首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p38MAPK介导的胶质细胞iNOS的转录激活机制   总被引:6,自引:2,他引:4  
丝裂原激活蛋白激酶(MAPK)酶级联反应系统参与胶质细胞中iNOS的合成.通过瞬时转染p38MAPK途径中上游激酶,MAPK激酶3(MKK3)和MAPK激酶6 (MKK6 )表达质粒,进一步了解p38MAPK级联传导信号系统调节iNOS基因在胶质细胞中的转录激活机制.MKK3或MKK6表达质粒与接有荧光素酶(luciferase ,Luc)的大鼠iNOS启动基因质粒(iNOS Luc)联合转染C6星形胶质细胞株引起iNOS Luc的激活,并且使细胞因子诱导的iNOSmRNA的表达增强.这两种效应都能够被p38MAPK抑制剂SB2 0 35 80所抑制.MKK3 6也可以诱导核因子κB(NFκB Luc)依赖的转录活性.这些分子水平的研究结果为p38MAPK信号级联传导途径在调节大鼠胶质细胞中iNOS基因转录激活中的重要作用,包括转录因子NFκB的作用提供了证据.通过阻断iNOS表达或NO的生成,抑制细胞炎症发生,为防治神经细胞炎症反应性疾病提供实验依据.  相似文献   

2.
Regulation of GDF-8 signaling by the p38 MAPK   总被引:3,自引:0,他引:3  
Philip B  Lu Z  Gao Y 《Cellular signalling》2005,17(3):365-375
  相似文献   

3.
4.
Interleukin 1beta (IL-1beta) induces expression of the inducible nitric-oxide synthase (iNOS) with concomitant release of nitric oxide (NO) from glomerular mesangial cells. These events are preceded by activation of the c-Jun NH(2)-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38(MAPK). Our current study demonstrates that overexpression of the dominant negative form of JNK1 or p54 SAPKbeta/JNK2 significantly reduces the iNOS protein expression and NO production induced by IL-1beta. Similarly, overexpression of the kinase-dead mutant form of p38alpha(MAPK) also inhibits IL-1beta-induced iNOS expression and NO production. In previous studies we demonstrated that IL-1beta can activate MKK4/SEK1, MKK3, and MKK6 in renal mesangial cells; therefore, we examined the role of these MAPK kinases in the modulation of iNOS induced by IL-1beta. Overexpression of the dominant negative form of MKK4/SEK1 decreases IL-1beta-induced iNOS expression and NO production with inhibition of both SAPK/JNK and p38(MAPK) phosphorylation. Overexpression of the kinase-dead mutant form of MKK3 or MKK6 demonstrated that either of these two mutant kinase inhibited IL-1beta-induced p38(MAPK) (but not JNK/SAPK) phosphorylation and iNOS expression. Interestingly overexpression of wild type MKK3/6 was associated with phosphorylation of p38(MAPK); however, in the absence of IL-1beta, iNOS expression was not enhanced. This study suggests that the activation of both SAPK/JNK and p38alpha(MAPK) signaling cascades are necessary for the IL-1beta-induced expression of iNOS and production of NO in renal mesangial cells.  相似文献   

5.
6.
7.
8.
9.
Clinical and basic science data support an integral role of calcitonin gene-related peptide (CGRP) in the pathophysiology of temporomandibular joint disorders. Recently, we have shown that CGRP can stimulate the synthesis and release of nitric oxide (NO) from trigeminal ganglion glial cells. The goal of this study was to determine the role of mitogen-activated protein kinase (MAPK) signaling pathways in CGRP regulation of iNOS expression and NO release from cultured trigeminal ganglion glial cells from Sprague–Dawley rats. CGRP treatment for 2 h significantly increased activity of the MAPK reporter genes, Elk, ATF-2, and CHOP. In addition, CGRP increased nuclear staining for the active forms of the MAPKs: extracellular signal-regulated kinase, c-Jun amino-terminal kinase, and p38. This stimulatory event was not observed in cultures pre-treated with the CGRP receptor antagonist peptide CGRP8–37. Similarly, pre-treatment with selective MAPK inhibitors repressed increases in reporter gene activity as well as CGRP-induced increases in iNOS expression and NO release mediated by MAPKs. In addition, over-expression of MAPK kinase 1 (MEK1), MEK3, MEK6, and MEK kinase significantly increased iNOS expression and NO production in glial cells. Results from our study provide evidence that CGRP binding to its receptor can stimulate iNOS gene expression via activation of MAPK pathways in trigeminal ganglion glial cells.  相似文献   

