首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Metastatic cells exhibit considerable flexibility in their adhesive interactions with other cells or components of the extracellular matrix. This review will describe the involvement of specific adhesion receptors, extracellular matrix molecules and cell dissociating cytokines in the metastatic cascade. We will particularly focus on disturbance of intercellular adhesion as a prerequisite for the release of invasive cells from carcinomas. We suggest that cell dissociation in these tumours is accomplished by loss of function or expression of the epithelial cell adhesion molecule E-cadherin, and through the activity of cell motility factors such as the scatter factor.  相似文献   

2.
Cellular adhesion processes are important during the growth of tumors and the generation of metastases. We therefore expect that monoclonal antibodies directed against molecules regulating cell adhesion of tumor cells will be powerful tools for specifically interfering with these processes. In the experimental system of the mouse B16 melanoma, a series of such functional monoclonal antibodies has recently been prepared and their inhibitory effect on the formation of metastatic lesions has been explored.  相似文献   

3.
Tumor cells often show a decrease in cell-cell and/or cell-matrix adhesion. An increasing body of evidence indicates that this reduction in cell adhesion correlates with tumor invasion and metastasis. Two main groups of adhesion molecules, cadherins and CAMs, have been implicated in tumor malignancy. However, the specific role that these proteins play in the context of tumor progression remains to be elucidated. In this review, we discuss recent data pointing to a causal relationship between the loss of cell adhesion molecules and tumor progression. In addition, the direct involvement of these molecules in specific signal transduction pathways will be considered, with particular emphasis on the alterations of such pathways in transformed cells. Finally, we review recent observations on the molecular mechanisms underlying metastatic dissemination. In many cases, spreading of tumor cells from the primary site to distant organs has been characterized as an active process involving the loss of cell-cell adhesion and gain of invasive properties. On the other hand, various examples of metastases exhibiting a relatively benign (i.e. not invasive) phenotype have been reported. Together with our recent results on a mouse tumor model, these findings indicate that 'passive' metastatic dissemination can occur, in particular as a consequence of impaired cell-matrix adhesion and of tumor tissue disaggregation.  相似文献   

4.
Cell adhesion to type-VI collagen.   总被引:1,自引:0,他引:1  
  相似文献   

5.
Tumor cells often show a decrease in cell–cell and/or cell–matrix adhesion. An increasing body of evidence indicates that this reduction in cell adhesion correlates with tumor invasion and metastasis. Two main groups of adhesion molecules, cadherins and CAMs, have been implicated in tumor malignancy. However, the specific role that these proteins play in the context of tumor progression remains to be elucidated. In this review, we discuss recent data pointing to a causal relationship between the loss of cell adhesion molecules and tumor progression. In addition, the direct involvement of these molecules in specific signal transduction pathways will be considered, with particular emphasis on the alterations of such pathways in transformed cells. Finally, we review recent observations on the molecular mechanisms underlying metastatic dissemination. In many cases, spreading of tumor cells from the primary site to distant organs has been characterized as an active process involving the loss of cell–cell adhesion and gain of invasive properties. On the other hand, various examples of metastases exhibiting a relatively benign (i.e. not invasive) phenotype have been reported. Together with our recent results on a mouse tumor model, these findings indicate that ‘passive’ metastatic dissemination can occur, in particular as a consequence of impaired cell–matrix adhesion and of tumor tissue disaggregation.  相似文献   

6.
Cell adhesion and angiogenesis   总被引:7,自引:0,他引:7  
Cell-adhesion mechanisms play a fundamental role during angiogenesis. This article summarizes the role of various cell-adhesive events in blood vessel formation, including general aspects of cell-matrix and cell-cell interactions. In particular, the authors discuss the role of integrinvβ3 in vascular cell survival, proliferation and invasion during the complex process of angiogenesis.  相似文献   

