首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of integrins in cancer: survey of expression patterns   总被引:30,自引:0,他引:30  
Tumor cells are characterized by uncontrolled growth, invasion to surrounding tissues, and metastatic spread to distant sites. Mortality from cancer is often due to metastasis since surgical removal of tumors can enhance and prolong survival. The integrins constitute a family of transmembrane receptor proteins composed of heterodimeric complexes of noncovalently linked alpha and beta chains. Integrins function in cell-to-cell and cell-to-extracellular matrix (ECM) adhesive interactions and transduce signals from the ECM to the cell interior and vice versa. Hence, the integrins mediate the ECM influence on cell growth and differentiation. Since these properties implicate integrin involvement in cell migration, invasion, intra- and extra-vasation, and platelet interaction, a role for integrins in tumor growth and metastasis is obvious. These findings are underpinned by observations that the integrins are linked to the actin cytoskeleton involving talin, vinculin, and alpha-actinin as intermediaries. Such cytoskeletal changes can be manifested by rounded cell morphology, which is often coincident with tumor transformation via decreased or increased integrin expression patterns. For the various types of cancers, different changes in integrin expression are further associated with tumor growth and metastasis. Tumor progression leading to metastasis appears to involve equipping cancer cells with the appropriate adhesive (integrin) phenotype for interaction with the ECM. Therapies directed at influencing integrin cell expression and function are presently being explored for inhibition of tumor growth, metastasis, and angiogenesis. Such therapeutic strategies include anti-integrin monoclonal antibodies, peptidic inhibitors (cyclic and linear), calcium-binding protein antagonists, proline analogs, apoptosis promotors, and antisense oligonucleotides. Moreover, platelet aggregation induced by tumor cells, which facilitates metastatic spread, can be inhibited by the disintegrins, a family of viper venom-like peptides. Therefore, adhesion molecules from the integrin family and components of angiogenesis might be useful as tumor progression markers for prognostic and for diagnostic purposes. Development of integrin cell expression profiles for individual tumors may have further potential in identifying a cell surface signature for a specific tumor type and/or stage. Thus, recent advances in elucidating the structure, function, ECM binding, and signaling pathways of the integrins have led to new and exciting modalities for cancer therapeutics and diagnoses.  相似文献   

2.
Kotsakis P  Griffin M 《Amino acids》2007,33(2):373-384
Summary. Basic biological processes in which tissue transglutaminase (TG2, tTG) is thought to be important including apoptosis, cell adhesion and migration, ECM homeostasis and angiogenesis are key stages in the multistage tumour progression cascade. Studies undertaken with primary tumours and experimental models suggest that TG2 expression and activity in the tumour body and surrounding matrix generally decreases with tumour progression, favouring matrix destabilisation, but supporting angiogenesis and tumour invasion. In contrast, in the secondary metastatic tumour TG2 is often highly expressed whereby its potential roles in cell survival both at the intra- and extracellular level become important. In the following review the underlying molecular basis for the selection of these different phenotypes in tumour types and the anomaly for the requirement of TG2 is discussed in relation to the complex events of tumour progression.  相似文献   

3.
Colorectal carcinogenesis (CRC) is the most important health concerns throughout the World as the tumour cells rapidly spread and abruptly grow in colon and rectum to further organs. Several etiological factors are associated with colorectal carcinogenesis. During invasion and proliferation of tumour cells, various mechanistic molecular pathways are involved in the cells. Nitric Oxide pathway (NO) is one of the important cellular mechanisms associated with tumour cells initiation, invasion and progression. Epidemiological evidences suggest that NO has potential role in development of cancer. The multidisciplinary action of NO on the initiation of cancer depends on several factors including cell type, metastasis stage, and organs involved. This review emphasizes the biological significance of NO in each step of cancer metastasis, its controversial effects for carcinogenesis including initiation, invasion and progression.  相似文献   

