共查询到20条相似文献,搜索用时 0 毫秒
1.
Among multiple subspecies of DNA polymerase alpha of calf thymus, only 10 S DNA polymerase alpha had a capacity to initiate DNA synthesis on an unprimed single-stranded, circular M13 phage DNA in the presence of ribonucleoside triphosphates (DNA primase activity). The primase was copurified with 10 S DNA polymerase alpha through the purification and both activities cosedimented at 10 S through gradients of either sucrose or glycerol. Furthermore, these two activities were immunoprecipitated at a similar efficiency by a monoclonal antibody directed against calf thymus DNA polymerase alpha. These results indicate that the primase is tightly bound to 10 S DNA polymerase alpha. The RNA polymerizing activity was resistant to alpha-amanitin, required high concentration of all four ribonucleoside triphosphates (800 microM) for its maximal activity, and produced the limited length of oligonucleotides (around 10 nucleotides long) which were necessary to serve as a primer for DNA synthesis. Covalent bonding to RNA to DNA was strongly suggested by the nearest neighbour frequency analysis and the DNAase treatment. The DNA synthesis primed by the RNA oligomers may be carried out by the associating DNA polymerase alpha because it was strongly inhibited by araCTP, resistant to d2TTP, and was also inhibited by aphidicolin but at relatively high concentration. The primase preferred single-stranded DNA as a template, but it also showed an activity on the double-stranded DNA from calf thymus at an efficiency of approx. 10% of that with single-stranded DNA. 相似文献
2.
Characterization of a Mr = 56,000 polypeptide associated with 10S DNA polymerase alpha purified from calf thymus using monoclonal antibody. 总被引:1,自引:0,他引:1 下载免费PDF全文
S Masaki K Tamai R Suzuki K Tanabe T Takahashi S Yoshida 《Nucleic acids research》1985,13(18):6635-6649
Existence of a Mr = 56,000 polypeptide associated with 10S DNA polymerase alpha was shown by production of a monoclonal anti-calf thymus 10S DNA polymerase alpha antibody secreted from a hybridoma line named 3H1. The antibody bound three polypeptides with Mr = 180,000, 56,000 and 32,000 in hydroxylapatite fraction of 10S DNA polymerase alpha by immunoblot. The antibody co-precipitated the polypeptides with the large polypeptide (Mr = 150,000-140,000) of 10S DNA polymerase alpha with the aid of second antibody. Among three polypeptides, the Mr = 56,000 polypeptide was co-purified with DNA polymerase alpha through DNA-cellulose chromatography and repeated sucrose rate-zonal centrifugations. The Mr = 56,000 polypeptide was still associated with 10S DNA polymerase alpha after second sucrose rate-zonal centrifugation, but the amount of it was reduced. The polypeptide was banded at pH 7.2-8.0 and displayed microheterogeneity in respect of isoelectric point by isoelectrofocusing with 7 M urea, and showed weak DNA-binding property after blotting onto a nitrocellulose. The antibody against the polypeptide precipitated DNA polymerase alpha from human, rat, and mouse, and Mr = 56,000 and 32,000 polypeptides were detected in these DNA polymerase alpha fractions by immunoblot. These results suggest that the polypeptide with Mr = 56,000 may take part in the DNA polymerase reaction. 相似文献
3.
The primase activity of DNA polymerase alpha from calf thymus 总被引:14,自引:0,他引:14
The nearly homogeneous 9 S DNA polymerase alpha from calf thymus contains a primase activity that allows priming of DNA synthesis on single-stranded templates in the presence of ribonucleoside triphosphates. Both on synthetic and natural single-stranded templates, RNA primers of 8-15 nucleotides in length are formed. In the absence of dNTPs, primers of some hundred nucleotides in length are observable. ATP and/or GTP are required for the priming reaction. UTP and CTP cannot initiate the RNA synthesis. M13 single-stranded DNA can be converted to the nicked double helical form upon primase-primed replication by the 9 S enzyme. Priming occurs mostly at specific sites on the M13 genome and replication products of up to 6000 nucleotides in length are formed. In the presence of the single-stranded DNA binding protein from Escherichia coli, specificity of priming is strongly increased. The primase is inhibited by salt and actinomycin; it is insensitive to alpha-amanitin and N-ethylmaleimide. Due to the strong complex formation between DNA polymerase and primase, it has not been possible to separate the two activities of the multisubunit 9 S enzyme. 相似文献
4.
