首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary polydipsia, excessive drinking without known medical cause, is especially associated with a diagnosis of schizophrenia. We used animal models of schizophrenia-like symptoms to examine the effects on schedule-induced polydipsia: post-weaning social isolation rearing, subchronic MK-801 treatment (an NMDA-receptor antagonist) or the two combined. Male, Sprague-Dawley rats reared in groups or in isolation beginning at postnatal day 21 were further divided to receive subchronic MK-801 (0.5 mg/kg twice daily) or saline for 7 days beginning on postnatal day 62. Following a 4-day withdrawal period, all groups were trained on a schedule-induced polydipsia paradigm. Under food-restriction, animals reared in isolation and receiving food pellets at 1-min intervals developed significantly more drinking behavior than those reared with others. The addition of subchronic MK-801 treatment did not significantly augment the amount of water consumed. These findings suggest a predisposition to polydipsia is a schizophrenia-like behavioral effect of post-weaning social isolation.  相似文献   

2.
Fredriksson A  Archer T 《Amino acids》2002,23(1-3):111-132
Summary.  Antiakinsic effects of the uncompetitive NMDA antagonists, memantine, amantadine and MK-801, and competitive antagonists, CGP 40116, alone or in co-administration with acute subthreshold dose of L-Dopa (5 mg/kg) in MPTP-treated mice, functional alterations induced by acute MK-801 in combinations with neuroleptic compounds or behavioural deficits following postnatal administration of MK-801 were investigated. Memantine and amantadine injected 60 min before the subthreshold dose of L-Dopa (5 mg/kg), induced antiakinesic actions in hypokinesic MPTP-treated mice. Concurrently, higher doses of memantine and MK-801 caused dyskinesic changes, reducing further rearing (10 and 30 mg/kg) and locomotor (30 mg/kg) behaviour of the MPTP mice; MK-801 elevated locomotion (0.1 mg/kg) but reduced rearing (0.3 mg/kg). In control, saline-treated mice, memantine (3, 10 and 30 mg/kg) and MK-801 (0.1 and 0.3 mg/kg) increased locomotor behaviour but decreased rearing behaviour. In rats, MK-801 induced marked increases in locomotor activity and disruptions of circular swim maze acquisition that were to greater or lesser extents blocked or potentiated by neuroleptic compounds: SCH 23390 (0.005 and 0.05 mg/kg) and clozapine (5.0 and 10.0 mg/kg) dose-dependently antagonised MK-801 (0.3 mg/kg) induced locomotor activity whereas raclopride (0.1 mg/kg) and haloperidol (0.1 mg/kg) attenuated it dose-specifically. Amperozide (0.5 mg/kg) attenuated the MK-801 effect but potentiated it at the 2.0 mg/kg dose. In the circular swim maze, raclopride (0.01 mg/kg) and SCH 23390 (0.05 mg/kg) improved the acquisitive performance of rats administered MK-801 (0.03 mg/kg) acutely whereas clozapine (10.0 mg/kg) and amperozide (2.0 mg/kg) deteriorated the performance of MK-801-treated rats. Postnatal administration of MK-801 (0.05 mg/kg, day 11 after birth) induced severe functional alterations in adult mice. At 70 days of age, MK-801 mice showed an initial hypoactivity followed by marked hyperactivity in the motor activity test chambers. These mice showed deficits in habituation, a nonassociative form of learning. Their hyperactivity in the test chambers was reversed by a low dose of d-amphetamine (0.25 mg/kg). Taken together, these findings display a wide range of acute/long-term functional alterations induced by NMDA antagonists, particularly MK-801, associated with animal models of brain disorders. Received July 9, 2001 Accepted August 6, 2001 Published online June 17, 2002  相似文献   

3.
1. Administration of MK-801 a selective antagonist of the NMDA receptors (50, 100 and 150 micrograms/kg, s.c.) elicited in adult cats ataxia and loss of equilibrium. A dose-response effect was observed. 2. Administration of DNQX, a selective antagonist of the non-NMDA receptors, even with doses 20 times higher than those employed with MK-801, did not produce any behavioural disturbances. 3. Previous injection of SCH 23390, a selective parenteral antagonist of dopamine D1 receptor, reduced significantly the intense ataxic effects of MK-801, while sulpiride only increased the latency of the symptoms. 4. The results are discussed considering the reported interactions between the dopaminergic and glutamatergic systems.  相似文献   