7.
细胞黏附和突触发生   总被引:1,自引:0,他引:1  
Chen G  Wu X  Tuncdemir S 《生理学报》2007,59(6):697-706
突触是神经网络中神经细胞间相互连接的基本工作单位。突触的分子构建是一个引人入胜的问题,数十年来一直吸引着科学家们的注意。冯德培和许多其他科学家早期在神经肌肉接头领域做出了开创性的研究工作。至今,神经肌肉接头仍是一个杰出的突触标本,为我们研究中枢神经系统的突触形成铺平了道路。近期的研究又有新的亮点,发现一组细胞黏附分子具有很强的突触发生作用,使中枢突触形成的分子机制更加明朗。本文综述了这些表达在非神经细胞里能引起中枢突触形成的细胞黏附分子的功能与特性。  相似文献   

8.
9.
Cell surface carbohydrates in cell adhesion.   总被引:1,自引:0,他引:1  
Carbohydrates are ubiquitous constituents of cell surfaces, and possess many characteristics that make them ideal candidates for recognition molecules. In many systems where cell adhesion plays a critical role, carbohydrate binding proteins have been shown to bind to cell surface carbohydrates and participate in cell-cell interactions. Such systems include fertilization, development, pathogen-host recognition and inflammation. In particular the recent discovery of the LEC-CAMs and their importance in leukocyte biology has refocused attention on lectin-mediated cell adhesion. The LEC-CAMs offer good targets for the development of therapeutics based on carbohydrate structures.  相似文献   

10.
11.
The purified fetal calf serum factor that promotes cell adhesion and spreading of baby hamster kidney cells on tissue culture substrata has been subjected to a variety of chemical modifications and then tested for activity. These studies have shown that modification of the carbohydrate portions of the factor by glycosidic enzymes or by periodate oxidation did not alter its ability to promote cell spreading. On the other hand, modification of some protein portions of the factor by proteolytic enzymes or by specific modification of —COOH groups, tyrosine residues, or tryptophan residues resulted in a marked inhibition of factor activity. Modification of protein —SH groups, —NH2 groups, or methionine residues did not affect factor activity. Control experiments indicate that the various modifications were directed at the activity of the factor and not its adsorption onto the substrata.  相似文献   

12.
Cell adhesion assays   总被引:1,自引:0,他引:1  
Cell adhesion makes an important contribution to the maintenance of tissue structure, the promotion of cell migration, and the transduction of information about the cell microenvironment across the plasma membrane. An ability to quantitate adhesion has proven to be extremely valuable for those researchers studying the molecular mechanisms underlying these processes. This article will outline in detail two standard assays used for quantitating the adhesion of cells to an immobilized substrate. First, an attachment assay, which employs a colorimetric detection of bound cells, and second, a spreading assay, which employs phase contrast microscopy to measure the flattening of adherent cells.  相似文献   

13.
14.
15.
Most cells have macromolecules on their outer surface that are specialized for adhesion. Cells can attach to another cell and/or various extracellular matrix components. When tissue culture cells attach to the substrate, they form a specialized structure called adhesion plaque. At the cytoplasmic side of the adhesion plaque, stress fibers terminate, forming an electron-dense plasma membrane undercoat structure. Integrin is localized to the adhesion plaque and this is a transmembrane protein that connects the cytoskeleton to the extracellular matrix. Endothelial cells in vivo have stress fibers, and we have recently found that the ends of these stress fibers also terminate at a structure similar to the adhesion plaque of cultured cells. It appears, therefore, that endothelial cells in vivo employ similar, if not identical, mechanism for adhesion as the one used by tissue culture cells.  相似文献   

16.
Effect of cyclic RGD peptide on cell adhesion and tumor metastasis.   总被引:20,自引:0,他引:20  
Several kinds of cyclic peptides containing an L-arginine-glycine-L-aspartic acid RGD sequence were synthesized by the liquid phase method, and we investigated their effects on the attachment of mouse B16 melanoma cells onto fibronectin-coated well. Cyclo (GRGDSPA) inhibited the cell attachment at a 20-fold lower concentration than the linear form. The cell adhesion was inhibited by the synthetic peptides with the following relative order of activity: cyclo (GRGDSPA) much greater than cyclo (GRGD) greater than cyclo (RGDS), cyclo (GRGDSP) greater than cyclo (GRGDS) greater than cyclo (RGDSP), cyclo (RGDSPA). Cyclo (GRGDSPA) was more effective at inhibiting cell attachment to vitronectin than it was at competing with fibronectin attachment, as reported in the case of GRGDSP. Moreover, cyclo (GRGDSPA) significantly reduced the formation of colonies in mice injected with B16-FE7 melanoma cells.  相似文献   

