首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of rat intestinal epithelial cells (IEC-6 cells) with lanosterol 14 alpha-demethylase inhibitors, ketoconazole and miconazole, had similar effects on 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity and cholesterol biosynthesis but the drugs differed in their ability to prevent the low density lipoprotein (LDL) suppression of reductase activity. Miconazole, at concentrations that inhibited the metabolism of lanosterol and epoxylanosterol to the same degree as ketoconazole, did not prevent low density lipoprotein action on reductase activity, whereas ketoconazole totally abolished the low density lipoprotein action on reductase activity. Both drugs caused: 1) a biphasic response in reductase activity such that at low concentrations (less than 2 microM) reductase activity was inhibited and at high concentrations (greater than 5 microM) the activity returned to control or higher than control levels; 2) an inhibition of metabolism of lanosterol to cholesterol, and 24(S), 25-epoxylanosterol to 24(S), 25-epoxycholesterol. Neither drug prevented suppression of reductase activity by 25-hydroxylanosterol, 25-hydroxycholesterol, or mevalonolactone added to the medium. Each drug increased the binding, uptake, and degradation of 125I-labeled LDL and inhibited the re-esterification of free cholesterol to cholesteryl oleate and cholesteryl palmitate. The release of free cholesterol from [3H]cholesteryl linoleate LDL could not account for the differential effect of ketoconazole and miconazole on the prevention of low density lipoprotein suppression of reductase activity. The differential effect of the drugs on low density lipoprotein suppression of reductase activity was not unique to IEC-6 cells, but was also observed in several cell lines of different tissue origin such as human skin fibroblast cells (GM-43), human hepatoblastoma cells (HepG2), and Chinese hamster ovary cells (wild type, K-1; 4 alpha-methyl sterol oxidase mutant, 215). These observations suggest that the suppressive action of low density lipoprotein on reductase activity 1) does not require the de novo synthesis of cholesterol, or 24(S), 25-epoxysterols; 2) is not mediated via the same mechanism as that of mevalonolactone; and 3) does not involve cholesteryl reesterification. Ketoconazole blocks a site in the process of LDL suppression of reductase activity that is not affected by miconazole.  相似文献   

2.
The effects of ketoconazole, a lanosterol demethylase and cytochrome P450 inhibitor, on the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34, reductase) activity and sterol biosynthesis were studied in rat intestinal epithelial cell cultures (IEC-6). Incubation of cells with 0.15-2 microM ketoconazole resulted in a concentration-dependent inhibition of reductase activity. As the drug concentration approached 15 microM, the reductase activity returned to control values, and at 30 microM ketoconazole, a stimulation of enzyme activity was observed. The drug had no effect on reductase activity in homogenates of IEC-6 cells. Ketoconazole (0.15-30 microM) caused a concentration-dependent inhibition of the incorporation of [3H] mevalonolactone into cholesterol with a concomitant accumulation of radioactivity in methyl sterols; e.g. lanosterol and 24,25-epoxylanosterol. Interestingly, the incorporation of radioactivity into polar sterols showed a biphasic response which was inversely proportional to the biphasic response of reductase activity. Thus, incorporation of [3H]mevalonolactone into polar sterols increased at low concentrations of ketoconazole (0.15-2 microM) and decreased to control values at high concentrations of the drug. Treatment of cells with ketoconazole (30 microM) and [3H]mevalonolactone followed by removal of the drug and radiolabel resulted in an inhibition of reductase activity and a redistribution of radioactivity from lanosterol and 24,25-epoxylanosterol to cholesterol and polar sterols. These results suggested that the inhibition of reductase activity at low concentrations of ketoconazole (less than 2 microM) was due to a formation of regulatory polar sterols generated from the methyl sterols. At high concentrations of ketoconazole (30 microM) where no suppression in reductase activity was observed, the conversion of exogenously added [3H]24(S),25-epoxylanosterol to polar sterols was prevented. Exogenously added 24,25-epoxylanosterol inhibited reductase activity in a dose-dependent fashion, and ketoconazole (30 microM) prevented the inhibition caused by low concentrations of epoxylanosterol. The drug, however, was unable to prevent the dose-dependent suppression of reductase activity by 25-hydroxylanosterol, a reduced form of 24,25-epoxylanosterol. These results indicated that 24,25-epoxylanosterol per se was not an inhibitor of reductase activity but could be metabolized to regulatory polar sterols through a cytochrome P-450 dependent reaction which was sensitive to ketoconazole. Treatment of cells with ketoconazole totally abolished the inhibition of reductase activity by low density lipoprotein (LDL).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The lanosterol 14 alpha-methyl demethylase inhibitors miconazole and ketoconazole have been used to assess their effects upon cholesterol biosynthesis in cultured Chinese hamster ovary cells. In Chinese hamster ovary cells treated with either agent, an initial accumulation of lanosterol and dihydrolanosterol has been observed. At elevated concentrations, however, ketoconazole, but not miconazole, causes the preferential accumulation of 24,25-epoxylanosterol and squalene 2,3:22,23-dioxide. These metabolites accumulate at the expense of lanosterol, thereby demonstrating a second site of inhibition for ketoconazole in the sterol biosynthetic pathway. Both demethylase inhibitors produced a biphasic modulation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in the cholesterol biosynthetic pathway. The biphasic modulation is characterized by low levels of the drugs suppressing HMG-CoA reductase activity which is restored to either control or above control values at higher drug concentrations. This modulatory effect of the lanosterol demethylase inhibitors upon HMG-CoA reductase was not observed in the lanosterol 14 alpha-methyl demethylase-deficient mutant AR45. Suppression of HMG-CoA reductase activity is shown to be due to a decrease in the amount of enzyme protein consistent with a steroidal regulatory mechanism. Collectively, the results establish that lanosterol 14 alpha-methyl demethylation, but not 24,25-epoxylanosterol formation, is required to suppress HMG-CoA reductase in the manner described by lanosterol demethylase inhibitors.  相似文献   