4.
Reportedly, excitatory amino acids are involved in the control of gonadotropin secretion of rats and non-human primates. The aim of this study was to investigate the effect of chronic blockade of NMDA (N-methyl-D-aspartic acid) receptors by the non competitive receptor antagonist MK-801 on gonadotropin secretion and the onset of puberty in female rats. Moreover, since in humans alterations of the timing of puberty frequently coexist with disturbances of body growth, suggesting a common etiology for both events, we evaluated the effect of MK-801 also on the neural mechanisms controlling growth hormone (GH) secretion. Twenty-one-day-old female rats were treated with MK-801 (0.2 mg/kg ip, bid) or placebo for 10 days and were killed after 7 days of withdrawal. Administration of MK-801 induced a significant impairment of growth rate without altering food intake, and a delay in vaginal opening. Pituitaries from rats treated with MK-801 had a reduced luteinizing hormone (LH) content, and secreted in vitro lower amounts of LH both under basal and LHRH-stimulated conditions. MK-801 treated rats had a lower pituitary GH content and basal and GHRH-stimulated GH release and reduced plasma insulin-like growth factor-I levels. These data indicate that blockade of NMDA receptors in a critical period of the female rat life-span: 1) delays puberty by reducing gonadotropin secretion; 2) impairs growth rate by reducing GH secretion, with a mechanism still to be clarified.  相似文献   

5.
The role of 5-HT7 receptor has been demonstrated in various animal models of mood disorders; however its function in cognition remains largely speculative. This study evaluates the effects of SB-269970, a selective 5-HT7 antagonist, in a translational model of working memory deficit and investigates whether it modulates cortical glutamate and/or dopamine neurotransmission in rats. The effect of SB-269970 was evaluated in the delayed non-matching to position task alone or in combination with MK-801, a non-competitive NMDA receptor antagonist, and, in separate experiments, with scopolamine, a non-selective muscarinic antagonist. SB-269970 (10 mg/kg) significantly reversed the deficits induced by MK-801 (0.1 mg/kg) but augmented the deficit induced by scopolamine (0.06 mg/kg). The ability of SB-269970 to modulate MK-801-induced glutamate and dopamine extracellular levels was separately evaluated using biosensor technology and microdialysis in the prefrontal cortex of freely moving rats. SB-269970 normalized MK-801 -induced glutamate but not dopamine extracellular levels in the prefrontal cortex. Rat plasma and brain concentrations of MK-801 were not affected by co-administration of SB-269970, arguing for a pharmacodynamic rather than a pharmacokinetic mechanism. These results indicate that 5-HT7 receptor antagonists might reverse cognitive deficits associated with NMDA receptor hypofunction by selectively normalizing glutamatergic neurotransmission.  相似文献   

6.
In view of the hypothesis that glutamatergic dysfunction of brain can underlie the negative symptoms of schizophrenia (including cognitive deficit), the aim of this study was to develop a model of cognitive impairment in Wistar male rats after administration of a noncompetitive NMDA-receptor antagonist in early postnatal period. Rat pups were daily subcutaneously injected with 0.05 mg/kg MK-801 on postnatal days 7-49. On the 27th and 28th days 24 h after the last previous injection, the MK-801-treated rats demonstrated lower spontaneous locomotor and exploratory activity in comparison with saline control, however, they retained the reaction of hyperlocomotion which developed immediately after the MK-801 administration. In these rats, the anxiety level in the elevated plus-maze (on the 40th postnatal day) was found to be decreased, and the spatial learning in food rewarded task was negatively affected (on the 50th-54th days). It is suggested that impairment of the input of sensory information and its correct assessment by the animals can be associated with the early neonatal blockade of NMDA glutamate receptors.  相似文献   