17.
We develop a thermodynamic calculus for the modeling of cell adhesion. By means of this approach, we are able to compute the end results of competition between the formation of specific macromolecular bridges and nonspecific repulsion arising from electrostatic forces and osmotic (steric stabilization) forces. Using this calculus also allows us to derive in a straightforward manner the effects of cell deformability, the Young's modulus for stretching of bridges, diffusional mobility of receptors, heterogeneity of receptors, variation in receptor number, and the strength of receptor-receptor binding. The major insight that results from our analysis concerns the existence and characteristics of two phase transitions corresponding, respectively, to the onset of stable cell adhesion and to the onset of maximum cell-cell or cell-substrate contact. We are also able to make detailed predictions of the equilibrium contact area, equilibrium number of bridges, and the cell-cell or cell-substrate separation distance. We illustrate how our approach can be used to improve the analysis of experimental data, by means of two concrete examples.  相似文献   

18.
Recent studies on NCAM-related molecules suggest that individual cell adhesion molecules might function to both promote axonal growth during development and maintain synaptic structure in the adult. Evidence that differential alternative splicing contributes to this apparent bifunctionality of cell adhesion molecules is discussed.  相似文献   

19.
Adhesive properties of tenascin-X (TN-X) were investigated using TN-X purified from bovine skin and recombinant proteins encompassing the RGD sequence located within the tenth fibronectin type-III domain, and the fibrinogen-like domain. Osteosarcoma (MG63) and bladder carcinoma cells (ECV304) cells were shown to adhere to purified TN-X, but did not spread and did not assemble actin stress fibers. Both cell types adhered to recombinant proteins harboring the contiguous fibronectin type-III domains 9 and 10 (FNX 9-10) but not to the FNX 10 domain alone. This adhesion to FNX 9-10 was shown to be mediated by alphavbeta3 integrin, was inhibited by RGD peptides and was strongly reduced in proteins mutated within the RGD site. As antibodies against alphavbeta3 integrin had no effects on cell adhesion to purified TN-X, we suggest that the RGD sequence is masked in intact TN-X. Cell attachment to the recombinant TN-X fibrinogen domain (FbgX) and to purified TN-X was greater for MG63 than for ECV304 cells. A beta1-containing integrin was shown to be involved in MG63 cell attachment to FbgX and to purified TN-X. Although the existence of other cell interaction sites is likely in this huge molecule, these similar patterns of adhesion and inhibition suggest that the fibrinogen domain might be a dominant site in the whole molecule.  相似文献   

20.
The two preceding papers of this series suggest that the state of the plasmalemmal lipids affects cell adhesion. Plasmalemmal composition was altered by the experimental incorporation of fatty acids into R1 and R2 positions in the phosphatidyl components of the cell surface. In this paper we report that: (1) If the incorporation is of long chain length fatty acids (saturated) cell adhesion rises. (2) If the incorporation is of unsaturated fatty acids cell adhesion falls as the unsaturation increases. (3) Incorporation has to be extensive to produce a large change in adhesion. (4) Changes in adhesion parallel the plasmalemmal incorporation but do not follow the total cell incorporation. Item (4) argues that it is plasmalemmal and not other membrane lipids that are involved in cell adhesion. Item (3) suggests that bulk membrane properties and not some very specific grouping are involved in the effects of lipids on adhesion. The similar extents of incorporation of the various different fatty acids and the negligible amounts of lysophospholipids in the membranes of cells that have incorporated fatty acids argue that the effects are not due to differential accumulations of these lysolipids when incubations are done with different fatty acids. The changes in adhesion cannot be accounted for by changes in surface charge density since the electrophoretic mobility of the cells is unchanged by these incubations. It is suggested that these effects on adhesion due to changes in plasmalemmal lipids can be explained either in terms of the action of intermembrane van der Waals--London (electrodynamic) forces in cell adhesion or of changes in surface fluidity. These alternatives are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号