close proximity with the active site residue, H89E, of IIA(Chb). A His89-P-His-15 pentacoordinate phosphoryl transition state can readily be modeled without necessitating any significant conformational changes, thereby facilitating rapid phosphoryl transfer. Comparison of the IIA(Chb)-HPr complex with the IIA(Chb)-IIB(Chb) complex, as well as with other cytoplasmic complexes of the PTS, highlights a unifying mechanism for recognition of structurally diverse partners. This involves generating similar binding surfaces from entirely different underlying structural elements, large interaction surfaces coupled with extensive redundancy, and side chain conformational plasticity to optimize diverse sets of intermolecular interactions.  相似文献   

9.
The Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system (PTS) in prokaryotes mediates the uptake and phosphorylation of its numerous substrates through a phosphoryl transfer chain where a phosphoryl transfer protein, HPr, transfers its phosphoryl group to any of several sugar-specific Enzyme IIA proteins in preparation for sugar transport. A phosphoryl transfer protein of the PTS, NPr, homologous to HPr, functions to regulate nitrogen metabolism and shows virtually no enzymatic cross-reactivity with HPr. Here we describe the genetic engineering of a "chimeric" HPr/NPr protein, termed CPr14 because 14 amino acid residues of the interface were replaced. CPr14 shows decreased activity with most PTS permeases relative to HPr, but increases activity with the broad specificity mannose permease. The results lead to the proposal that HPr is not optimal for most PTS permeases but instead represents a compromise with suboptimal activity for most PTS permeases. The evolutionary implications are discussed.  相似文献   

10.
The dihydroxyacetone kinase (DhaK) of Escherichia coli consists of three soluble protein subunits. DhaK (YcgT; 39.5 kDa) and DhaL (YcgS; 22.6 kDa) are similar to the N- and C-terminal halves of the ATP-dependent DhaK ubiquitous in bacteria, animals and plants. The homodimeric DhaM (YcgC; 51.6 kDa) consists of three domains. The N-terminal dimerization domain has the same fold as the IIA domain (PDB code 1PDO) of the mannose transporter of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS). The middle domain is similar to HPr and the C-terminus is similar to the N-terminal domain of enzyme I (EI) of the PTS. DhaM is phosphorylated three times by phosphoenolpyruvate in an EI- and HPr-dependent reaction. DhaK and DhaL are not phosphorylated. The IIA domain of DhaM, instead of ATP, is the phosphoryl donor to dihydroxyacetone (Dha). Unlike the carbohydrate-specific transporters of the PTS, DhaK, DhaL and DhaM have no transport activity.  相似文献   

11.
The solution structure of trimeric Escherichia coli enzyme IIA(Chb) (34 kDa), a component of the N,N'-diacetylchitobiose/lactose branch of the phosphotransferase signal transduction system, has been determined by NMR spectroscopy. Backbone residual dipolar couplings were used to provide long range orientational restraints, and long range (|i - j| > or = 5 residues) nuclear Overhauser enhancement restraints were derived exclusively from samples in which at least one subunit was 15N/13C/2H/(Val-Leu-Ile)-methyl-protonated. Each subunit consists of a three-helix bundle. Hydrophobic residues lining helix 3 of each subunit are largely responsible for the formation of a parallel coiled-coil trimer. The active site histidines (His-89 from each subunit) are located in three symmetrically placed deep crevices located at the interface of two adjacent subunits (A and C, C and B, and B and A). Partially shielded from bulk solvent, structural modeling suggests that phosphorylated His-89 is stabilized by electrostatic interactions with the side chains of His-93 from the same subunit and Gln-91 from the adjacent subunit. Comparison with the x-ray structure of Lactobacillus lactis IIA(Lac) reveals some substantial structural differences, particularly in regard to helix 3, which exhibits a 40 degrees kink in IIA(Lac) versus a 7 degrees bend in IIA(Chb). This is associated with the presence of an unusually large (230-angstroms3) buried hydrophobic cavity at the trimer interface in IIA(Lac) that is reduced to only 45 angstroms3) in IIA(Chb).  相似文献   

