首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The response of the respiratory subsystem of oxidative phosphorylation to the environmental pollutant, 2,2',5,5'-tetrachlorobiphenyl (2,2',5,5'-TCB) was investigated by modular kinetic approach. The effects of 20 M 2,2',5,5'-TCB on the activity of the respiratory chain modules in rat liver mitochondria oxidizing succinate (+ rotenone) in state 3 were assessed. The toxin inhibited the rate of respiration by 23%. Analysis around cytochrome c revealed that 2,2',5,5'-TCB inhibited both cytochrome c-oxidizing and - reducing modules. The toxin inhibited also CoQ-oxidizing module, however it did not affect the kinetics of CoQ-reducing module. Taken together, these data indicated that 2,2',5,5'-TCB inhibited cytochrome bc1 but had no effect on succinate dehydrogenase.  相似文献   

2.
5,5'-Diphenyl-2-thiohydantoin (DPTH) administered in vitro, inhibited state 3 oxidation, stimulated state 4 oxidation and decreased ADP:O ratio when 3-hydroxybutyrate and succinate were used as substrates. Considerably lower DPTH concentrations were required for the inhibition of 3-hydroxybutyrate oxidation (50% inhibition occurred at approximately 0.17 mumoles DPTH/mg protein) than were needed for inhibition of succinate oxidation (50% inhibition occurred at about 0.62 mumoles DPTH/mg protein). DPTH showed no inhibitory effects when ascorbate plus tetramethylphenylenediamine (TMPD) served as the substrate. The inhibition of state 3 respiration was not reversed by 2,4-dinitrophenol (DNP), although there was a slight increase in the DNP rate:state 3 rate suggesting the presence of a weak DPTH inhibotory site located within the Site I energy transport chain. Uncoupling, in the presence of DPTH, was observed with all substrates. In experiments utilizing sonicated mitochondria, DPTH inhibited NADH-linked oxidation, but did not inhibit succinate or ascorbate plus TMPD oxidation. The effects of DPTH were reversed by dilution and by addition of albumin. DPTH concentrations which produced inhibition of state 3 respiration in vitro were reached, in vivo, in the livers of rats receiving a single oral dose of 40 mg/kg of DPTH.  相似文献   

3.
Alexandre et al. have proposed a four-system model of oxidative phosphorylation. The thermodynamic consequences of this model are explored, assuming as a first approximation that these four systems can be treated as a self-contained group. The method can be generalized, in higher approximations, to include further systems and other complications. Respiratory control is considered from the point of view of the model. Self-consistent numerical examples are given to represent mitochondrial activity in state 3 and in state 4.  相似文献   

4.
The contribution of different steps to the control of oxidative phosphorylation in isolated rat liver mitochondria was investigated by a combination of experiments and computer simulations. The parameters of the mathematical model of phosphorylating mitochondria were derived from experimental data. The model correctly describes the competition between ATP utilization inside and outside mitochondria for the ATP generated in mitochondria. On the basis of the good agreement between experiments and simulations, the contribution of different steps to the control of respiration was estimated by computing their control strengths, i.e., the influence of their activities on the rate of respiration. The rate-controlling influences vary depending on the load of oxidative phosphorylation. The predominant steps are: in the fully active state (State 3) — the hydrogen supply to the respiratory chain; in the resting state (State 4) — the proton leak of the mitochondrial inner membrane; in states of non-maximum ATP export — the adenine nucleotide translocator. Titrations of respiration with phenylsuccinate, antimycin, oligomycin and carboxyatractyloside completely support these conclusions.  相似文献   

5.
The 1,N6-ethenoadenine nucleotide analogs epsilonADP and epsilonATP, contrary to recent findings (1), are shown to be unable to penetrate the inner mitochondrial membrane of intact rat liver mitochondria and can not be used as substrates by the respiratory chain enzymes in oxidative phosphorylation. On the other hand, these analogs are able to participate in transphosphorylation reactions, being good substrates for mitochondrial phosphotransferases located in the intermembrane space, such as nucleosidediphosphate kinase and adenylate kinase.  相似文献   