4.
Cell invasion by apicomplexan pathogens such as the malaria parasite and Toxoplasma is accompanied by extensive proteolysis of zoite surface proteins (ZSPs) required for attachment and penetration. Although there is still little known about the proteases involved, a conceptual framework is emerging for the roles of proteolysis in cell invasion. Primary processing of ZSPs, which includes the trimming of terminal peptides or segmentation into multiple fragments, is proposed to activate these adhesive ligands for tight binding to host receptors. Secondary processing, which occurs during penetration, results in the shedding of ZSPs by one of two mechanistically distinct ways, shaving or capping. Resident surface proteins are typically shaved from the surface whereas adhesive ligands mobilized from intracellular secretory vesicles are capped to the posterior end of the parasite before being shed during the final steps of penetration. Intriguingly, recent studies have revealed that ZSPs can be released either by being cleaved adjacent to the membrane anchor or actually within the membrane itself. Mounting evidence suggests that intramembrane cleavage is catalysed by one or more integral membrane serine proteases of the Rhomboid family and we propose that several malaria adhesive ligands may be potential substrates for these enzymes. We also discuss the evidence that the key reason for ZSP shedding during invasion is to break the connection between parasite surface ligands and host receptors. The sequential proteolytic events associated with invasion by pathogenic protozoa may represent vulnerable pathways for the future development of synergistic anti-protozoal therapies.  相似文献   

5.
Known as one of the hallmarks of cancer (Hanahan and Weinberg in Cell 100:57–70, 2000) cancer cell invasion of human body tissue is a complicated spatio-temporal multiscale process which enables a localised solid tumour to transform into a systemic, metastatic and fatal disease. This process explores and takes advantage of the reciprocal relation that solid tumours establish with the extracellular matrix (ECM) components and other multiple distinct cell types from the surrounding microenvironment. Through the secretion of various proteolytic enzymes such as matrix metalloproteinases or the urokinase plasminogen activator (uPA), the cancer cell population alters the configuration of the surrounding ECM composition and overcomes the physical barriers to ultimately achieve local cancer spread into the surrounding tissue. The active interplay between the tissue-scale tumour dynamics and the molecular mechanics of the involved proteolytic enzymes at the cell scale underlines the biologically multiscale character of invasion and raises the challenge of modelling this process with an appropriate multiscale approach. In this paper, we present a new two-scale moving boundary model of cancer invasion that explores the tissue-scale tumour dynamics in conjunction with the molecular dynamics of the urokinase plasminogen activation system. Building on the multiscale moving boundary method proposed in Trucu et al. (Multiscale Model Simul 11(1):309–335, 2013), the modelling that we propose here allows us to study the changes in tissue-scale tumour morphology caused by the cell-scale uPA microdynamics occurring along the invasive edge of the tumour. Our computational simulation results demonstrate a range of heterogeneous dynamics which are qualitatively similar to the invasive growth patterns observed in a number of different types of cancer, such as the tumour infiltrative growth patterns discussed in Ito et al. (J Gastroenterol 47:1279–1289, 2012).  相似文献   

6.
7.
Thirteen patients with primary hepatocellular cancer were studied to outline criteria for resectability in patients with large liver tumours. The mean age was 34 and the mean tumour diameter 13 cm (range 7-18 cm). Five of the tumours had a diameter of 15 cm or more. Extensive radiological investigations showed that seven of the patients had tumours of both right and left lobes of the liver, 10 had evidence of vascular invasion, and three had evidence of extrahepatic spread. Only two of the patients underwent a classically described formal hepatic resection, the rest having extensive resections crossing major anatomical planes. In no instance did the vascular invasion preclude resection, and extrahepatic spread could be verified in only one patient. The traditional criteria of resectability--that is, tumours located to one main lobe of the liver without vascular invasion and extrahepatic spread--can and should be extended. Resection may be preferable to transplantation even in patients with large primary liver tumours.  相似文献   

8.
Epithelial cells must adhere to the extracellular matrix (ECM) for survival, as detachment from matrix triggers apoptosis or anoikis. Integrins are major mediators of adhesion between cells and ECM proteins, and transduce signals required for cell survival. Recent evidence suggests that integrin receptors are coupled to growth factor receptors in the regulation of multiple biological functions; however, mechanisms involved in coordinate regulation of cell survival are poorly understood and mediators responsible for anoikis have not been well characterized. Here, we identify the pro-apoptotic protein Bim as a critical mediator of anoikis in epithelial cells. Bim is strongly induced after cell detachment and downregulation of Bim expression by RNA interference (RNAi) inhibits anoikis. Detachment-induced expression of Bim requires a lack of beta(1)-integrin engagement, downregulation of EGF receptor (EGFR) expression and inhibition of Erk signalling. Overexpressed EGFR was uncoupled from integrin regulation, resulting in the maintenance of Erk activation in suspension, and a block in Bim expression and anoikis. Thus, Bim functions as a key sensor of integrin and growth factor signals to the Erk pathway, and loss of such coordinate regulation may contribute to tumour progression.  相似文献   