4.
Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34, reductase) activity was studied in cultured rat intestinal epithelial cells using 3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one ( U18666A ), an inhibitor of 2,3- oxidosqualene cyclase (EC 5.4.99.7, cyclase) that causes cellular accumulation of squalene 2,3:22,23-dioxide ( Sexton , R. C., Panini , S.R., Azran , F., and Rudney , H. (1983) Biochemistry 22, 5687-5692). Treatment of cells with U18666A (5-50 ng/ml) caused a progressive inhibition of reductase activity. Further increases in the level of the drug paradoxically lessened the inhibition such that at a level of 1 microgram/ml, no inhibition of enzyme activity was observed. Cellular metabolism of squalene 2,3:22,23-dioxide to compounds with the chromatographic properties of polar sterols led to an inhibition of reductase activity that could be prevented by U18666A (1 microgram/ml). The drug was unable to prevent the inhibition of enzyme activity by 25-hydroxycholesterol or mevalonolactone, but totally abolished the inhibitory action of low density lipoproteins. Pretreatment with U18666A did not affect the ability of cells to degrade either the apoprotein or the cholesteryl ester component of low density lipoproteins. These results suggest that oxysterols derived from squalene 2,3:22,23-dioxide may act as physiological regulators of reductase and raise the possibility that the suppressive action of low density lipoproteins on reductase may be partially or wholly mediated by such endogenous oxysterols generated through incomplete inhibition of the cyclase.  相似文献   

5.
Biosynthetically tritiated sterols from Chinese hamster lung (Dede) cells were fractionated by high performance liquid chromatography, and fractions were assayed for their ability to repress 3-hydroxy-3-methylglutaryl-CoA reductase in L cell cultures. Most of the activity found was associated with two oxysterols, 24(S),25-epoxycholesterol and 25-hydroxycholesterol. The identities of the two sterols were established by co-chromatography with authentic samples and by isotopic dilution and recrystallization. Only low levels of repressor activity were found in other fractions of the sterol extract. The endogenous concentrations of 24(S),25-epoxycholesterol (7.2 fg/cell) and 25-hydroxycholesterol (1.5 fg/cell) appear to be within the ranges required for the regulation of HMG-CoA reductase.  相似文献   