6.
7.
Calcium (Ca2+) is a key regulator in diverse intracellular signaling pathways and has long been implicated in metabolic control and mitochondrial function. Mitochondria can actively take up large amounts of Ca2+, thereby acting as important intracellular Ca2+ buffers and affecting cytosolic Ca2+ transients. Excessive mitochondrial matrix Ca2+ is known to be deleterious due to opening of the mitochondrial permeability transition pore (mPTP) and consequent membrane potential dissipation, leading to mitochondrial swelling, rupture, and cell death. Moderate Ca2+ within the organelle, on the other hand, can directly or indirectly activate mitochondrial matrix enzymes, possibly impacting on ATP production. Here, we aimed to determine in a quantitative manner if extra- or intramitochondrial Ca2+ modulates oxidative phosphorylation in mouse liver mitochondria and intact hepatocyte cell lines. To do so, we monitored the effects of more modest versus supraphysiological increases in cytosolic and mitochondrial Ca2+ on oxygen consumption rates. Isolated mitochondria present increased respiratory control ratios (a measure of oxidative phosphorylation efficiency) when incubated with low (2.4 ± 0.6 μM) and medium (22.0 ± 2.4 μM) Ca2+ concentrations in the presence of complex I–linked substrates pyruvate plus malate and α-ketoglutarate, respectively, but not complex II–linked succinate. In intact cells, both low and high cytosolic Ca2+ led to decreased respiratory rates, while ideal rates were present under physiological conditions. High Ca2+ decreased mitochondrial respiration in a substrate-dependent manner, mediated by mPTP. Overall, our results uncover a Goldilocks effect of Ca2+ on liver mitochondria, with specific “just right” concentrations that activate oxidative phosphorylation.  相似文献   

8.
The present article briefly summarizes the theoretical studies made by the authors and co-workers on the effect of inborn enzyme deficiencies on oxidative phosphorylation in intact tissues and on the genesis of mitochondrial diseases. The dynamic computer model of oxidative phosphorylation developed previously allowed to extrapolate experimental data (especially: threshold curves describing the dependence of oxygen consumption and ATP turnover on activities/concentrations of particular oxidative phosphorylation enzymes) obtained for isolated muscle mitochondria in state 3 at saturating oxygen concentrations to more physiological conditions prevailing in intact tissues. In particular, theoretical studies demonstrated that the threshold value of the relative activity/concentration of a given mitochondrial complex, below which a significant decrease in the respiration rate takes place, increases with an increase in energy demand. This fact was proposed as a possible explanation of the tissue specificity of mitochondrial diseases. Additionally, a decreased oxygen concentration was shown to increase the threshold value (and flux control coefficient) for cytochrome oxidase. We subsequently developed a model called binary mitochondria heteroplasmy, in which there are only two subpopulations of mitochondria: one wild-type and one containing only defected molecules of a given enzyme. In this model we show that a defect has a pronounced effect on oxidative phosphorylation, significantly increasing the threshold value. It was also proposed that a parallel activation in the ATP supply-demand system during an increased energy demand significantly lessens the effect of enzyme deficiencies on oxidative phosphorylation (decreases the threshold value). Finally, the necessity of substrate activation may lead to an instability in the system and to appearance of a second threshold, below which respiration suddenly drops to zero, which is equivalent to the energetic death of a cell.  相似文献   

9.
The rates of respiration in the presence of ADP and of phosphorylation as an ATP-ase activity of rat liver mitochondria was inhibited was in vitro by morphine with Ki=6.5 mM. The uncoupler-stimulated respiration of the mitochondria and the activity of ATP-ase and synthesis of ATP in the submitochondrial particles were not altered in the presence of morphine. It is suggested that morphine inhibited the adenine nucleotide transport through the mitochondrial membrane  相似文献   

10.
We compared NAD-dependent state 4 and state 3 respiration, NADH oxidation and Complex I specific activity in liver mitochondria from 4- and 30-month-old rats. All the activities examined were significantly decreased with aging. In both groups of animals, the flux control coefficients measured by rotenone titration indicated that Complex I is largely rate controlling upon NADH aerobic oxidation while, in state 3 respiration, it shares the control with other steps in the pathway. Moreover, we observed a trend wherein flux control coefficients of Complex I became higher with age. This indication was strengthened by examining the rotenone inhibition thresholds showing that Complex I becomes more rate controlling, over all the examined activities, during aging. Our results point out that age-related alterations of the mitochondrial functions are also present in tissues considered less prone to accumulate mitochondrial DNA mutations.  相似文献   

