首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel acyclic nucleoside analogues were designed and synthesized as open-chain analogues of neplanocin A. The coupling of the allylic bromide with purine bases using cesium carbonate afforded a series of novel acyclic nucleosides. The synthesized compounds Ia-II were evaluated for their antiviral activity against various viruses such as HIV HSV-1, HSV-2, and ECMV.  相似文献   

2.

Novel acyclic nucleoside analogues were designed and synthesized as open-chain analogues of neplanocin A. The coupling of the allylic bromide with purine bases using cesium carbonate afforded a series of novel acyclic nucleosides. The synthesized compounds Ia II were evaluated for their antiviral activity against various viruses such as HIV, HSV-1, HSV-2, and ECMV.  相似文献   

3.
Electronic parameters of 1′,3 ′-oxygen play significant roles in steering the conformation of nucleoside phosphonic acid analogues. To investigate the relationship of two oxygen atoms with antiviral enhancement, novel 1′,3 ′-dioxolane 5 ′-deoxyphosphonic acid purine analogues were synthesized via de novo acyclic stereoselective route from acrolein and glycolic acid. The synthesized nucleoside phosphonic acid analogues 14 and 19 were subjected to antiviral screening against several viruses, such as HIV-1, HSV-1, HSV-2, and HCMV. The guanine analogue 19 exhibits in vitro anti-HIV-1 activity similar to that of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA) in MT-4 cells.  相似文献   

4.
In these study, novel acyclic (E)-bromovinyl nucleosides were synthesized as potential antiviral agents. The coupling of the allylic bromide 9 with bases (thymine, uracil, 5-fluorouracil, 5-iodouracil, cytosine, adenine) afforded a series of novel acyclic nucleosides. The synthesized compounds were evaluated for their antiviral activity against various viruses such as HIV-1, HSV-1, HSV-2, and HCMV. 5-Iodouracil analogue 19 showed weak anti-HIV-1 activity.  相似文献   

5.
Several guanosine analogues, i.e. acyclovir (and its oral prodrug valaciclovir), penciclovir (in its oral prodrug form, famciclovir) and ganciclovir, are widely used for the treatment of herpesvirus [i.e. herpes simplex virus type 1 (HSV-1), and type 2 (HSV-2),varicella-zoster virus (VZV) and/or human cytomegalovirus (HCMV)] infections. In recent years, several new guanosine analogues have been developed, including the 3-membered cyclopropylmethyl and-methenyl derivatives (A-5021 and synguanol) and the 6-membered D-and L-cyclohexenyl derivatives. The activity of the acyclic/carbocyclic guanosine analogues has been determined against a wide spectrum of viruses, including the HSV-1, HSV-2, VZV, HCMV, and also human herpesviruses type 6 (HHV-6), type 7 (HHV-7) and type 8 (HHV-8), and hepatitis B virus (HBV). The new guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) were found to be particularly active against those viruses (HSV-1, HSV-2, VZV) that encode for a specific thymidine kinase (TK), suggesting that their antiviral activity (at least partially) depends on phosphorylation by the virus-induced TK. Marked antiviral activity was also noted with A-5021 against HHV-6 and with D- and L-cyclohexenyl G against HCMV and HBV. The antiviral activity of the acyclic/carbocyclic nucleoside analogues could be markedly potentiated by mycophenolic acid, a potent inhibitor of inosine 5′-monophosphate (IMP) dehydrogenase. The new carbocyclic guanosine analogues (i.e. A-5021 and D- andL-cyclohexenyl G) hold great promise, not only as antiviral agents for the treatment of herpesvirus infections, but also an antitumor agents for the combined gene therapy/chemotherapy of cancer, provided that (part of) the tumor cells have been transduced by the viral (HSV-1, VZV) TK gene.  相似文献   