6.
T G Golos  J F Strauss 《Biochemistry》1988,27(9):3503-3506
Exposure of cultured human granulosa cells to 8-bromoadenosine cyclic 3',5'-phosphate (8-bromo-cAMP) resulted in a rapid increase in the content of the mRNA for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, a rate-limiting enzyme in the de novo synthesis of cholesterol. HMG-CoA reductase mRNA levels increased within 2 h of stimulation and remained elevated for at least 6 h. Treatment of granulosa cells with 25-hydroxycholesterol, a soluble cholesterol analogue, in combination with aminoglutethimide to block conversion of cellular sterols to pregnenolone, resulted in suppression of HMG-CoA reductase mRNA. When cells were stimulated with 8-bromo-cAMP in the presence of 25-hydroxycholesterol and aminoglutethimide, the increase in HMG-CoA reductase mRNA provoked by the tropic agent was markedly attenuated. This indicates that 8-bromo-cAMP raises HMG-CoA reductase mRNA levels indirectly by accelerating steroidogenesis and depleting cellular sterol pools, thus relieving sterol-mediated negative feedback of HMG-CoA reductase gene expression. 25-Hydroxycholesterol in the presence of aminoglutethimide suppressed low-density lipoprotein (LDL) receptor mRNA, but 8-bromo-cAMP effected a significant stimulation of LDL receptor mRNA levels when added with hydroxysterol and aminoglutethimide. These findings reveal differential regulation of HMG-CoA reductase and LDL receptor mRNAs in the presence of sterol negative feedback.  相似文献   

7.
Hep G2 cells were incubated under conditions known to influence the HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase activity, e.g. in the presence of compactin (a competitive inhibitor of HMG-CoA reductase itself) and U18666A (a squalene-2,3-epoxide cyclase inhibitor). We studied the effects of these conditions both on the HMG-CoA reductase activity and on the reductase mRNA content. In the presence of compactin the mRNA content increased, but less than the enzyme activity, as determined after removal of the inhibitor. The increase in mRNA could be prevented by addition of mevalonate or by a combination of low-density lipoprotein (LDL) plus a low concentration of mevalonate. LDL alone prevented the compactin-induced increases in mRNA and activity only partially. The effect of U18666A on reductase mRNA content and activity was biphasic, i.e. a slight decrease at low (0.3-0.5 microM) concentrations, with a concomitant formation of polar sterols [Boogaard, Griffioen & Cohen (1987) Biochem. J. 241, 345-351], and an increase at high (20-30 microM) concentrations, with complete blockage of sterol formation. At these high concentrations of U18666A, additional compactin (2 microM) increased the reductase activity, but not the mRNA content. We conclude that non-sterol metabolites of mevalonate regulate exclusively at the enzyme level, whereas sterol metabolites regulate at the reductase mRNA level. In the latter group of regulators we distinguish mevalonate metabolites which can, and metabolites which cannot, be replaced by exogenous LDL.  相似文献   

8.
In view of the potential importance of 24,25-epoxysterols as intracellular regulators of 3-hydroxy-3-methylglutaryl-CoA reductase, the C-24 epimers of 24,25-oxidolanosterol and 24,25-epoxycholesterol were tested for their biological activity and metabolism in cell cultures. All four compounds produced repression of the reductase in cultured mouse fibroblasts (L cells), and both 24(S)- and 24(R),25-epoxycholesterol exhibited high affinity binding to the cytosolic oxysterol-binding protein. However, binding of the epimeric 24,25-oxidolanosterols was not detected. 24(S),25-Epoxycholesterol was not rapidly metabolized in either L cells or Chinese hamster lung (Dede) cells. 24(S),25-Oxidolanosterol was rapidly converted to 24(S),25-epoxycholesterol in both cell lines. 24(R),25-Oxidolanosterol was converted to 24(R)-hydroxycholesterol in Dede cells, but was converted instead to 24(R),25-epoxycholesterol in L cells, which lack sterol delta 24-reductase activity. Although 24(S),25-oxidolanosterol does not appear to accumulate in these cell cultures, it was found in human liver in about one-fifth the amount of 24(S),25-epoxycholesterol. 24(R),25-Epoxycholesterol was also converted to 24(R)-hydroxycholesterol in Dede cells, but not in L cells. Triparanol inhibited the reduction of the 24(R),25-epoxides in Dede cells, consistent with the idea that this reaction is catalyzed by the delta 24-reductase. 24(R)-Hydroxycholesterol and its 24(S) epimer exhibited affinity for the binding protein and repressed 3-hydroxy-3-methylglutaryl-CoA reductase.  相似文献   

