首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
出芽短梗霉具有酵母状细胞、膨大细胞、菌丝、厚垣孢子、念珠状菌丝和分生组织状结构。在最适pH条件下,出芽短梗霉生长繁殖以酵母状细胞(CBS100225等4菌株)或膨大细胞(CBS249.65等4菌株)为主。pH 2.2或pH 7.0诱导全部8株出芽短梗霉形成分生组织状结构。酵母状细胞转变成膨大细胞受低pH值诱导的占75%,还受高pH诱导的占50%。膨大细胞是多形性细胞转变的中心环节,可以转变成菌丝、厚垣孢子或分生组织状结构。  相似文献   

2.
Tropical isolates of Aureobasidium pullulans previously isolated from distinct habitats in Thailand were characterized for their capacities to produce the valuable polysaccharide, pullulan. A. pullulans strain NRM2, the so-called “color variant” strain, was the best producer, yielding 25.1 g pullulan l−1 after 7 days in sucrose medium with peptone as the nitrogen source. Pullulan from strain NRM2 was less pigmented than those from the other strains and was remarkably pure after a simple ethanol precipitation. The molecular weight of pullulan from all cultures dramatically decreased after 3 days growth, as analyzed by high performance size exclusion chromatography. Alpha-amylase with apparent activity against pullulan was expressed constitutively in sucrose-grown cultures and induced in starch-grown cultures. When the alpha-amylase inhibitor acarbose was added to the culture medium, pullulan of slightly higher molecular weight was obtained from late cultures, supporting the notion that alpha-amylase plays a role in the reduction of the molecular weight of pullulan during the production phase.Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

3.
Effects of different sugars on pullulan production, UDP-glucose level, and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase in Aureobasidium pullulans Y68 were examined. It was found that more pullulan was produced when the yeast strain was grown in the medium containing glucose than when it was cultivated in the medium supplementing other sugars. Our results demonstrate that when more pullulan was synthesized, less UDP-glucose was left in the cells of A. pullulans Y68. However, it was observed that more pullulan was synthesized, the cells had higher activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glycosyltransferase. Therefore, high pullulan yield is related to high activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase in A. pullulans Y68 grown on different sugars. A pathway of pullulan biosynthesis in A. pullulan Y68 was proposed based on the results of this study and those from other researchers. This study will be helpful to metabolism-engineer the yeast strain to further enhance pullulan yield.  相似文献   

4.
By disruption of the pullulan synthetase gene (pul) of Aureobasidium pullulans IMS822 KCTC11179BP, we constructed a mutant strain, A. pullulans NP1221, which produced a pure β-glucan exopolysaccharide. The mutant NP1221 was white, whereas the wild-type strain produced a black dye. When we compared fermentation kinetics between wide-type and mutant strains, the mutant NP1221 did not produce pullulan. Substrate uptake rate and β-glucan production were similar in both strains. However, the biomass yield of mutant NP1221 was 2.3-fold (9.2 g l−1) greater than that of wild-type.  相似文献   

5.
A strain Aureobasidium pullulans AP329, was used for the production of pullulan by employing hydrolysed sweet potato as cultivation media. Hydrolysis with α-amylase alone resulted in the lowest yields of pullulan. In contrast continuous hydrolysis with pullulanase and the β-amylase in sweet potato itself gave higher yields, but prolonged hydrolysis with amyloglucosidase decreased the yield. The maximum pullulan yield (29.43 g/l) was achieved at the dextrose equivalent value of 45 and pH of 5.5 for 96 h. As a substitute of sucrose, hydrolysed sweet potato was found to be hopeful and the yield of pullulan was higher than that of glucose and sucrose. The molecular weight of pullulan obtained from hydrolysed sweet potato media was much higher than that of sucrose and glucose media. Results of this work indicated that sweet potato was a promising substrate for the economical production of pullulan.  相似文献   

6.
Biofilm is a natural form of cell immobilization in which microorganisms attach onto solid support. In this study, a pigment-reduced pullulan-producing strain, Aureobasidium pullulans (ATCC 201253), was used for continuous pullulan fermentation in a plastic composite support (PCS) biofilm reactor. Optimal conditions for the continuous pullulan production were determined by evaluating the effects of the feeding medium with various concentrations of ammonium sulfate and sucrose and dilution rate. Pullulan concentration and production rate reached maximum (8.3 g/l and 1.33 g/l/h) when 15 g/l of sucrose, 0.9 g/l of ammonium sulfate, and 0.4 g/l of yeast extract were applied in the medium, and the dilution rate was at 0.16 h−1. The purity of produced pullulan was 93.0%. The ratio of hyphal cells of A. pullulans increased when it was grown on the PCS shaft. Overall, the increased pullulan productivity can be achieved through biomass retention by using PCS biofilm reactor.  相似文献   