Mammalian DNA polymerase alpha: a replication-competent holoenzyme form from calf thymus 总被引:1,自引:0,他引:1
U Hübscher M Gassmann S Spadari N C Brown E Ferrari H J Buhk 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1987,317(1187):421-428
Calf thymus DNA polymerase alpha, like the replication-specific DNA polymerase III holoenzyme of Escherichia coli, can be isolated as a distinct complex. A specific multiprotein form of the polymerase alpha, a form designated replication-competent (RC) holoenzyme, consists of a complex of a polymerase-primase core and at least six other polypeptides. The RC holoenzyme can efficiently replicate several naturally occurring templates, including the genomic DNA of the porcine circovirus (PCV). The DNA of this virion consists of a single-stranded circle with a defined replication origin, and its replication requires the cellular DNA replication machinery. It might therefore provide an invaluable opportunity to investigate chromosomal replication mechanisms, analogous to the way that studies on E. coli bacteriophage DNA replication elucidated host DNA replication mechanisms. Calf RC holoenzyme alpha selectively initiates PCV DNA replication in vitro at a site that possibly represents a consensus sequence of cellular DNA replication origins. The cell-free PCV replication system will be exploited for the in vitro dissection and reconstitution of the RC holoenzyme and the functional analysis of its component polypeptides. 相似文献
5.
Shonen Yoshida Rika Suzuki Shigeo Masaki Osamu Koiwai 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1983,741(3):348-357
Among multiple subspecies of DNA polymerase α of calf thymus, only 10 S DNA polymerase α had a capacity to initiate DNA synthesis on an unprimed single-stranded, circular M13 phage DNA in the presence of ribonucleoside triphosphates (DNA primase activity). The primase was copurified with 10 S DNA polymerase α through the purification and both activities cosedimented at 10 S through gradients of either sucrose or glycerol. Furthermore, these two activities were immunoprecipitated at a similar efficiency by a monoclonal antibody directed against calf thymus DNA polymerase α. These results indicate that the primase is tightly bound to 10 S DNA polymerase α. The RNA polymerizing activity was resistant to α-amanitin, required high concentration of all four ribonucleoside triphosphates (800 μM) for its maximal activity, and produced the limited length of oligonucleotides (around 10 nucleotides long) which were necessary to serve as a primer for DNA synthesis. Covalent bonding to RNA to DNA was strongly suggested by the nearest neighbour frequency analysis and the DNAase treatment. The DNA synthesis primed by the RNA oligomers may be carried out by the associating DNA polymerase α because it was strongly inhibited by araCTP, resistant to d2TTP, and was also inhibited by aphidicolin but at relatively high concentration. The primase preferred single-stranded DNA as a template, but it also showed an activity on the double-stranded DNA from calf thymus at an efficiency of approx. 10% of that with single-stranded DNA. 相似文献
6.
The elongation of mismatched primers by DNA polymerase alpha from calf thymus 总被引:2,自引:2,他引:2 下载免费PDF全文
The ability of the 9S and 5.7S DNA polymerase alpha subspecies from calf thymus in elongating a mismatched primer terminus has been investigated. With poly(dA) as template, the elongation rate for (dT)8dG, (dT)8dC and (dT)10dGdT is 20-fold lower for the 9S enzyme and 5-fold lower for the 5.7S enzyme as compared to (dT)10. The presence of a second mismatch at the primer terminus reduces the elongation rate further by a factor of two. Exonucleolytic excision of the mismatches can be excluded. With (dT)8dG (dT)n as primer we show, that at least five T-residues have to follow the mismatch in order to establish the elongation rate of a perfectly paired primer. The KM value for (dT)10 dG as primer is 400 nM as compared to 10 nM for (dT)10. Addition of Mn2+ increases the relative efficiency of elongation of the mismatched primers. 相似文献
7.