7.
L J Forman 《Life sciences》1999,64(21):1877-1887
Inhibition of nitric oxide synthase (NOS) activity results in opioid-mediated supraspinal analgesia in the rat, as indicated by increased reaction time in the hot plate test. It is documented that a relationship exists between NMDA receptor activation and the activity of NOS. The present investigation sought to determine if inactivation of the NMDA receptor produced antinociception of supraspinal origin, as was observed in response to inhibition of NOS, and if this response was mediated by brain opioids, by activation of receptors for the neurotransmitter, dopamine, or both. Administration of MK-801, a non-competitive antagonist of the NMDA receptor, produced significant antinociception as measured by reaction time in the hot plate test of analgesia. Antinociception resulting from treatment with MK-801 appeared to be mediated by brain opioids, as indicated by the ability of the opioid antagonist, naloxone, to partially reverse the effect of MK-801 administration. This analgesic response was also partially diminished by administration of the dopamine D1 receptor antagonist, SCH 23390 and the dopamine D2 receptor antagonist, sulpiride. The analgesia resulting from NMDA receptor antagonism was found to be only partially attributable to dopamine and brain opioids, since co-administration of naloxone and SCH 23390 or naloxone and sulpiride, were unable to completely reverse the antinociceptive response to MK-801. The present findings suggest that inhibition of NMDA receptor activity produces supraspinal analgesia. Furthermore, it appears that antinociception induced by blockade of the NMDA receptor results, at least in part, from activation of endogenous brain opioids and stimulation of D1 and D2 subtypes of the dopamine receptor.  相似文献   

8.
The present study investigated the effects of N-methyl-D-aspartic acid.H2O (NMDA) on the dopamine, glutamate and GABA release in the subthalamic nucleus (STN) by using in vivo microdialysis in rats. NMDA (100 micromol/L) perfused through the microdialysis probe evoked an increase in extracellular dopamine in the STN of the intact rat of about 170%. This coincided with significant increases in both extracellular glutamate (350%) and GABA (250%). The effect of NMDA perfusion on neurotransmitter release at the level of the STN was completely abolished by co-perfusion of the selective NMDA-receptor antagonist MK-801 (10 micromol/L), whereas subthalamic perfusion of MK-801 alone had no effect on extracellular neurotransmitter concentrations. Furthermore, NMDA induced increases in glutamate were abolished by both SCH23390 (8 micromol/L), a selective D1 antagonist, and remoxipride (4 micromol/L), a selective D2 antagonist. The NMDA induced increase in GABA was abolished by remoxipride but not by SCH23390. Perfusion of the STN with SCH23390 or remoxipride alone had no effect on extracellular neurotransmitter concentrations. The observed effects in intact animals depend on the nigral dopaminergic innervation, as dopamine denervation, by means of 6-hydroxydopamine lesioning of the substantia nigra, clearly abolished the effects of NMDA on neurotransmitter release at the level of the STN. Our work points to a complex interaction between dopamine, glutamate and GABA with a crucial role for dopamine at the level of the STN.  相似文献   

9.
We showed previously that amphetamine challenge produces a delayed increase in glutamate efflux in the ventral tegmental area of both naive and chronic amphetamine-treated rats. The present study examined the mechanisms underlying this response. The NMDA receptor antagonist MK-801 (0.1 mg/kg, i.p.) or the D1 dopamine receptor antagonist SCH 23390 (0.1 mg/kg, i.p.), given 30 min before acute amphetamine (5 mg/kg, i.p.), prevented amphetamine-induced glutamate efflux. Neither antagonist by itself altered glutamate efflux. Ibotenic acid lesions of the prefrontal cortex similarly prevented amphetamine-induced glutamate efflux, while producing a trend toward decreased basal glutamate levels (82.8% of sham group). Previous work has shown that the doses of NMDA and D1 receptor antagonists used in this study prevent the induction of behavioral sensitization when coadministered repeatedly with amphetamine, and that identical prefrontal cortex lesions performed before repeated amphetamine prevent the induction of ambulatory sensitization. Thus, treatments that prevent acute amphetamine from elevating glutamate efflux in the ventral tegmental area also prevent repeated amphetamine from eliciting behavioral sensitization. These findings suggest that repeated elevation of glutamate levels during a chronic amphetamine regimen may contribute to the cascade of neuroadaptations within the ventral tegmental area that enables the induction of sensitization.  相似文献   