7.
Isolates from air in several locations in Thailand were identified as Aureobasidium pullulans PR with dark pigmentation (Loei province), A. pullulans SU with an unusual conidial apparatus (Chiangmai province), and A. pullulans CU with burgundy-red pigmentation (from a shady area in Bangkok). The internal transcribed spacer sequences of the rDNA of A. pullulans SU and A. pullulans CU confirmed that they were A. pullulans. Both A. pullulans CU and A. pullulans PR preferred 30 °C and pH 7.5 for exopolysaccharide (EPS) production, while A. pullulans SU preferred 25 °C and pH 6.5. All three isolates preferred glucose over sucrose and (NH4)2SO4 over peptone for EPS production. Under optimal conditions, A. pullulans PR produced EPS yields of up to 0.225 g g−1, followed by A. pullulans CU (0.185 g g−1) and A. pullulans SU (0.158 g g−1). Amylase activities were detected during the course of EPS production but gradually decreased as the EPS yields increased. IR spectra suggest that the EPS from these isolates was pullulan. EPS from the three isolates were partially sensitive to pullulanase. Electronic Publication  相似文献   

8.
pullulan, a water soluble extracellular polysaccharide, was produced by downstream fermentation employing the strain Aureobasidium pullulans. To obtain pure biopolymer from the fermentation broth, it is necessary to harvest cells, heat the broth, remove the melanin pigments co-produced during fermentation, concentration, precipitate and dry. Centrifugation of the fermentation broth at 10,000 rpm for 15 min gave cell pellets that were discarded and a green–black supernatant containing melanin pigment was subjected to the heat treatment at 80 °C for 20 min in order to remove the protein in the fermentation broth. The supernatant was demelanized by oxidation with hydrogen peroxide, concentrated under vacuum, precipitated with ethanol and dried at 60 °C for 30 min. This procedure produced high purity pullulan that was comparable in color and texture to the commercial samples.  相似文献   

9.
Summary Pullulan is a polysaccharide produced by Aureobasidium pullulans. In this study, the effect of pH on the molecular weight of pullulan was investigated. High concentration of pullulan was obtained when initial pH was 6. Pullulan having molecular weight of 500,000–600,000 was produced at initial pH of 3.0, while pullulan with molecular weight of 200,000–300,000 was produced at pH above 4.5. To obtain high molecular weight pullulan with high concentration, pH was initially controlled at pH 6, followed by pH shift from pH 6 to pH 3. Transition of pH at 2 days of fermentation was observed to be optimum. Higher molecular weight pullulan was also obtained when sucrose concentration was 50 g/l compared to the result obtained at initial sucrose concentration of 20 g/l. Sucrose concentration and pH of the fermentation broth seem to be important parameters in obtaining high molecular weight of pullulan.  相似文献   

10.
Pullulan with different molecular-weight could be applied in various fields. A UV-induced mutagenesis Aureobasidium pullulans UVMU6-1 was obtained from the strain A. pullulans CGMCC3.933 for the production of low-molecular-weight pullulan. First, the obtained polysaccharide from A. pullulans UVMU6-1 was purified and identified to be pullulan with thin-layer chromatography, Fourier transform infrared, and nuclear magnetic resonance. Then, culture medium and conditions for this strain were optimized by flask fermentation. Based on the optimized medium and culture conditions (pH 4, addition of 4?g/L Tween 80 for 96?hr of cultivation), continuously fermentation was performed. The highest pullulan production and dry biomass was 109 and 125?g/L after fermentation for 114?hr, respectively. The average productivity was about 1?g/L/hr, which was intensively higher than the previous reported. This study would lay foundations for the industrial production of pullulan.  相似文献   

11.
Purification and characterization of pullulanase from Aureobasidium pullulans. Pullulanase was purified by using gel—filtration column then on ion exchange using Q-sepharose column yielding a single peak. Purification was further carried out on SP-sepharose column. Molecular weight of pullulanase from A. pullulans was found to be about 73 KDa on the SDS-PAGE 10%. Native-PAGE 10% showed the activity of pullulanase, using polyacrylamide gel containing pullulan. Hydrolysis products from pullulanase activity with soluble starch, glycogen and pullulan on thin layer chromatography appeared as one band which is maltotriose, while α-amylase with soluble starch and glycogen showed two bands which are maltose and maltotriose but α-amylase gave negative result with pullulan on TLC chromatography only. Pullulanase could degrade α-1,6 glycosidic linkage of the previous substrates, while amylase could degrade α-1,4 glycosidic linkage of glycogen, soluble starch and pullulan. MALDI-Ms was employed to deduce protein sequence of pullulanase.  相似文献   