12.
The lactose transport protein (LacS) of Streptococcus thermophilus is a chimeric protein consisting of an amino-terminal carrier domain and a carboxyl-terminal phosphoenolpyruvate:sugar phosphotransferase system (PTS) IIA protein domain. The histidine residues of LacS were changed individually into glutamine or arginine residues. Of the 11 histidine residues present in LacS, only the His-376 substitution in the carrier domain significantly affected sugar transport. The region around His-376 was found to exhibit sequence similarity to the region around His-322 of the lactose transport protein (LacY) of Escherichia coli, which has been implicated in sugar binding and in coupling of sugar and H+ transport. The H376Q mutation resulted in a reduced rate of uptake and altered affinity for lactose (beta-galactoside), melibiose (alpha-galactoside), and the lactose analog methyl-beta-D-thiogalactopyranoside. Similarly, the extent of accumulation of the galactosides by cells expressing LacS(H376Q) was highly reduced in comparison to cells bearing the wild-type protein. Nonequilibrium exchange of lactose and methyl-beta-D-thiogalactopyranoside by the H376Q mutant was approximately 2-fold reduced in comparison to the activity of the wild-type transport protein. The data indicate that His-376 is involved in sugar recognition and is important, but not essential, for the cotransport of protons and galactosides. The carboxyl-terminal domain of LacS contains 2 histidine residues (His-537 and His-552) that are conserved in seven homologous IIA protein(s) (domains) of PTSs. P-enolpyruvate-dependent phosphorylation of wild-type LacS, but not of the mutant H552Q, was demonstrated using purified Enzyme I and HPr, the general energy coupling proteins of the PTS, and inside-out membrane vesicles isolated from E. coli in which the lactose transport gene was expressed. The His-537 and His-552 mutations did not affect transport activity when the corresponding genes were expressed in E. coli.  相似文献   

13.
The phosphoenolpyruvate transferase system (PTS) is the major pathway by which bacteria import hexose sugars across the plasma membrane. The PTS transfers a phosphoryl group sequentially via several components from the glycolytic intermediate phosphoenolpyruvate (PEP) to the translocated sugar. It is comprised of the two general proteins enzyme I and HPr, and a sugar-specific enzyme II complex. Sugar translocation is through the membrane domain of the enzyme II complex. The enzyme II complex can belong to one of six families based upon sequence similarity, with the sorbose transporter from Klebsiella pneumoniae a member of the mannose family.The structure of the IIB(Sor) domain was solved to 1.75A resolution by molecular replacement. It has a central core of seven parallel beta-strands surrounded by a total of six alpha-helices. Three helices cover the front face, one the back face with the remaining two capping the central beta-sheet at the top and bottom. The catalytic His15 residue is situated on the surface-exposed loop between strand 1 and helix 1. In addition to the features previously observed in the homologous IIB(Lev) domain from Bacillus subtilis we see new features in the IIB(Sor) structure. First, the catalytic His15 side-chain is fixed in a specific conformation by forming a short hydrogen bond with Asp10, which in turn makes a salt-bridge with Arg8. Second, as observed in other phosphoproteins, an arginine residue (Arg12) is well poised to stabilize a phosphoryl group on His15. Third, we see an Asp/His pair reminiscent of that observed in the IIA(Man) domain from Escherichia coli. Finally, docking of IIA(Man) to IIB(Sor) shows that Arg12 in its current conformation is well positioned to assist the subsequent transfer of the phosphoryl group onto the sugar in line with previous mutagenesis studies.  相似文献   