9.
Incubating Hep G2 cells for 18 h with triparanol, buthiobate and low concentrations (less than 0.5 microM) of U18666A, inhibitors of desmosterol delta 24-reductase, of lanosterol 14 alpha-demethylase and of squalene-2,3-epoxide cyclase (EC 5.4.99.7) respectively, resulted in a decrease of the HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase activity. However, U18666A at concentrations higher than 3 microM increased the HMG-CoA reductase activity in a concentration-dependent manner. None of these inhibitors influenced directly the reductase activity in Hep G2 cell homogenates. Analysis by t.l.c. of 14C-labelled non-saponifiable lipids formed from either [14C]acetate or [14C]mevalonate during the cell incubations confirmed the sites of action of the drugs used. Beside the 14C-labelled substrates of the blocked enzymes and 14C-labelled cholesterol, another non-saponifiable lipid fraction was observed, which behaves as polar sterols on t.l.c. This was the case with triparanol and at those concentrations of U18666A that decreased the reductase activity, suggesting that polar sterols may play a role in suppressing the reductase activity. In the presence of 30 microM-U18666A (sterol formation blocked) the increase produced by simultaneously added compactin could be prevented by addition of mevalonate. This indicates the existence of a non-sterol mevalonate-derived effector in addition to a sterol-dependent regulation. LDL (low-density lipoprotein), which was shown to be able to decrease the compactin-induced increase in reductase activity, could not prevent the U18666A-induced increase. On the contrary, LDL enhanced the U18666A effect, showing that the LDL regulation is not merely the result of introducing cholesterol to the cells.  相似文献   

10.
Incubations of Hep G2 cells for 18 h with human low-density lipoprotein (LDL) resulted in a decrease of squalene synthetase activity, whereas heavy high-density lipoprotein (hHDL) stimulated the activity. Simultaneous addition of LDL abolished the hHDL-induced stimulation, indicating that manipulating the regulatory sterol pool within the cells influenced the enzyme activity. Blocking the endogenous cholesterol synthesis either at the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase site with compactin or at the 2,3-oxidosqualene cyclase site with the inhibitor U18666A gave rise to an elevation of the squalene synthetase activity. Simultaneous addition of mevalonate abolished the compactin-induced increase. However, at total blockade of sterol synthesis by 30 microM U18666A, added compactin and/or mevalonate did not change the enzyme activity further. It was concluded that sterols regulate the squalene synthetase activity, whereas, in contrast with the regulation of the HMG-CoA reductase activity in Hep G2 cells, mevalonate-derived non-sterols did not influence this enzyme.  相似文献   

11.
Primary rat hepatocyte culture cells were used to study the acute regulation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity in response to 25-hydroxycholesterol, 3 beta,5 alpha,6 beta-cholestantriol, and mevalonolactone. All three effectors caused a rapid suppression of HMG-CoA reductase activity. 25-Hydroxycholesterol also caused an increase in the ratio of newly synthesized methyl sterols to newly synthesized C27-sterols. Furthermore, in 25-hydroxycholesterol-treated cells, the relative contribution of delta 24-sterol precursors to the nonsaponifiable lipid fraction increased. Di- and trimethyl-diene sterols were the dominant methyl sterols synthesized in the presence of 25-hydroxycholesterol. 3 beta,5 alpha,6 beta-Cholestrantriol (50 microM) also caused a very strong (97%) suppression of sterol demethylation; 4,4-dimethylmonoene sterols were more prominent (23%) in cells treated with 3 beta,5 alpha,6 beta-cholestrantriol, than in cells treated with 25-hydroxycholesterol (2%). The rates of both unesterified and esterified sterol synthesis increased as a function of exogenous mevalonolactone concentration. C27-sterol synthesis was saturated at a concentration of (R)-mevalonolactone which produced only a 33% suppression of HMG-CoA reductase activity. However, there was a direct relationship between the accumulation of methyl sterols and the decrease in HMG-CoA reductase activity. With the aid of triparanol, it was demonstrated that the suppression of HMG-CoA reductase activity by mevalonolactone was linked with the ability of the cells to convert squalene-2,3-epoxide into sterols. The results described in the present article support an important and perhaps necessary relationship between the rate of methyl sterol conversion of C27-sterols and the suppression or inhibition of HMG-Coa reductase in primary hepatocyte culture cells.  相似文献   