11.
12.
We modified the isolation procedure of muscle and heart mitochondria. In human muscle, this resulted in a 3.4 fold higher yield of better coupled mitochondria in half the isolation time. In a preparation from rat muscle we studied factors that affected the stability of oxidative phosphorylation (oxphos) and found that it decreased by shaking the preparation on a Vortex machine, by exposure to light and by an increase in storage temperature. The decay was found to be different for each substrate tested. The oxidation of ascorbate was most stable and less sensitive to the treatments.When mitochondria were stored in the dark and the cold, the decrease in oxidative phosphorylation followed first order kinetics. In individual preparations of muscle and heart mitochondria, protection of oxidative phosphorylation was found by adding candidate stabilizers, such as desferrioxamine, lazaroids, taurine, carnitine, phosphocreatine, N-acetylcysteine, Trolox-C and ruthenium red, implying a role for reactive oxygen species and calcium-ions in the in vitro damage at low temperature to oxidative phosphorylation.In heart mitochondria oxphos with pyruvate and palmitoylcarnitine was most labile followed by glutamate, succinate and ascorbate.We studied the effect of taurine, hypotaurine, carnitine, and desferrioxamine on the decay of oxphos with these substrates. 1 mM taurine (n = 6) caused a significant protection of oxphos with pyruvate, glutamate and palmitoylcarnitine, but not with the other substrates. 5 mM L-carnitine (n = 6), 1 mM hypotaurine (n = 3) and 0.1 mM desferrioxamine (n = 3) did not protect oxphos with any of the substrates at a significant level.These experiments were undertaken in the hope that the in vitro stabilizers can be used in future treatment of patients with defects in oxidative phosphorylation. (Mol Cell Biochem 174: 61–66, 1997)  相似文献   

13.
The paper considers the effects of bedaquiline (BDQ), an antituberculous preparation of the new generation, on rat liver mitochondria. It was shown that 50?μM BDQ inhibited mitochondrial respiration measured with substrates of complexes I and II (glutamate/malate and succinate/rotenone systems respectively) in the states V3 and VDNP. At the same time, at concentrations below 50?μM, BDQ slightly stimulated respiration with substrates of complex I in the state V2. BDQ was also found to suppress, in a dose-dependent manner, the activity of complex II and the total activity of complexes II?+?III of the mitochondrial transport chain. It was discovered that at concentrations up to 10?μM, BDQ inhibited H2O2 production in mitochondria. BDQ (10–50?μM) suppressed the opening of Ca2+-dependent CsA-sensitive mitochondrial permeability transition pore. The latter was revealed experimentally as the inhibition of Ca2+/Pi-dependent swelling of mitochondria, suppression of cytochrome c release, and an increase in the Ca2+ capacity of the organelles. BDQ also decreased the rate of mitochondrial energy-dependent K+ transport, which was evaluated by the energy-dependent swelling of mitochondria in a K+ buffer and DNP-induced K+ efflux from the organelles. The possible mechanisms of BDQ effect of rat liver mitochondria are discussed.  相似文献   

14.
A minimum model of adenine nucleotide exchange through the inner membrane of mitochondria is presented. The model is based on a sequential mechanism, which presumes ternary complexes formed by binding of metabolites from both sides of the membrane. The model explains the asymmetric kinetics of ADP-ATP exchange as a consequence of its electrogenic character. In energized mitochondria, a part of the membrane potential suppresses the binding of extramitochondrial ATP in competition with ADP. The remaining part of the potential difference inhibits the back exchange of internal ADP for external ATP. The assumption of particular energy-dependent conformational states of the translocator is not necessary. The model is not only compatible with the kinetic properties reported in the literature about the adenine nucleotide exchange, but it also correctly describes the response of mitochondrial respiration to the extramitochondrial ATP/ADP ratio under different conditions. The model computations reveal that the translocation step requires some loss of free energy as driving force. The size of the driving force depends on the flux rate as well as on the extra- and intramitochondrial ATP/ADP quotients. By both quotients the translocator controls the export of ATP formed by oxidative phosphorylation in mitochondria.  相似文献   

15.
A number of previous studies have documented the gross response of mitochondrial respiration to salinity treatment, but it is unclear how NaCl directly affects the kinetics of plant phosphorylating and non‐phosphorylating electron transport pathways. This study investigates the direct effects of NaCl upon different respiratory pathways in wheat, by measuring rates of isolated mitochondrial oxygen consumption across different substrate oxidation pathways in saline media. We also profile the abundance of respiratory proteins by using targeted selected reaction monitoring (SRM) mass spectrometry of mitochondria isolated from control and salt‐treated wheat plants. We show that all pathways of electron transport were inhibited by NaCl concentrations above 400 mM; however electron transfer chains showed divergent responses to NaCl concentrations between 0 and 200 mM. Stimulation of oxygen consumption was measured in response to NaCl in scenarios where exogenous NADH was provided as substrate and electron flow was coupled to the generation of a proton gradient across the inner membrane. Protein abundance measurements show that several enzymes with activities less affected by NaCl are induced by salinity, whereas enzymes with activities inhibited by NaCl are depleted. These data deepen our understanding of how plant respiration responds to NaCl, offering new mechanistic explanations for the divergent salinity responses of whole‐plant respiratory rate in the literature.  相似文献   