14.
Enzyme II permeases of the phosphoenolpyruvate:glycose phosphotransferase system comprise one to five separately encoded polypeptides, but most contain similar domains (IIA, IIB, and IIC). The phosphoryl group is transferred from one domain to another, with histidine as the phosphoryl acceptor in IIA and cysteine as the acceptor in certain IIB domains. IIB(Chb) is a phosphocarrier in the uptake/phosphorylation of the chitin disaccharide, (GlcNAc)(2) by Escherichia coli and is unusual because it is separately encoded and soluble. Both the crystal and solution structures of a IIB(Chb) mutant (C10S) have been reported. In the present studies, homogeneous phospho-IIB(Chb) was isolated, and the phosphoryl-Cys linkage was established by (31)P NMR spectroscopy. Rate constants for the hydrolysis of phospho-IIB(Chb) plotted versus pH gave the same shape peak reported for the model compound, butyl thiophosphate, but was shifted about 4 pH units. Evidence is presented for a stable complex between homogeneous Cys10SerIIB(Chb) (which cannot be phosphorylated) and phospho-IIA(Chb), but not with IIA(Chb). The complex (a tetramer (3)) contains equimolar quantities of the two proteins and has been chemically cross-linked. It appears to be an analogue of the transition state complex in the reaction: phospho-IIA(Chb) + IIB(Chb) <--> IIA(Chb) + phospho-IIB(Chb). This is apparently the first report of the isolation of a transition state analogue in a protein-protein phosphotransfer reaction.  相似文献   

15.
The phosphohydrolysis properties of the following phosphoprotein intermediates of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) were investigated: enzyme I, HPr, and the IIAGlc domain of the glucose enzyme II of Bacillus subtilis; and IIAGlc (fast and slow forms) of Escherichia coli. The phosphohydrolysis properties were also studied for the site-directed mutant H68A of B. subtilis IIA Glc. Several conclusions were reached. (i) The phosphohydrolysis properties of the homologous phosphoprotein intermediates of B. subtilis and E. coli are similar. (ii) These properties deviate from those of isolated N delta 1- and N epsilon 2-phosphohistidine indicating the participation of neighbouring residues at the active sites of these proteins. (iii) The rates of phosphohydrolysis of the H68A mutant of B. subtilis IIAGlc were reduced compared with the wild-type protein, suggesting that both His-83 and His-68 are present at the active site of wild-type IIAGlc. (iv) The removal of seven N-terminal residues of E. coli IIAGlc reduced the rates of phosphohydrolysis between pH 5 and 8.  相似文献   

16.
17.
Patterns of chemotaxis by Salmonella typhimurium strain LT-2 to l-amino acids and to several sugars were quantitated by the Adler capillary procedure. Competition experiments indicated that LT-2 possesses three predominant receptors, or interacting sets of receptors, for amino acids. These were termed the aspartate, serine, and alanine classes, respectively. Studies with strains carrying point and deletion mutations affecting components of the phosphoenolpyruvate: glycose phosphotransferase system (PTS) made unlikely a role in primary reception of d-glucose by the three soluble PTS components, namely HPr, enzyme I, and factor III. A ptsG mutant defective in membrane-bound enzyme IIB' of the high-affinity glucose transport system was shown to exhibit normal chemotaxis providing pleiotropic effects of the mutation were eliminated by its genotypic combination with other pts mutations or, phenotypically, by addition of cyclic AMP and substrate. A correlation was demonstrated between chemotaxis to glucose and activity of the low-affinity glucose transport complex, membrane-bound enzymes IIB:IIA, and an enzyme IIB:IIA mutant was shown to have a preponderant defect in chemotaxis to glucose and mannose. Of four systems capable of galactose transport, only the beta-methylgalactoside transport system was implicated in chemotaxis to galactose. Some properties of a mutant possibly defective in processing of signals for chemotaxis to sugars is described.  相似文献   