12.
Pure cholesterol associated in complexes with lipoproteins (whole serum and human low density lipoproteins) or esterified with succinic acid (cholesteryl succinate) and bound to albumin effectively suppresses 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity in hepatoma tissue culture (HTC) cells grown in lipoprotein-poor serum medium during short 4-hour) incubation periods. Simultaneous measurments of the kinetics of uptake of radioactive unesterified cholesterol of whole serum and cholesteryl succinate, their conversion to lipid products, and the decay in enzyme activity, suggest that the cholesterol-induced suppression is mediated by the sterol itself rather than by inhibitory lipid products derived from its metabolism. Several cholesterol derivatives such as cholestenone, 7-ketocholesterol, and 7alpha-and 25-hydroxycholesterol also suppress reductase activiy in HTC cells and are significantly more inhibitory than the pure cholesterol preparations. The decrease in enzyme activity produced by cholesterol and its derivatives is concentration-dependent and specific. [1-14C]Oleate incorporation experiments indicate that cholesterol ester formation in HTC cells is not increased at inhibitory concentrations of the steroids. These data suggest that sterol ester formation is not an obligatory process in the feedback control of HMG-CoA reductase activity. The half-life of the reductase (3 to 4 hours) is not significantly changed by cycloheximide, plus or minus whole serum, and cholesteryl succinate. In contrast, the half-life is strongly reduced when HTC cells are incubated with cycloheximide plus maximal concentrations of 25-hydroxycholesterol, 7-ketocholesterol, or cholestenone, resulting in t1/2 values of 24, 36, and 60 min, respectively. Increasing concentrations of whole serum and cholesteryl succinate have no significant effect on the apparent rate constant of inactivation of the enzyme, whereas its apparent rate of synthesis is decreased 3- and 10-fold, respectively. These results are reversed with oxygenated steroid inhibitors. The rate of synthesis of reductase is essentially unchanged as the concentrations of 25-hydroxycholesterol, 7-ketocholesterol, and cholestenone are increased in the culture medium, whereas the apparent rate constant for degradation is increased 9-, 7-, and 3-fold, respectively. HMG-CoA reductase activity in HTC cells thus appears to be modulated by two different mechanisms in which steroid structure is important. Whole serum and cholesteryl succinate specifically decrease the rate of enzyme synthesis, while 25-hydroxycholesterol, 7-ketocholesterol, and cholestenone increase the rate of inactivation of the reductase.  相似文献   

13.
Treatment of logarithmically growing rat intestinal epithelial cells (IEC-6) in culture with vitamin D3 (cholecalciferol), 25-hydroxy vitamin D3 (25-hydroxy cholecalciferol), 1,25-dihydroxy vitamin D3 (1,25-dihydroxycholecalciferol), and 24,25 dihydroxy vitamin D3 (24(R),25-dihydroxycholecalciferol), caused an inhibition of the cholesterol biosynthetic pathway at two separate sites. At concentrations greater than 2 micrograms/ml, the hydroxylated forms of vitamin D3 caused an accumulation of methyl sterols indicating an inhibition of lanosterol demethylation. Vitamin D3, however, had little effect on lanosterol demethylation. A second site of inhibition occurs at 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase), the rate limiting enzyme in cholesterol biosynthesis at concentrations less than 2 micrograms/ml. All vitamin D3 compounds, except 1,25-dihydroxy vitamin D3, inhibited HMG-CoA reductase activity in a concentration-dependent manner. The lack of inhibition of HMG-CoA reductase activity by 1,25-dihydroxy vitamin D3 in IEC-6 cells was not due to impaired uptake, since 1,25-dihydroxy vitamin D3 caused an accumulation of methyl sterols under similar conditions. The inhibition of HMG-CoA reductase activity and cholesterol synthesis by vitamin D3 and 25-hydroxy vitamin D3 was also observed in other cell culture lines such as human skin fibroblasts (GM-43), transformed human liver cells (Hep G2), and mouse peritoneal macrophages (J-774). On the other hand, 1,25-hydroxy vitamin D3 showed effects on HMG-CoA reductase activity that varied with the cell line. In J-774 and human skin fibroblasts, 1,25-dihydroxy vitamin D3 showed a biphasic effect on reductase activity such that at low concentrations reductase activity was inhibited but was restored to control values at high concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
3 beta-Hydroxy-5 alpha-cholest-8(14)-en-15-one (I) and (25R)-26-hydroxycholesterol (II), both potent regulators of sterol biosynthesis, have been found to show synergism in the reduction of the levels of HMG-CoA reductase activity in CHO-K1 cells. When equimolar concentrations of I and II were added in combination, synergistic reduction (p less than 0.0001) of enzyme activity was observed at total oxysterol concentrations of 0.1 microM, 0.2 microM, and 0.5 microM. Maximal synergistic effect in the lowering of reductase activity (28% greater than predicted) was observed at 0.1 microM total oxysterol concentration. Five additional experiments conducted with 50 nM oxysterols confirmed the synergistic effect at 0.1 microM total sterol concentration. These results suggest that the in vivo importance of I and II may be greater than that anticipated on the basis of the concentrations of the individual sterols.  相似文献   