16.
The oxidative phosphorylation (OXPHOS) pathway is an efficient way to produce energy via adenosine triphosphate (ATP), which is critical for sustaining an energy supply for cetaceans in a hypoxic environment. Several studies have shown that natural selection may shape the evolution of the genes involved in OXPHOS. However, how network architecture drives OXPHOS protein sequence evolution remains poorly explored. Here, we investigated the evolutionary patterns of genes in the OXPHOS pathway across six cetacean genomes within the framework of a functional network. Our results show a negative correlation between the strength of purifying selection and pathway position. This result indicates that downstream genes were subjected to stronger evolutionary constraints than upstream genes, which may be due to the dual function of ATP synthase in the OXPHOS pathway. Additionally, there was a positive correlation between codon usage bias and omega (ω = dN/dS) and a negative correlation with synonymous substitution rate (dS), indicating that the stronger selective constraint on genes (with less biased codon usage) along the OXPHOS pathway is attributable to an increase in the rate of synonymous substitution. Surprisingly, there was no significant correlation between protein–protein interactions and the evolutionary estimates, implying that highly connected enzymes may not always show greater evolutionary constraints. Compared with that observed for terrestrial mammals, we found that the signature of positive selection detected in five genes (ATP5J, LHPP, PPA1, UQCRC1 and UQCRQ) was cetacean‐specific, reflecting the importance of OXPHOS for survival in hypoxic, aquatic environments.  相似文献   

17.
The three coupling segments of the respiratory chain of bovine heart mito-chondria were examined individually by steady-state kinetic methods to determine whether or not freely diffusible intermediates occur between the energy-yielding and energy-consuming steps involved in the oxidative phosphorylation of extramitochondrial ADP. The principal method employed was the dual inhibitor technique, for which an appropriate model is provided. The results indicate that in accordance with the chemiosmotic theory the intermediate reactants that link the energy-yielding rotenone-sensitive (Site 1), cytochromebc 1 (Site 2), and cytochromeaa 3 (Site 3) reactions of the respiratory chain to the energy-consuming ATP synthetase, AdN transport, and Pi transport reactions are freely diffusible (delocalized). Site 2 was found to differ from the others in regard to the mechanism by which the energy-linked respiratory chain reaction is controlled by the energy-consuming steps. Whereas the Site 1 and Site 3 respiratory chain reactions are controlled primarily by the thermodynamic mechanism of reaction reversal, the Site 2 respiratory reaction is controlled primarily by a kinetic mechanism in which an intermediate that links it to the energy-consuming steps inhibits it allosterically. From the effects of nigericin and valinomycin the allosteric intermediate appears to be the electrical component of the protonmotive force.  相似文献   

18.
19.
Preincubation of newborn rat liver mitochondria with ATP increases their state 3 respiration rate [J. K. Pollak (1975) Biochem. J. 150, 477-488; J. R. Aprille, and G. K. Asimakis (1980) Arch. Biochem. Biophys. 201, 564-575]. To determine which reactions contribute to control the rate of succinate oxidation with and without prior exposure to ATP, the effects of inhibitors specific for various reactions were studied. The adenine nucleotide translocator does not control the respiration in newborn more than in the adult mitochondria. The supply of reducing equivalents to the respiratory chain is an important step controlling the rate of oxidative phosphorylation by mitochondria from newborn rat liver, especially after preincubation with ATP. On the contrary, titrations with oligomycin show that the preincubation with ATP markedly decreases the control exerted by the ATPase-ATP synthase complex. That the rate of ATP synthesis is one of the steps controlling the rate of oxidative phosphorylation in newborn rat liver mitochondria is in striking contrast to the behavior of adult rat liver mitochondria. Other differences include a greater permeability to protons and a marked increase in sensitivity to mersalyl, indicating an easier accessibility of the proteins involved in oxidative phosphorylation to the thiol reagent.  相似文献   

20.
Abstract: The direct influence of l -3,3',5-triiodothyronine (T3) on the development of 2',3'-cyclic nucleotide 3'-phosphohydrolase (EC 3.1.4.37, CNPase) is demonstrated by using an in vitro culture system of dissociated embryonic mouse brain cells. Serum from a thyroidectomized calf, which contained low levels of T3 (31 ng/100 ml), and thyroxine, T4 (<1 μg/ml), was used in the culture medium in place of normal calf serum (T3, 103 ng/100 ml; T4, 5.7 μg/ml) to render the culture responsive to exogenously added T3. The lower levels of enzyme activity observed in the presence of such a deficient medium could be restored to normal values by T3 supplementation. Half-maximal effect was obtained with 2.5 ± 10−9 m -T3. Three days of hormone treatment resulted in the maximal stimulation of CNPase. T4 was less effective in inducing CNPase activity and the inactive analog of the hormone, reverse T3 (3,3',5'-T3) was ineffective. The morphological appearance of the cells was characterized by deformed (smaller size and less in number) reaggregates in the cultures, lacking hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号