18.
Proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) of Bacillus subtilis were overexpressed, purified to near homogeneity, and characterized. The proteins isolated include Enzyme I, HPr, the glucose-specific IIA domain of the glucose-specific Enzyme II (IIAglc), and the mannitol-specific IIA protein, IIAmtl. Site specific mutant proteins of IIAglc and HPr were also overexpressed and purified, and their properties were compared with those of the wild type proteins. These proteins and their phosphorylated derivatives were characterized with respect to their immunological cross-reactivities employing the Western blot technique and in terms of their migratory behavior during sodium dodecyl sulfate-gel electrophoresis, nondenaturing gel electrophoresis, and isoelectric focusing. The interactions between homologous and heterologous Enzymes I and HPrs, between homologous and heterologous HPrs and the IIAglc proteins, and between homologous and heterologous IIAglc proteins and IIBCscr of B. subtilis as well as IICBglc of Escherichia coli were defined and compared kinetically. The mutant HPrs and IIAglc proteins were also characterized kinetically as PTS phosphocarrier proteins and/or as inhibitors of the phosphotransferase reactions of the PTS. These studies revealed that complexation of IIAglc with the mutant form of HPr in which serine 46 was replaced by aspartate (S46D) did not increase the rate of phosphoryl transfer from phospho Enzyme I to S46D HPr more than when IIAmtl was complexed to S46D HPr. These findings do not support a role for HPr(Ser-P) in the preferential utilization of one PTS carbohydrate relative to another. Functional analyses in E. coli established that IIAglc of B. subtilis can replace IIAglc of E. coli with respect both to sugar transport and to regulation of non-PTS permeases, catabolic enzymes, and adenylate cyclase. Site-specific mutations in histidyl residues 68 and 83 (H68A and H83A) inactivated IIAglc of B. subtilis with respect to phosphoryl transfer and its various regulatory roles.  相似文献   

19.
The three-dimensional structures of the IIA domain of the mannitol-specific phosphoenol-pyruvate dependent phosphotransferase system (PTS) of Escherichia coli and the regulatory IIAntr enzyme have been compared. The enzymes are 20% identical in sequence and contain the sequence motif specific for IIA proteins belonging to the mannitol-fructose family of the PTS. The fold of the enzymes is nearly identical, which confirms their evolution from a common ancestor. Moreover, the phosphorylation site of IIAmtl (His65) and one of the observed conformations of the active site Arg49 are extremely similar to their equivalents (His73 and Arg57) in IIAntr. In contrast, His120, the equivalent of the second active site His111 of IIAmtl, is not located in the active site of IIAntr but points into the solvent on the other side of the molecule. The different position of His120 makes it unlikely that this residue assists in phosphoryl transfer in the regulatory IIA(ntr)s. As His120 is conserved in all IIAntr enzymes, it could have an essential role in the recognition of the target protein of IIAntr.  相似文献   

20.
The phosphoenolpyruvate:glycose transferase system (PTS) is a prototypic signaling system responsible for the vectorial uptake and phosphorylation of carbohydrate substrates. The accompanying papers describe the proteins and product of the Escherichia coli N, N-diacetylchitobiose ((GlcNAc)(2)) PTS-mediated permease. Unlike most PTS transporters, the Chb system is composed of two soluble proteins, IIA(Chb) and IIB(Chb), and one transmembrane receptor (IIC(Chb)). The oligomeric states of PTS permease proteins and phosphoproteins have been difficult to determine. Using analytical ultracentrifugation, both dephospho and phosphorylated IIA(Chb) are shown to exist as stable dimers, whereas IIB(Chb), phospho-IIB(Chb) and the mutant Cys10SerIIB(Chb) are monomers. The mutant protein Cys10SerIIB(Chb) is unable to accept phosphate from phospho-IIA(Chb) but forms a stable higher order complex with phospho-IIA(Chb) (but not with dephospho-IIA(Chb)). The stoichiometry of proteins in the purified complex was determined to be 1:1, indicating that two molecules of Cys10SerIIB(Chb) are associated with one phospho-IIA(Chb) dimer in the complex. The complex appears to be a transition state analogue in the phosphotransfer reaction between the proteins. A model is presented that describes the concerted assembly and disassembly of IIA(Chb)-IIB(Chb) complexes contingent on phosphorylation-dependent conformational changes, especially of IIA(Chb).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号