15.
The metabolism of 25-hydroxycholesterol in different cell types was studied and the role of 7α-hydroxylation for the effect of 25-hydroxycholesterol on the activity of HMG-CoA reductase was determined. Human diploid fibroblasts (HDF) and the human melanoma cell line SK-MEL-2 converted 25-hydroxycholesterol into 7α,25-dihydroxycholesterol and 7α,25-dihydroxy-4-cholesten-3-one while the virus-transformed fibroblast line 90VA-VI, the colon carcinoma cell line WiDr and the breast cancer cell line MDA-231 did not express 7α-hydroxylase activity. The 7α-hydroxylation of 25-hydroxycholesterol in HDF could be stimulated by dexamethasone and cortisol and inhibited by metyrapone. An unidentified, possibly 4-hydroxylated, metabolite was formed by 90VA-VI cells and a polar, probably conjugated, metabolite was formed by WiDr cells. The 7α-hydroxylated metabolites of 25-hydroxycholesterol suppressed the activity of HMG-CoA reductase to a similar extent as 25-hydroxycholesterol in HDF but not in 90VA-VI cells, while the 7α-hydroxylated metabolites of 27-hydroxycholesterol suppressed the activity of HMG-CoA reductase also in 90VA-VI cells. The suppression of HMG-CoA reductase activity by 25- and 27-hydroxycholesterol was decreased or abolished by dehydroepiandrosterone or pregnenolone which have little or no effect on the 7α-hydroxylation. The results indicate that 7α-hydroxylation is not directly involved, positively or negatively, in the action of 25- or 27-hydroxycholesterol as suppressors of HMG-CoA reductase activity.  相似文献   

16.
In this paper, we assess the relative degree of regulation of the rate-limiting enzyme of isoprenoid biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, by sterol and nonsterol products of mevalonate by utilizing cultured Chinese hamster ovary cells blocked in sterol synthesis. We also examine the two other enzymes of mevalonate biosynthesis, acetoacetyl-CoA thiolase and HMG-CoA synthase, for regulation by mevalonate supplements. These studies indicate that in proliferating fibroblasts, treatment with mevalonic acid can produce a suppression of HMG-CoA reductase activity similar to magnitude to that caused by oxygenated sterols. In contrast, HMG-CoA synthase and acetoacetyl-CoA thiolase are only weakly regulated by mevalonate when compared with 25-hydroxycholesterol. Furthermore, neither HMG-CoA synthase nor acetoacetyl-CoA thiolase exhibits the multivalent control response by sterol and mevalonate supplements in the absence of endogenous mevalonate synthesis which is characteristic of nonsterol regulation of HMG-CoA reductase. These observations suggest that nonsterol regulation of HMG-CoA reductase is specific to that enzyme in contrast to the pleiotropic regulation of enzymes of sterol biosynthesis observed with oxygenated sterols. In Chinese hamster ovary cells supplemented with mevalonate at concentrations that are inhibitory to reductase activity, at least 80% of the inhibition appears to be mediated by nonsterol products of mevalonate. In addition, feed-back regulation of HMG-CoA reductase by endogenously synthesized nonsterol isoprenoids in the absence of exogenous sterol or mevalonate supplements also produces a 70% inhibition of the enzyme activity.  相似文献   