9.
The metastatic spread of cancer is a complex process that involves the combination of different cellular actions including cell adhesion to the extracellular matrix (ECM), breakdown of the ECM by specific matrix-degrading proteinases, and active cell locomotion. Contortrostatin (CN), a homodimeric snake venom disintegrin, has previously been demonstrated to be effective in blocking vitronectin/fibronectin-dependent adhesion and invasion of T98G human glioblastoma cells through Matrigel using in vitro studies. However, it is not known at what step of the invasion process CN exerts its inhibitory effect. In the present report, CN is shown to decrease invasion of various glioma cell lines through Matrigel affecting neither cell adhesion, nor cell viability. While CN had no effect on cell binding to laminin and type IV collagen, it blocked adhesion of alphav beta3-positive, but not alphav beta3-negative cells, to vitronectin and fibronectin. Furthermore, members of the matrix metalloproteinase (MMP) family and their physiological inhibitors, and of the plasminogen activator (PA)/plasmin system were demonstrated not to be involved in CN-induced loss of glioma cell invasiveness. Instead, CN inhibited active locomotion of cells on Matrigel. These data suggest that CN-mediated inhibition of glioma cell invasion through Matrigel is a direct result of impaired cell motility. Moreover, use of several glioma cell lines and integrin antibodies strongly indicates the versatility of CN in inhibiting the invasion process based on the ability of CN to interact with different integrins, including alphav beta3, alphav beta5, and alpha5beta1.  相似文献   

10.
Interaction of cells with the extracellular matrix (ECM) plays an important role in the regulation of cell behavior. Formation of adhesive contacts leads to transduction of signals into the cell and results in altered gene expression and modulation of the cellular phenotype. Specific adhesive interactions of the fibronectin and vitronectin receptors with their ligands in the matrix modulates expression of ECM-degrading metalloproteases. These proteases are involved in the acquisition of the invasive phenotype by a number of cell types. The activity of matrix metalloproteases (MMPs) is reduced by endogenous inhibitors referred to as tissue inhibitors of metalloproteases (TIMPs). Alterations in the balance between the activity of MMPs and TIMPs alters cellular invasion through effects on matrix degradation. In this study we demonstrate that inhibition of endogenous gelatinase A activity in A2058 human melanoma cells results in enhanced cellular adhesion. To further explore this phenomenon, we have used retroviral infection vectors to control the amount of the MMP inhibitor TIMP-2 in human melanoma A2058 cells. Altering the production of TIMP-2 modulates not only proteolysis of the extracellular matrix, but also the adhesive and spreading properties of the cells and results in altered cell morphology. These effects of TIMP-2 appear to be mediated by inhibition of gelatinase A activity. We conclude that gelatinase A, in addition to contributing to proteolysis of ECM components, also functions to proteolyse cell surface components that mediate attachment of A2058 cells to the ECM. Thus, gelatinase A may function to modulate cell attachment and facilitate cell migration and invasion.  相似文献   

11.
Tumour cell invasion is crucial for cancer metastasis, which is the main cause of cancer mortality. An important group of proteins involved in cancer invasion are the Heat Shock Proteins (HSPs). According to experimental data, inhibition of one of these proteins, Hsp90, slows down cancer cells while they are invading tissue, but does not affect the synthesis of matrix metalloproteinases (MMP2 and MMP9), which are very important for cancer metastasis, acting as extracellular matrix (ECM) degrading enzymes. To test different biological hypotheses regarding how precisely Hsp90 influences tumour invasion, in this paper we use a model of solid tumour growth which accounts for the interactions between Hsp90 dynamics and the migration of cancer cells and, alternatively, between Hsp90 dynamics and the synthesis of matrix degrading enzymes (MDEs). The model consists of a system of reaction-diffusion-taxis partial differential equations describing interactions between cancer cells, MDE, and the host tissue (ECM). Using numerical simulations we investigate the effects of the administration of Hsp90 inhibitors on the dynamics of tumour invasion. Alternative mechanisms of reduction of cancer invasiveness result in different simulated patterns of the invading tumour cells. Therefore, predictions of the model suggest experiments which might be performed to develop a deeper understanding of the tumour invasion process.  相似文献   