6.
Several guanosine analogues, i.e. acyclovir (and its oral prodrug valaciclovir), penciclovir (in its oral prodrug form, famciclovir) and ganciclovir, are widely used for the treatment of herpesvirus [i.e. herpes simplex virus type 1 (HSV-1), and type 2 (HSV-2), varicella-zoster virus (VZV) and/or human cytomegalovirus (HCMV)] infections. In recent years, several new guanosine analogues have been developed, including the 3-membered cyclopropylmethyl and -methenyl derivatives (A-5021 and synguanol) and the 6-membered D- and L-cyclohexenyl derivatives. The activity of the acyclic/carbocyclic guanosine analogues has been determined against a wide spectrum of viruses, including the HSV-1, HSV-2, VZV, HCMV, and also human herpesviruses type 6 (HHV-6), type 7 (HHV-7) and type 8 (HHV-8), and hepatitis B virus (HBV). The new guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) were found to be particularly active against those viruses (HSV-1, HSV-2, VZV) that encode for a specific thymidine kinase (TK), suggesting that their antiviral activity (at least partially) depends on phosphorylation by the virus-induced TK. Marked antiviral activity was also noted with A-5021 against HHV-6 and with D- and L-cyclohexenyl G against HCMV and HBV. The antiviral activity of the acyclic/carbocyclic nucleoside analogues could be markedly potentiated by mycophenolic acid, a potent inhibitor of inosine 5'-monophosphate (IMP) dehydrogenase. The new carbocyclic guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) hold great promise, not only as antiviral agents for the treatment of herpesvirus infections, but also an antitumor agents for the combined gene therapy/chemotherapy of cancer, provided that (part of) the tumor cells have been transduced by the viral (HSV-1, VZV) TK gene.  相似文献   

7.
A series of 2',3'-dideoxy-2'-fluoro-L-threo-pentofuranosyl nucleosides has been synthesized as potential antiviral agents. The synthesized compounds were evaluated against HIV-1, HBV, HSV-1, and HSV-2. Among the synthesized analogues, only the cytosine derivative showed moderate antiviral activity against HIV and HBV.  相似文献   

8.
Abstract

The synthesis of 9-[2-(phosphonomethoxy)allyl]guanine (1) and 9-[2-(phosphonomethoxy)allyl]-8-aza-guanine (2), two new unsaturated acyclic phosphonate nucleosides analogues of the anti-HIV agents PMPG and 8-aza-PMPG, is described. Compounds 1 and 2 were evaluated for activity against human immunodeficiency virus (HIV-1 and HIV-2) and herpes simplex virus (HSV-1 and HSV-2).  相似文献   

9.
Abstract

A series of 2′,3′-dideoxy-2′-fluoro-L-threo-pentofuranosyl nucleosides has been synthesized as potential antiviral agents. The synthesized compounds were evaluated against HIV-1, HBV, HSV-1, and HSV-2. Among the synthesized analogues, only the cytosine derivative showed moderate antiviral activity against HIV and HBV.  相似文献   

10.
Abstract

Five acyclic nucleoside analogues with unnatural base moieties have been synthesized of which three successfully were incorporated into oligonucleotides. The acyclic analogue containing the base 5-nitroindazole was the least discriminating and should be further pursued for use as a universal nucleoside analogue.  相似文献   

11.
Some cyclic and acyclic nucleosides of thieno[2,3-d]-pyrimidine derivatives were synthesized via the reaction of compounds 1 and 2 or 3 and 4 with 2-chloroethyl methyl ether or 2,3,4, 6-tetra-O-acetyl-alpha-D-glucopyranosyl bromide. Nucleosides 9, 10, 15, and 16 were tested as antiviral agents against herpes simplex virus type-1 (HSV-1) and hepatitis-A virus (HAV). Compound 15 showed the highest effect on HSV-1 than the other three compounds, while the four tested compounds did not show any activity against HAV.  相似文献   

12.
Novel D- and L-2'-azido-2',3'-dideoxyribofuranosyl-4'-thiopyrimidines and purines have been synthesized starting from L-xylose and D-xylose, respectively. Among synthesized compounds tested against several viruses such as HIV-1, HSV-1, HSV-2, and HCMV, D-beta-N6-methyladenine (ent-22a) and D-alpha-N6-methyladenine (ent-22b) analogues were found to exhibit significant anti-HCMV activity.  相似文献   