10.
11.
12.
p38 mitogen-activated protein kinase (MAPK), which is situated downstream of MAPK kinase (MKK) 6 and MKK3, is activated by mitogenic or stress-inducing stimuli, as well as by insulin. To clarify the role of the MKK6/3-p38 MAPK pathway in the regulation of glucose transport, dominant negative p38 MAPK and MKK6 mutants and constitutively active MKK6 and MKK3 mutants were overexpressed in 3T3-L1 adipocytes and L6 myotubes using an adenovirus-mediated transfection procedure. Constitutively active MKK6/3 mutants up-regulated GLUT1 expression and down-regulated GLUT4 expression, thereby significantly increasing basal glucose transport but diminishing transport induced by insulin. Similar effects were elicited by chronic (24 h) exposure to tumor necrosis factor alpha, interleukin-1beta, or 200 mm sorbitol, all activate the MKK6/3-p38 MAPK pathway. SB203580, a specific p38 MAPK inhibitor, attenuated these effects, further confirming that both MMK6 and MMK3 act via p38 MAPK, whereas they had no effect on the increase in glucose transport induced by a constitutively active MAPK kinase 1 (MEK1) mutant or by myristoylated Akt. In addition, suppression of p38 MAPK activation by overexpression of a dominant negative p38 MAPK or MKK6 mutant did not diminish insulin-induced glucose uptake by 3T3-L1 adipocytes. It is thus apparent that activation of p38 MAPK is not essential for insulin-induced increases in glucose uptake. Rather, p38 MAPK activation leads to a marked down-regulation of insulin-induced glucose uptake via GLUT4, which may underlie cellular stress-induced insulin resistance caused by tumor necrosis factor alpha and other factors.  相似文献   

13.
We reported previously that down-regulating or functionally blocking alphav integrins inhibits endogenous p38 mitogen-activated protein kinase (MAPK) activity and urokinase plasminogen activator (uPA) expression in invasive MDA-MB-231 breast cancer cells whereas engaging alphav integrins with vitronectin activates p38 MAPK and up-regulates uPA expression (Chen, J., Baskerville, C., Han, Q., Pan, Z., and Huang, S. (2001) J. Biol. Chem. 276, 47901-47905). Currently, it is not clear what upstream and downstream signaling molecules of p38 MAPK mediate alphav integrin-mediated uPA up-regulation. In the present study, we found that alphav integrin ligation activated small GTPase Rac1 preferentially, and dominant negative Rac1 inhibited alphav integrin-mediated p38 MAPK activation. Using constitutively active MAPK kinases, we found that both constitutively active MKK3 and MKK6 mutants were able to activate p38 MAPK and up-regulate uPA expression, but only dominant negative MKK3 blocked alphav integrin-mediated p38 MAPK activation and uPA up-regulation. These results suggest that MKK3, rather than MKK6, mediates alphav integrin-induced p38 MAPK activation. Among the potential downstream effectors of p38 MAPK, we found that only MAPK-activated protein kinase 2 affects alphav integrin-mediated uPA up-regulation significantly. Finally, using beta-globin reporter gene constructs containing uPA mRNA 3'-untranslated region (UTR) and adenosine/uridine-rich elements-deleted 3'-UTR, we demonstrated that p38 MAPK/MAPK-activated protein kinase 2 signaling pathway regulated uPA mRNA stability through a mechanism involving the adenosine/uridine-rich elements sequence in 3'-UTR of uPA mRNA.  相似文献   

14.
Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase kinase kinase 3 (MEKK3) activates the c-Jun NH2-terminal kinase (JNK) pathway, although no substrates for MEKK3 have been identified. We have examined the regulation by MEKK3 of MAPK kinase 7 (MKK7) and MKK6, two novel MAPK kinases specific for JNK and p38, respectively. Coexpression of MKK7 with MEKK3 in COS-7 cells enhanced MKK7 autophosphorylation and its ability to activate recombinant JNK1 in vitro. MKK6 autophosphorylation and in vitro activation of p38alpha were also observed following coexpression of MKK6 with MEKK3. MEKK2, a closely related homologue of MEKK3, also activated MKK7 and MKK6 in COS-7 cells. Importantly, immunoprecipitates of either MEKK3 or MEKK2 directly activated recombinant MKK7 and MKK6 in vitro. These data identify MEKK3 as a MAPK kinase kinase specific for MKK7 and MKK6 in the JNK and p38 pathways. We have also examined whether MEKK3 or MEKK2 activates p38 in intact cells using MAPK-activated protein kinase-2 (MAPKAPK2) as an affinity ligand and substrate. Anisomycin, sorbitol, or the expression of MEKK3 in HEK293 cells enhanced MAPKAPK2 phosphorylation, whereas MEKK2 was less effective. Furthermore, MAPKAPK2 phosphorylation induced by MEKK3 or cellular stress was abolished by the p38 inhibitor SB-203580, suggesting that MEKK3 is coupled to p38 activation in intact cells.  相似文献   