10.
Systemic injection of MK-801, a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptor ion channels, increases meal size and delays satiation. We examined whether MK-801 increases food intake by directly interfering with actions of cholecystokinin (CCK). Prior administration of MK-801 (100 microg/kg ip) reversed the inhibitory effects of CCK-8 (2 and 4 microg/kg ip) on real feeding of both liquid and solid foods. MK-801 alone did not alter 30-min sham intake of 15% sucrose compared with intake after saline. Furthermore, while CCK-8 (2 or 4 microg/kg ip) reduced sham intake, this reduction was not attenuated by MK-801 pretreatment. To ascertain whether MK-801 attenuation of CCK-induced reduction of real feeding was associated with attenuated inhibition of gastric emptying, we tested the effect of MK-801 pretreatment on CCK-induced inhibition of gastric emptying of 5-ml saline loads. Ten-minute gastric emptying was accelerated after MK-801 (3.9 +/- 0.2 ml) compared with saline vehicle (2.72 +/- 0.2 ml). CCK-8 (0.5 microg/kg ip) reduced 10-min emptying to 1.36 +/- 0.3 ml. Pretreatment with MK-801 did not significantly attenuate CCK-8-induced reduction of gastric emptying (0.9 +/- 0.4 ml). This series of experiments demonstrates that blockade of NMDA ion channels reverses inhibition of real feeding by CCK. However, neither inhibition of sham feeding nor inhibition of gastric emptying by CCK is attenuated by MK-801. Therefore, increased food intake after NMDA receptor blockade is not caused by a direct interference with CCK-induced satiation. Rather, increased real feeding, either in the presence or absence of CCK, depends on blockade of NMDA receptor participation in other post-oral feedback signals such as gastric sensation or gastric tone.  相似文献   

11.
Summary In rats with unilateral lesion of the nigrostriatal dopaminergic pathway, L-DOPA induces contralateral turning through activation of denervated D-1 and D-2 receptors. Blockade of N-methyl-D-aspartate (NMDA) receptors by the non-competitive antagonist (+)MK-801, potentiated the contralateral turning induced by L-DOPA as well as that induced by the D-1 agonist SKF 38393, while D-2 mediated turning was almost completely inhibited. Administration of the D-1 antagonist SCH 23390 blocked (+)MK-801-induced potentiation of L-DOPA contralateral turning, confirming the D-1 nature of the effects observed. Immunohistochemical studies on the early gene c-fos, which is known to be activated by stimulation of supersensitive D-1 receptors, revealed sparse c-fos positive nuclei in the lesioned CPu after SKF 38393, while after combined administration of (+)MK-801 and SKF 38393 dense labelling was obtained. Blockade of NMDA receptors, differentially affects D-1 and D-2 mediated turning behavior, suggesting that different neuronal pathways are involved in the mediation of D-1 and D-2 responses.  相似文献   

12.
Gaytan O  Swann AC  Dafny N 《Life sciences》2002,70(19):2271-2285
Blockade of sensitization to methylphenidate by a single injection of MK-801 was investigated using a computerized activity monitoring system. Male Sprague-Dawley rats were housed in test cages and motor activity was recorded continuously for 16 days. After 2 days of baseline recording and a saline injection on day 3, the rats were randomly divided into four experimental groups. All received 2.5 mg/kg of methylphenidate (s.c.) once a day from days 4 to 9, then after five days of no treatment, they were re-challenged with 2.5 mg/kg of methylphenidate on day 15. One group received only methylphenidate, while the other three groups also received a single i.p. injection of MK-801 (0.30 mg/kg) either 24 h (day 3) or 1 h prior to the first of the six methylphenidate injections (day 4), or 1 h prior to the second methylphenidate injection (day 5). A single injection of MK-801 on day 4 (1 h prior to methylphenidate) blocked the development of sensitization to methylphenidate, since a sensitized response could not be elicited six days after cessation of repeated methylphenidate administration (day 15). However, sensitization to methylphenidate still occurred in the groups receiving MK-801 (0.30 mg/kg) on day 5, indicating that the mechanism by which a single injection of MK-801 disrupts sensitization to methylphenidate is sensitive to timing and is not a direct long-term effect. In conclusion, a single injection of MK-801 persistently blocks the development of sensitization to methylphenidate only if it is given with methylphenidate on the first day of the repetitive treatment phase.  相似文献   

13.