12.
Cell-to-extracellular matrix (ECM) adhesion plays important roles in various biological events, such as proliferation, differentiation, and migration. Distinct from other types of adhesion structures (focal complexes, focal adhesions, and so on), podosomes and invadopodia are thought to have additional functions beyond attachment, possibly including invasion into the ECM. For podosomes and invadopodia to invade into the ECM, molecules involved in adhesion, actin polymerization, and ECM degradation must be recruited to sites of action. Our recent study demonstrated that podosomes form near newly formed focal adhesions via the minimally expressed phosphoinositide PtdIns(3,4)P2-mediated recruitment of the Tks5-Grb2 scaffold, followed by the accumulation of N-WASP. Although this study demonstrated details of molecular interplay during the transformation of focal adhesion, its regulation in the in vivo invasion process remains to be clarified. Here, we discuss the molecular bases of the transformation of focal adhesions to podosomes/invadopodia based on current understanding.  相似文献   

13.
基质金属蛋白酶   总被引:42,自引:0,他引:42  
基质金属蛋白酶是一类分解细胞外基质组分的锌蛋白酶⒚它们在有机体生长发育中的细胞外基质逆转与重塑以及疾病中的病理损害起着极为重要的作用⒚基质金属蛋白酶的表达和活性在不同细胞水平受到严密调控,如细胞因子、生长因子以及激素的调节⒚基质金属蛋白酶以酶原形式分泌,随后被其它蛋白酶如胞浆素或非蛋白酶类化学物质如有机汞所激活⒚所有基质金属蛋白酶都受到天然抑制剂 金属蛋白酶组织抑制剂所抑制⒚两者的不平衡导致许多疾病的发生,如肿瘤侵入及转移⒚合成基质金属蛋白酶组织抑制剂所抑制,如 M arim astat 能控制肿瘤转移的发生及进一步扩散⒚本文将对基质金属蛋白酶的特征、分子区域结构、底物特性、激活机制、调控方式等方面进行最新概述⒚  相似文献   

14.
The cell wall of Candida albicans consists of an internal skeletal layer and an external protein coat. This coat has a mosaic-like nature, containing c . 20 different protein species covalently linked to the skeletal layer. Most of them are GPI proteins. Coat proteins vary widely in function. Many of them are involved in the primary interactions between C. albicans and the host and mediate adhesive steps or invasion of host cells. Others are involved in biofilm formation and cell–cell aggregation. They further include iron acquisition proteins, superoxide dismutases, and yapsin-like aspartic proteases. In addition, several covalently linked carbohydrate-active enzymes are present, whose precise functions remain hitherto largely elusive. The expression levels of the genes that encode covalently linked cell wall proteins (CWPs) can vary enormously. They depend on the mode of growth and the combined inputs of several signaling pathways that sense environmental conditions. This is reflected in the unusually long intergenic regions of most of these genes. Finally, the precise location of several covalently linked CWPs is temporally and spatially regulated. We conclude that covalently linked CWPs of C. albicans play a crucial role in fitness and virulence and that their expression is tightly controlled.  相似文献   

15.
Modelling cell migration strategies in the extracellular matrix   总被引:1,自引:0,他引:1  
The extracellular matrix (ECM) is a highly organised structure with the capacity to direct cell migration through their tendency to follow matrix fibres, a process known as contact guidance. Amoeboid cell populations migrate in the ECM by making frequent shape changes and have minimal impact on its structure. Mesenchymal cells actively remodel the matrix to generate the space in which they can move. In this paper, these different types of movement are studied through simulation of a continuous transport model. It is shown that the process of contact guidance in a structured ECM can spatially organise cell populations. Furthermore, when combined with ECM remodelling, it can give rise to cellular pattern formation in the form of "cell-chains" or networks without additional environmental cues such as chemoattractants. These results are applied to a simple model for tumour invasion where it is shown that the interactions between invading cells and the ECM structure surrounding the tumour can have a profound impact on the pattern and rate of cell infiltration, including the formation of characteristic "fingering" patterns. The results are further discussed in the context of a variety of relevant processes during embryonic and adult stages.  相似文献   