12.
Effects of different pH and carbon sources on pullulan production, UDP-glucose level and pullulan-related synthases activity inAureobasidium pullulans Y68 were examined. It was found that more pullulan was produced when the yeast strain was grown in the medium with initial pH 7.0 than when it was grown in the same medium with constant pH 6.0. The results also show that higher pullulan yield was obtained when the cells were grown in the medium containing glucose than when they were cultivated in the medium supplementing other carbon sources. Our results demonstrate that the more pullulan was synthesized, the less UDP-glucose was left in the cells ofA. pullulans Y68. However, it was observed that more pullulan was synthesized; the cells had higher pullulan-related synthase activity. Therefore, high pullulan yield was related to low UDP-glucose level and high pullulan-related synthases activity inAureobasidium pullulans Y68.  相似文献   

13.
Aureobasidium pullulans had a maximum yield coefficient of pullulan (Y p/s=0.24) with an initial pH of the culture broth of 6.5 in a shake-flask culture. In a batch culture, the maximum pullulan yield coefficient of 0.30 was obtained at the aeration rate of 0.5 vvm. A yeast-like form and mycelial form of cells were found at the culture broth with pH controlled at 4.5 with a maximum yield coefficient of pullulan of 0.27. However, a high portion (35%) of high molecular weight pullulan (M w>2 000 000) was produced at pH 6.5 with a yeast-like morphology of the cells.  相似文献   

14.
Aims: To isolate the novel nonmelanin pullulan‐producing fungi from soil and to optimize the physico‐chemical and nutritional parameters for pullulan production. Methods and Results: A selective enrichment method was followed for the isolation, along with development of a suitable medium for pullulan production, using shake flask experiments. Pullulan content was confirmed using pure pullulan and pullulanase hydrolysate. Eurotium chevalieri was able to produce maximum pullulan (38 ± 1·0 g l?1) at 35°C, pH 5·5, 2·5% sucrose, 0·3% ammonium sulfate and 0·2% yeast extract in a shake flash culture medium with an agitation rate of 30 rev min?1 for 65 h. Conclusions: The novel pullulan‐producing fungus was identified as E. chevalieri (MTCC no. 9614), which was able to produce nonmelanin pullulan at from poorer carbon and nitrogen sources than Aureobasidium pullulans and may therefore be useful for the commercial production of pullulan. Significance and Impact of the Study: Eurotium chevalieri could produce pullulan in similar amounts to A. pullulans. Therefore, in future, this fungus could also be used for commercial pullulan production, because it is neither polymorphic nor melanin producing, hence its handling during pullulan fermentation will be easier and more economical.  相似文献   

15.
16.
Based on intuitive analyses and statistical calculations using data from orthogonal array experiments, the optimal concentrations of K2HPO4, NaCl, MgSO4·7H2O, and (NH4)2SO4 in cell growth medium of Aureobasidium pullulans HP-2001 were measured as 7.5, 1.0, 0.1, and 2.4 g/L, respectively, whereas those for the production of pullulan were 2.5, 0.25, 0.8, and 0.3 g/L, respectively. The most important factor for cell growth and production of pullulan by A. pullulans HP-2001 was identified as K2HPO4. Optimal concentrations of glucose and yeast extract, along with the initial pH of the cell growth medium of A. pullulans HP-2001 containing optimized salt concentrations, were found to be 100.0, 10.0, and 6.0 g/L, respectively, whereas those for the production of pullulan were 100.0, 2.5, and 6.0 g/L, respectively. Conversion rates of pullulan from 10.0, 25.0, 50.0, 75.0, and 100.0 g/L of glucose in the presence of optimized salt concentrations were 26.0, 25.2, 22.4, 17.9, and 14.1%, respectively, whereas those in the presence of previously reported salt concentrations were 26.6, 25.2, 19.9, 14.3, and 11.7%, respectively. Optimal salt concentrations for the production of pullulan by A. pullulans HP-2001 varied according to the concentrations of the carbon and nitrogen sources, especially at higher concentrations.  相似文献   