15.
Complement component C3, the central player in the complement cascade and the pro-inflammatory cytokine IL-1β is expressed by activated glial cells and may contribute to neurodegeneration. This study examines the regulation of the expression of C3 by IL-1β in astroglial cells focusing on the role of the upstream kinase MKK6, p38-α MAPK, and C/EBP-β isoforms (LAP1, LAP2, or LIP) in astroglial cells. Activation of human astroglial cell line, U373 with IL-1β, led to the induction of C3 mRNA and protein expression as determined by real-time RT-PCR and Western blot analysis, respectively. This induction was suppressed by the pharmacological inhibitor of p38 MAPK (i.e., SB202190-HCl), suggesting the involvement of p38 MAPK in C3 gene expression. IL-1β also induced C3 promoter activity in U373 cells in a MAP kinase- and C/EBP-β-dependent manner. Cotransfection of C3 luciferase reporter construct with constitutively active form of the upstream kinase in the MAP kinase cascade, that is, MKK6 (the immediate upstream activator of p38 kinase) resulted in marked stimulation of the promoter activity, whereas overexpression of a dominant negative forms of MKK6 and p38α MAPK inhibited C3 promoter activity. Furthermore, a mutant form of C/EBP-β, LAP(T235A) showed reduction in IL-1β-mediated C3 promoter activation. These results suggest that the p38α, MAPK, and MKK6 play prominent roles in IL-1β and C/EBP-β-mediated C3 gene expression in astrocytes.  相似文献   

16.
Among other cellular responses, tumor necrosis factor (TNF) induces different forms of cell death and the activation of the p38 mitogen-activated protein kinase (MAPK). The influence of p38 MAPK activation on TNF-induced apoptosis or necrosis is controversially discussed. Here, we demonstrate that pharmacological inhibition of p38 MAPK enhances TNF-induced cell death in murine fibroblast cell lines L929 and NIH3T3. Furthermore, overexpression of dominant-negative versions of p38 MAPK or its upstream kinase MKK6 led to increased cell death in L929 cells. While overexpression of the p38 isoforms alpha and beta did not protect L929 cells from TNF-induced toxicity, overexpression of constitutively active MKK6 decreased TNF-induced cell death. Although the used inhibitors of p38 MAPK decreased the phosphorylation of the survival kinase PKB/Akt, this effect could be ruled out as cause of the observed sensitization to TNF-induced cytotoxicity. Finally, we demonstrate that the nuclear factor kappaB (NF-kappaB)-dependent gene expression, shown as an example for the anti-apoptotic gene cellular inhibitor of apoptosis (c-IAP2), was reduced by p38 MAPK inhibition. In consequence, we found that inhibition of p38 MAPK led to the activation of the executioner caspase-3.  相似文献   

17.
18.
丝裂原激活蛋白激酶(MAPK)和 NFκB介导了炎症细胞转录活性的信号转导过程.转化生长因子β激活性激酶(TGFβ-activated kinase 1,TAK1)是这些转导通路的上游激酶.通过在胶质细胞株中瞬时转染TAK1和它的结合蛋白因子(TAK1-binding protein1 TAB1)基因,或与iNOS(可诱导型氧化氮合酶基因)启动子报告基因(iNOS-Luc)质粒共转染,探讨中枢两类胶质细胞在炎症反应过程中TAK1诱导iNOS 和细胞因子表达的作用机制.结果显示,TAK1明显激活iNOS 和细胞因子(TNFα、IL-1、IL-6)的表达活性. 而且当使用它的下游激酶p38 MAPK、JNK和NFκB的抑制剂(SB203580、SP620125和CAPE)后,这些表达活性明显被抑制.用IκBα的磷酸化突变体质粒(IκBαM)共转染胶质细胞株,能完全抑制iNOS的表达活性.研究结果提示:在胶质细胞内的p38 MAPK、JNK和NFκB信号介导的iNOS和细胞因子的转录表达过程中,TAK1起着非常重要的调节作用.  相似文献   

19.
The p38 mitogen-activated protein kinase (p38MAPK) plays a key role in larval settlement of the barnacle Amphibalanus amphitrite. To study the signaling pathway associated with p38MAPK during larval settlement, we sought to identify the upstream kinase of p38MAPK. Three MKKs (MKK3, MKK4 and MKK7) and three MAPKs (p38MAPK, ERK and JNK) in A. amphitrite were cloned and recombinantly expressed in E. coli. Through kinase assays, we found that MKK3, but not MKK4 or MKK7, phosphorylated p38MAPK. Furthermore, MKK3 activity was specific to p38MAPK, as it did not phosphorylate ERK or JNK. To further investigate the functional relationship between MKK3 and p38MAPK in vivo, we studied the localization of phospho-MKK3 (pMKK3) and MKK3 by immunostaining. Consistent with the patterns of p38MAPK and phospho-p38MAPK (pp38MAPK), pMKK3 and MKK3 mainly localized to the antennules of the cyprids. Western blot analysis revealed that pMKK3 levels, like pp38MAPK levels, were elevated at cyprid stage, compared to nauplii and juvenile stages. Moreover, pMKK3 levels increased after treatment with adult barnacle crude extracts, suggesting that MKK3 might mediate the stimulatory effects of adult barnacle extracts on the p38MAPK pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号