13.
After the widespread use of the acyclic purine nucleoside analogues for therapy of herpes simplex virus (HSV) infection since the 1980s, new antiviral strategies are urgently needed to counter the emergence of drug-resistant clinical isolates. In this report, we define the anti-HSV efficacies of three optimized 2-aminobenzamide derivatives in vitro and in vivo. The synthetic analogues SNX-25a, SNX-2112 and SNX-7081, which selectively bind to the N-terminal ATP pocket of heat shock protein 90 (HSP90), exhibited significant anti-HSV-1 and HSV-2 activities at non-cytotoxic concentrations in Vero cells, with EC(50) values close to that of acyclovir (ACV). The in vivo antiviral potentials were then confirmed using a herpes simplex keratitis (HSK) rabbit model, where eye gels containing 0.1% or 0.025% SNX-25a displayed the highest efficacies against HSV-1 infection, which were better than that obtained with 0.1% ACV. SNX-2112 and SNX-7081 gels were also effective against HSV-1 with different magnitude of activities. Our results for the first time confirmed the anti-HSV efficacies of these 2-aminobenzamide derivatives and suggest that with alternative mechanisms of action these novel HSP90 inhibitors, especially SNX-25a, could be potent as new anti-HSV clinical trial candidates.  相似文献   

14.
A series of novel, unusual type of acyclic phosphonate-based nucleotide analogues related to well-known antivirals (PMEA and HPMPA) was synthesized using easily available synthon. These compounds, which are distinguished for the presence of phosphonomethyl acetal linkage, form a group of derivatives that contribute to the understanding of structure-activity relationship within the area of acyclic nucleotide analogues.  相似文献   

15.
A series of novel, unusual type of acyclic phosphonate-based nucleotide analogues related to well-known antivirals (PMEA and HPMPA) was synthesized using easily available synthon. These compounds, which are distinguished for the presence of phosphonomethyl acetal linkage, form a group of derivatives that contribute to the understanding of structure-activity relationship within the area of acyclic nucleotide analogues.  相似文献   

16.
Novel 4'-cyclopropyl-5'-norcarbocyclic adenosine phosphonic acid analogues were designed and racemically synthesized from propionaldehyde 5 through a de novo acyclic stereoselective route using triple Grignard addition and ring-closing metathesis (RCM) as key reactions. To improve cellular permeability and enhance the anti-HIV activity of this phosphonic acid, SATE phosphonodiester nucleoside prodrug 23 was prepared. The synthesized adenosine phosphonic acids analogues 17, 18, 19, 21, and 23 were subjected to antiviral screening against HIV-1. Compound 23 exhibits enhanced anti-HIV activity than its parent nucleoside phosphonic acid 18.  相似文献   

17.
A new antiviral drug with both anti-HSV and anti-HIV activity was synthesized by coupling Acyclovir and the acyclic nucleoside phosphonate (R)PMPA. The heterodinucleotide ACVpPMPA encapsulated into autologous erythrocytes was added to human macrophages providing an effective in vitro protection from HSV-1 and HIV-1 replication.  相似文献   

18.
Some novel substituted pyrazole and pyrazolo[3,4-d]pyrimidine derivatives 2, 4, 8, and 9 were synthesized. Also, some acyclic S-nucleosides of pyrazolo[3,4-d]pyrimidine derivatives 10-13 were prepared via reaction of pyrazolo[3,4-d]pyrimidine-4(3H)-thione derivative 9 with some acyclic sugars. Moreover, the N-nucleoside derivative 14 was prepared via reaction of compound 8 with glucosamine hydrochloride. The antiviral evaluation of some selected new products showed that they have promising antiviral activity against hepatitis-A virus (HAV) and herpes simplex virus type-1 (HSV-1).  相似文献   

19.
Abstract

Several 5-(4-substituted benzyl)-6-azauracils have been synthesized from the corresponding benzaldehydes. The 5-benzyl-6-azauracils were silylated with hexamethyldisilazane and then glycosylated with aliphatic halides, e.g., (2-acetoxyethoxy)methyl bromide and 1,3-dibenzyloxy-2-chloromethoxypropane, to give protected acyclic nucleosides which were deprotected to afford acyclonucleosides of 5-(4-substituted benzyl)-6-azauracils. None of the compounds exhibited significant antiviral activity against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro.  相似文献   

20.
Novel syntheses of 4′-modified cyclopentenyl pyrimidine C-nucleosides were performed via C-C bond formation using SN2 alkylation via the key intermediate mesylates 6 and 16, which were prepared from acyclic ketone derivatives. When antiviral evaluation of synthesized compound was performed against various viruses such as HIV-1, HSV-1 and HSV-2, isocytidine analogue 20 showed moderate anti-HIV activity in CEM cell line (EC50 = 13.1 μmol).7  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号