Background

The rewarding effects of 3,4-methylenedioxy-metamphetamine (MDMA) have been demonstrated in conditioned place preference (CPP) procedures, but the involvement of the dopaminergic system in MDMA-induced CPP and reinstatement is poorly understood.

Methodology/Principal Findings

In this study, the effects of the DA D1 antagonist SCH 23390 (0.125 and 0.250 mg/kg), the DA D2 antagonist Haloperidol (0.1 and 0.2 mg/kg), the D2 antagonist Raclopride (0.3 and 0.6 mg/kg) and the dopamine release inhibitor CGS 10746B (3 and 10 mg/kg) on the acquisition, expression and reinstatement of a CPP induced by 10 mg/kg of MDMA were evaluated in adolescent mice. As expected, MDMA significantly increased the time spent in the drug-paired compartment during the post-conditioning (Post-C) test, and a priming dose of 5 mg/kg reinstated the extinguished preference. The higher doses of Haloperidol, Raclopride and CGS 10746B and both doses of SCH 23390 blocked acquisition of the MDMA-induced CPP. However, only Haloperidol blocked expression of the CPP. Reinstatement of the extinguished preference was not affected by any of the drugs studied. Analysis of brain monoamines revealed that the blockade of CPP acquisition was accompanied by an increase in DA concentration in the striatum, with a concomitant decrease in DOPAC and HVA levels. Administration of haloperidol during the Post-C test produced increases in striatal serotonin, DOPAC and HVA concentrations. In mice treated with the higher doses of haloperidol and CGS an increase in SERT concentration in the striatum was detected during acquisition of the CPP, but no changes in DAT were observed.

Conclusions/Significance

These results demonstrate that, in adolescent mice, the dopaminergic system is involved in the acquisition and expression of MDMA-induced CPP, but not in its reinstatement.  相似文献   

14.
Zuo DY  Zhang YH  Cao Y  Wu CF  Tanaka M  Wu YL 《Life sciences》2006,78(19):2172-2178
The present study was designed to investigate the effects of acute and chronic administration of MK-801 (0.6 mg/kg), a noncompetitive NMDA-receptor antagonist on extracellular glutamate (Glu) and ascorbic acid (AA) release in the prefrontal cortex (PFC) of freely moving mice using in vivo microdialysis with open-field behavior. In line with earlier studies, acute administration of MK-801 induced an increase of Glu in the PFC. We also observed single MK-801 treatment increased AA release in the PFC. In addition, our results indicated that the basal AA levels in the PFC after MK-801 administration for 7 consecutive days were significantly decreased, and basal Glu levels also had a decreased tendency. After chronic administration (0.6 mg/kg, 7 days), MK-801 (0.6 mg/kg) challenge significantly decreased dialysate levels of AA and Glu. Our study also found that both acute and chronic administration of MK-801 induced hyperactivity in mice, but the intensity of acute administration was more than that of chronic administration. Furthermore, in all acute treatment mice, individual changes in Glu dialysate concentrations and the numbers of locomotion were positively correlated. In conclusion, this study may provide new evidence that a single MK-801 administration induces increases of dialysate AA and Glu concentrations in the PFC of freely moving mice, which are opposite to those induced by repeated MK-801 administration, with an unknown mechanism. Our results suggested that redox-response might play an important role in the model of schizophrenic symptoms induced by MK-801.  相似文献   