16.
Extracellular matrix (ECM) proteins, including collagen and growth factors, are greatly increased in tissue fibrosis and mainly secreted by fibroblasts. We previously demonstrated that muscle-derived fibroblasts from Duchenne muscular dystrophy (DMD) patients have a profibrotic phenotype, that includes significantly reduced expression of tissue inhibitor of metalloprotease 3 (TIMP-3) compared to control. Since TIMP-3 induces apoptosis in various cell types, we hypothesized increased resistance of DMD fibroblasts to apoptosis. To address this, we evaluated apoptotic nuclei, caspase 3, caspase 3 substrate expression, and migration and adhesion properties of muscle-derived fibroblasts, after applying different apoptosis-inducing treatments. We found that DMD fibroblasts were less susceptible to cell death, more adhesive, and had greater tendency to migrate than control fibroblasts — findings further supported by alterations in FAK and ERK/MAPK expression. Resistance to apoptosis and greater adhesion are likely to contribute to muscle fibrosis so a pharmacological treatment that targets dysregulated pathways involved in cell detachment apoptosis (anoikis) may limit the progressive fibrotic remodeling characteristic of DMD.  相似文献   

17.
Metastasis represents the end product of an elaborate biological process, which is determined by a complex interplay between metastatic tumour cells, host factors and homoeostatic mechanisms. Cutaneous melanoma can metastasize haematogenously or lymphogenously. The three predominant models that endeavour to explain the patterns of melanoma progression are the stepwise spread model, the simultaneous spread model and the model of differential spread. The time course to the development of metastases differs between the different metastatic routes. There are several clinical and histopathological risk factors for the different metastatic pathways. In particular, patient sex and the anatomical location of the primary tumour influence patterns of disease progression. There is limited existing evidence regarding the relationship between tumour mutation status, other diagnostic and prognostic biomarkers and the metastatic pathways of primary cutaneous melanoma. This knowledge gap needs to be addressed to better identify patients at high risk of disease recurrence and personalize surveillance strategies.  相似文献   

18.
Poor survival rates from lung cancer can largely be attributed to metastatic cells that invade and spread throughout the body. The tumor microenvironment (TME) is composed of multiple cell types, as well as non-cellular components. The TME plays a critical role in the development of metastatic cancers by providing migratory cues and changing the properties of the tumor cells. The Extracellular Matrix (ECM), a main component of the TME, has been shown to change composition during tumor progression, contributing to cancer cell invasion and survival away from the primary cancer site. Although the ECM is well-known to influence the fate of tumor progression, little is known about the molecular mechanisms that are affected by the cancer cell-ECM interactions. It is imperative that these mechanisms are elucidated in order to properly understand and prevent lung cancer dissemination. However, common in vitro studies do not incorporate these interactions into everyday cell culture assays. We have adopted a model that examines decellularized human fibroblast-derived ECM as a 3-dimensional substrate for growth of lung adenocarcinoma cell lines. Here, we have characterized the effect of fibroblast-derived matrices on the properties of various lung-derived epithelial cell lines, including cancerous and non-transformed cells. This work highlights the significance of the cell-ECM interaction and its requirement for incorporation into in vitro experiments. Implementation of a fibroblast-derived ECM as an in vitro technique will provide researchers with an important factor to manipulate to better recreate and study the TME.  相似文献   

19.
20.
For immune surveillance and function to be effective, T lymphocytes constantly recirculate via lymph and blood between lymphoid organs and body tissues. To enable efficient cell movement and migration, cell adhesion to components of the basement membrane and the extracellular matrix (ECM) must be a rapid and transitory process. Whether phosphorylation and dephosphorylation of cellular proteins are involved in this phenomena was explored by monitoring the adhesion of T cells to immobilized ECM proteins. A short exposure of 51Cr-labeled human CD4+ T cells to phorbol esters in vitro induced a rapid beta 1-integrin-mediated adhesion to both fibronectin and laminin, as determined by inhibition with anti-integrin antibodies. Adhesion was reversible; detachment from the immobilized ECM ligands occurred between 20 and 120 min without further intervention. This T cell adhesion was regulated by the activation of protein kinase C because (a) staurosporine and H-7 inhibitors of protein kinase C suppressed T cell adhesion, and (b) PMA-induced down-regulation of intracellular levels of protein kinase C was associated with the abrogation of the T cell adhesiveness to fibronectin and laminin. Furthermore, inhibition of protein phosphatases activity by okadaic acid delayed the detachment of the T cells from fibronectin or laminin. Thus, we suggest that T cell-ECM interactions such as adhesion and detachment are regulated, respectively, by protein kinase C and protein phosphatases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号