17.
The coordinated control of cholesterol biosynthesis and esterification by 25-hydroxycholesterol was studied in the macrophage-like cell line P388D1. Since 25-hydroxycholesterol rapidly stimulated incorporation of [3H]oleate into the cholesteryl ester fraction of these cells, we have tested the possibility that the well-known inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) by 25-hydroxycholesterol might be the indirect consequence of an increased cholesterol esterification rather than a direct effect on HMG-CoA reductase. The experimental results show that progesterone, an inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT), when added together with 25-hydroxycholesterol, abolished the increased cholesterol esterification without affecting the inhibition of HMG-CoA reductase by 25-hydroxycholesterol. Thus, uncoupling cholesterol esterification had no effect on 25-hydroxycholesterol's ability to inhibit HMG-CoA reductase. Unexpectedly, pretreatment of P388D1 cells with 25-hydroxycholesterol resulted in no elevation of ACAT activity as measured in broken cell preparations. Therefore, the possibility that 25-hydroxycholesterol stimulated cholesteryl ester formation by increasing the amount of cholesterol available for esterification, rather than by acting directly on ACAT activity, was considered. Labeling experiments using [14C]-cholesterol have provided evidence for this assumption.  相似文献   

18.
The mechanism of action of serum lipoproteins and 25-hydroxycholesterol on 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity in hepatoma tissue culture (HTC) cells was investigated using antiserum against purified rat liver HMG-CoA reductase (Heller, R. A., and Shrewsbury, M. A. (1976)J. Biol. Chem. 251, 3815-3822). This antiserum cross-reacted with solubilized and membrane-bound HMG-CoA reductase from HTC cells. The enzymes from rat liver and HTC cells appeared antigenically identical. The increase in HMG-CoA reductase activity of HTC cells grown in medium which lacked serum lipoproteins was shown to be due to an increase in immunoprecipitable enzyme. In contrast, the 25-hydroxycholesterol suppression of reductase activity leads to a reduction in the antigenicity of the enzyme rather than a decrease in its number of molecules.  相似文献   

19.
25-Hydroxycholesterol inhibits cholesterol biosynthesis by inhibiting the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Addition of 25-hydroxycholesterol to chicken myeloblasts caused a rapid inhibition of HMG-CoA reductase activity, producing approximately an 80% decrease in enzyme activity after 60 min. The mode of action of 25-hydroxycholesterol was determined by immunoprecipitating radiolabeled enzyme from 25-hydroxycholesterol-treated myeloblasts. The decline in enzyme activity due to addition of 25-hydroxycholesterol was not associated with increased levels of [32P]PO4 incorporation into the immunoprecipitated reductase polypeptide (Mr = 94,000). Hence, 25-hydroxycholesterol did not appear to regulate reductase activity by enzyme phosphorylation, as observed for other modulators of HMG-CoA reductase. However, 25-hydroxycholesterol was shown to inhibit reductase activity by causing a 350% increase in the relative rate of reductase degradation and a 72% decrease in the relative rate of reductase synthesis. These alterations in the rates of degradation and synthesis occurred rapidly (within 10-30 min after addition of 25-hydroxycholesterol) and can account completely for the 25-hydroxycholesterol-induced inhibition of enzyme activity. The rapid decline in the rate of synthesis of HMG-CoA reductase in 25-hydroxycholesterol-treated cells was not associated with concomitant changes in the levels of reductase mRNA; therefore, suggesting that 25-hydroxycholesterol must inhibit the rate of reductase synthesis by translational regulation. We also present evidence that mRNA purified from chicken myeloblasts codes for two reductase polypeptides of Mr = 94,000 and 102,000.  相似文献   

20.
A key enzyme in the regulation of mammalian cellular cholesterol biosynthesis is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase). It is well established that treatment with the compound 25-hydroxycholesterol lowers HMG-CoA reductase activity in cultured Chinese hamster ovary (CHO-K1) cells. After brief incubation (0-4 h) with 25-hydroxycholesterol (0.5 microgram/ml), cellular HMG-CoA reductase activity is decreased to 40% of its original level. This also occurs in the presence of exogenous mevinolin, a competitive inhibitor of HMG-CoA reductase which has previously been shown to inhibit its degradation. The inhibition of HMG-CoA reductase activity by 25-hydroxycholesterol is complete after 2 h. Radio-immune precipitation analysis of the native enzyme under these conditions shows a degradation half-life which is considerably longer than that of the observed inhibition. Studies with sodium fluoride, phosphatase 2A, bacterial alkaline phosphatase and calf alkaline phosphatase indicate that the observed loss of activity is not due to phosphorylation. These data are not consistent with described mechanisms of HMG-CoA reductase activity regulation by phosphorylation or degradation but are consistent with a novel mechanism that regulates the catalytic efficiency of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号