15.
Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors.   总被引:1,自引:0,他引:1  
Previous experiments in our laboratory suggested that ammonium toxicity could be mediated by the NMDA type of glutamate receptors. To assess this hypothesis we tested if MK-801, a specific antagonist of the NMDA receptor, is able to prevent ammonium toxicity. Mice and rats were injected i.p. with 12 and 7 mmol/kg of ammonium acetate, respectively. 73% of the mice and 70% of the rats died. However, when the animals were injected i.p. with 2 mg/kg of MK-801, 15 min before ammonium injection, only 5% of the mice and 15% of the rats died. The remarkable protection afforded by MK-801 indicates that ammonia toxicity is mediated by the NMDA receptor.  相似文献   

16.
Excitotoxic neonatal ventral hippocampus (NVH) lesions in rats result in characteristic post-pubertal hyper-responsiveness to stress and cognitive abnormalities analogous to those described in schizophrenia and suggestive of alterations in dopamine (DA) neurotransmission. Converging lines of evidence also point to dysfunctions in the cortical cholinergic system in neuropsychiatric disorders. In previous studies, we observed alterations in dopaminergic modulation of acetylcholine (Ach) release in the prefrontal cortex (PFC) in post-pubertal NVH-lesioned rats. These two neurotransmitter systems are involved in the stress response as PFC release of DA and Ach is enhanced in response to some stressful stimuli. As adult NVH-lesioned rats are behaviorally more reactive to stress, we investigated the effects of NVH lesions on tail-pinch stress-induced Ach and DA release in the PFC. Using in vivo microdialysis, we observed that tail-pinch stress resulted in significantly greater increases in prefrontal cortical Ach release in post-pubertal NVH-lesioned rats (220% baseline) compared with sham-operated controls (135% baseline). Systemic administration of the D1-like receptor antagonist SCH 23390 (0.5 mg/kg i.p.) or the D2-like receptor antagonist haloperidol (0.2 mg/kg i.p.), as well as intra-PFC administration of the D2-like antagonist sulpiride (100 microm), reduced stress-induced Ach release in PFC of adult NVH-lesioned rats. By contrast, intra-PFC administration of SCH 23390 (100 microm) failed to affect stress-induced Ach release in PFC of NVH-lesioned rats. Interestingly, using in vivo voltammetry, stress-induced stimulation of PFC DA release was found to be attenuated in adult NVH-lesioned rats. Taken together, these data suggest developmentally specific reorganization of prefrontal cortical cholinergic innervation notably regarding its regulation by DA neurotransmission.  相似文献   

17.
Liu C  Min S  Wei K  Liu D  Dong J  Luo J  Liu XB 《生理学报》2012,64(4):387-402
This study explored the effect of the excitatory amino acid receptor antagonists on the impairment of learning-memory and the hyperphosphorylation of Tau protein induced by electroconvulsive shock (ECT) in depressed rats, in order to provide experimental evidence for the study on neuropsychological mechanisms improving learning and memory impairment and the clinical intervention treatment. The analysis of variance of factorial design set up two intervention factors which were the electroconvulsive shock (two level: no disposition; a course of ECT) and the excitatory amino acid receptor antagonists (three level: iv saline; iv NMDA receptor antagonist MK-801; iv AMPA receptor antagonist DNQX). Forty-eight adult Wistar-Kyoto (WKY) rats (an animal model for depressive behavior) were randomly divided into six experimental groups (n = 8 in each group): saline (iv 2 mL saline through the tail veins of WKY rats ); MK-801 (iv 2 mL 5 mg/kg MK-801 through the tail veins of WKY rats) ; DNQX (iv 2 mL 5 mg/kg DNQX through the tail veins of WKY rats ); saline + ECT (iv 2 mL saline through the tail veins of WKY rats and giving a course of ECT); MK-801 + ECT (iv 2 mL 5 mg/kg MK-801 through the tail veins of WKY rats and giving a course of ECT); DNQX + ECT (iv 2 mL 5 mg/kg DNQX through the tail veins of WKY rats and giving a course of ECT). The Morris water maze test started within 1 day after the finish of the course of ECT to evaluate learning and memory. The hippocampus was removed from rats within 1 day after the finish of Morris water maze test. The content of glutamate in the hippocampus of rats was detected by high performance liquid chromatography. The contents of Tau protein which included Tau5 (total Tau protein), p-PHF1(Ser396/404), p-AT8(Ser199/202) and p-12E8(Ser262) in the hippocampus of rats were detected by immunohistochemistry staining (SP) and Western blot. The results showed that ECT and the glutamate ionic receptor blockers (NMDA receptor antagonist MK-801 and AMPA receptor antagonist DNQX) induced the impairment of learning and memory in depressed rats with extended evasive latency time and shortened space exploration time. And the two factors presented a subtractive effect. ECT significantly up-regulated the content of glutamate in the hippocampus of depressed rats which were not affected by the glutamate ionic receptor blockers. ECT and the glutamate ionic receptor blockers did not affect the total Tau protein in the hippocampus of rats. ECT up-regulated the hyperphosphorylation of Tau protein in the hippocampus of depressed rats, while the glutamate ionic receptor blockers down-regulated it, and combination of the two factors presented a subtractive effect. Our results indicate that ECT up-regulates the content of glutamate in the hippocampus of depressed rats, which up-regulates the hyperphosphorylation of Tau protein resulting in the impairment of learning and memory in depressed rats.  相似文献   