17.
Pullulan is a linear homopolysaccharide which is composed of glucose units and often described as α-1, 6-linked maltotriose. The applications of pullulan range from usage as blood plasma substitutes to environmental pollution control agents. In this study, a biofilm reactor with plastic composite support (PCS) was evaluated for pullulan production using Aureobasidium pullulans. In test tube fermentations, PCS with soybean hulls, defatted soy bean flour, yeast extract, dried bovine red blood cells, and mineral salts was selected for biofilm reactor fermentation (due to its high nitrogen content, moderate nitrogen leaching rate, and high biomass attachment). Three pH profiles were later applied to evaluate their effects on pullulan production in a PCS biofilm reactor. The results demonstrated that when a constant pH at 5.0 was applied, the time course of pullulan production was advanced and the concentration of pullulan reached 32.9 g/L after 7-day cultivation, which is 1.8-fold higher than its respective suspension culture. The quality analysis demonstrated that the purity of produced pullulan was 95.8% and its viscosity was 2.4 centipoise. Fourier transform infrared spectroscopy spectra also supported the supposition that the produced exopolysaccharide was mostly pullulan. Overall, this study demonstrated that a biofilm reactor can be successfully implemented to enhance pullulan production and maintain its high purity.  相似文献   

18.
Xylose, the second most abundant sugar in lignocellulosic materials, is not efficiently utilized in current lignocellulose biotransformation processes, such as cellulosic ethanol production. The bioconversion of xylose to value-added products, such as pullulan, is an alternative strategy for efficient lignocellulose biotransformation. This paper reports the production of pullulan from xylose and hemicellulose hydrolysate by Aureobasidium pullulans AY82. The effects of DL-dithiothreitol (DTT) and pH on pullulan production from xylose were also intensively investigated. A maximal increase of 17.55% of pullulan production was observed in flasks added with 1.0 mM DTT. Batch fermentations with controlled pH were also conducted, and the optimal pH for cell growth and pullulan synthesis was 3.0 and 5.0, respectively. Based on these findings, two-stage pH control fermentations were performed, in which the pH of the medium was first adjusted to 3.0 for cell growth, and then changed to 5.0 for pullulan synthesis. However, the earlier the pH was changed to 5.0, the more pullulan was produced. Fermentation with controlled pH of 5.0 acquired the highest pullulan production. Under the optimized conditions (with the addition of 1.0 mM DTT and controlled pH of 5.0), the maximal pullulan production obtained from xylose was 17.63 g/L. A. pullulans AY82 also readily fermented hemicellulose hydrolysate under these optimized conditions, but with lower pullulan production (12.65 g/L). Fourier transform infrared spectroscopy and high-performance liquid chromatography showed that the structure of the pullulan obtained in this study was identical to that of the pullulan standard.  相似文献   

19.
It was demonstrated that the polysaccharide, pullulan, was synthesized from sucrose by acetone-dried cells of Pullularia pullulans or from UDPG by cell-free enzyme preparations prepared from the organism. The pullulan formed was estimated by precipitation with ethanol, and determining maltotriose produced after treating the precipitate with Aerobacter isoamylase (pullulanase). Acetone cells (5 g) shaken with 200 ml of 10% sucrose produced over 250 mg of pullulan per 100 ml after 90 hr at 30°C and pH 6.0. Cell-free enzyme produced pullulan from UDPG in the presence of ATP. ATP was essential for the biosynthesis, and ADPG could not replace for UDPG.

In addition, it was observed that a lipid containing glucose residue was formed during, the reaction. The nature of this glucolipid was examined, and possible participation of a lipid intermediate was assumed in the pullulan biosynthesis.  相似文献   

20.
Extracellular polysaccharides produced by 3 strains of Pullularia pullulans were fractionated by treating with cetyl trimethyl ammonium hydroxide into soluble and insoluble fractions, and the structure of the former fraction, i.e., pullulan, was studied. The yield and the ratio of 2 fractions varied widely according to the strains. But the structure of pullulan was found to be uniform irrespective of the strains used. All 3 samples of pullulan gave only glucose on complete acid hydrolysis, and 93~95% maltotriose and 5~7% maltotetraose after isoamylase (pullulanase) action. The ratio of α-1,4- to α-1,6-glucosidic linkages calculated from periodate oxidation data coincided very well with the value expected from the ratio of maltotriose to maltotetraose units. An evidence for the complete absence of branch structure in pullulan was presented from the results of hydrolysis by pullulan 4-glucanohydrolase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号