18.
Compared with control rats, rats treated with ketamine (15 mg/kg/day, p.o.) or MK-801 (0.1 to 0.4 mg/kg/day, p.o.) for 6 weeks showed significantly increased: 1) behavioural responses to D2 dopaminergic agents, either agonist or antagonist, 2) striatal D2 receptor mRNA expression, 3) striatal D2 receptor density, without any presynaptic change in dopaminergic or serotoninergic neurotransmission. These results suggest that the functional expression of striatal D2 receptor is postsynaptically regulated by glutamate-triggered events through the NMDA receptor subtype.  相似文献   

19.
Rats increase their intake of food, but not water, after intraperitoneal injection of MK-801, a noncompetitive antagonist of N-methyl-D-aspartate-activated ion channels. We hypothesized that MK-801 might enhance intake by interfering with intestinal chemosensory signals. To test this hypothesis, we examined the effect of the antagonist on 15% sucrose intake after an intraduodenal infusion of maltotriose, oleic acid, or phenylalanine in both real- and sham-feeding paradigms. MK-801 (100 microg/kg) significantly increased sucrose intake regardless of the composition of the infusate during real feeding. Furthermore, MK-801 had no effect on reduction of sucrose intake by intestinal nutrient infusions in sham-feeding rats. These results indicate that MK-801 does not increase meal size and duration by interfering with signals activated by intestinal macronutrients.  相似文献   

20.
The effects of selective D1 and D2 dopaminergic agents on the extracellular acetylcholine (ACh) content in striata of freely moving rats were determined by the microdialysis technique. LY 171555, a selective D2 agonist, reduced ACh output by approximately 30% within 20 min at the dose of 0.2 mg/kg, i.p., whereas the D2 antagonists (-)-remoxipride (10 mg/kg, s.c.) and L-sulpiride (50 mg/kg, i.p.) induced maximal increases of approximately 50% within 10 and 20 min, respectively. In contrast, the D1 antagonist SCH 23390 (0.25 mg/kg, s.c.) decreased the extracellular ACh content by approximately 30% in 20 min, but lower doses--0.025 and 0.05 mg/kg--had no such effect. The stimulation of ACh release by LY 171555 was prevented by (-)-remoxipride but not by SCH 23390 (0.25 mg/kg, s.c.). In addition, the D1 agonist SKF 38393 failed to modify the ACh increasing effect of (-)-remoxipride. Thus, the D1 and D2 receptors subserve opposing functions on ACh release. The D1/D2 dopaminergic agonist R-apomorphine, at the does of 1 mg/kg, i.p., reduced ACh output by approximately 35% only when D1 receptors were blocked by SCH 23390 (0.025 mg/kg, s.c.). The results provide clear in vivo evidence of the tonic inhibition exerted by dopaminergic nigrostriatal input on the cholinergic system of the basal ganglia through D1 and D2 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号