The photo-activatable analogs of ATP, 3'-O-(4-benzoyl) benzoic adenosine 5'-triphosphate (BzATP) and 8-azidoadenosine 5'-triphosphate (8-N3-ATP) were used to study the relationship between the polymerase activity and the closely associated primase activity of calf DNA polymerase alpha. A substantial loss of DNA primase activity occurred during pre-incubation and irradiation of DNA polymerase alpha with either BzATP or 8-N3-ATP. In contrast, polymerase activity was only slightly affected. In reactions carried out after pre-incubation with BzATP or 8-N3-ATP in the absence of UV illumination, inhibition was still observed, but it could be reversed by ATP. The specificity of the inhibition for primase activity, plus the ability of ATP to act as a antagonist of BzATP and 8-N3-ATP, suggest that effective interaction of these analogs with the multisubunit polymerase-primase complex is occurring uniquely at the active site of the DNA primase. 相似文献
8.
Mammalian DNA polymerase alpha: a replication competent holoenzyme form from calf thymus. 总被引:7,自引:5,他引:2 下载免费PDF全文
A complex "replication competent" holoenzyme form of DNA polymerase alpha (RC-alpha) was purified 10,000 fold from calf thymus through the use of an assay employing primed single stranded circular DNA template. The RC-alpha form could partially replicate a double-stranded oligo(dT)-tailed linear DNA and could completely convert primed single-stranded circular DNA to its double stranded form. The RC-alpha was resolved by denaturing gel electrophoresis into at least 10 discrete polypeptide species ranging in apparent molecular mass from 200 to 47 kilodaltons; three of the bands (apparent Mr of 200, 118 and 63 kilodaltons) displayed DNA polymerase activity in denaturing gel activity assay. The isolation of RC-alpha required the use of absolutely fresh calf thymus, the inclusion of ATP and protease inhibitors throughout the purification procedure. Treatment of the RC-alpha with the neutralizing anti-DNA polymerase alpha monoclonal antibody SJK 132-20 (Tanaka et al. (1982), J. Biol. Chem. 257, 8386-8390) in nondenaturing conditions selected the complete set of 10 polypeptides, whereas treatment in denaturing conditions selected the 200 kilodalton catalytic DNA polymerase active polypeptide. The properties and the behaviour of the RC-alpha preparation following removal of specific polypeptides strongly suggested that the capacity of RC-alpha to extend and replicate long template requires the function of nonproteolysed form of the 200 kilodaltons catalytic DNA polymerase core and at least 6 other auxiliary polypeptides of, respectively, 98, 87, 63, 54, 49 and 47 kilodaltons. 相似文献
9.
Studies on the processivity of highly purified calf thymus 8S and 7.3S DNA polymerase alpha 总被引:2,自引:0,他引:2
Template-challenge experiments indicate no gross difference in processivity of the calf thymus DNA polymerase α A and C enzymes. Both enzymes appear to be distributive. Results showing the apparent processive nature of both enzymes on poly (dC). oligo (dG)10 when challenged with poly (dA). oligo (dT)10 are explicable by the failure of both enzymes to bind to the challenging template rather than by the presence of an initiation factor which preferentially binds to certain templates. 相似文献
10.
Purification and partial characterization of a DNA polymerase alpha species from calf thymus. 总被引:5,自引:4,他引:5 下载免费PDF全文
We have purified a DNA polymerase alpha species from calf thymus to near homogeneity. The enzyme sediments at 5.7 S and contains two polypeptides of 123000 and 134000 daltons in about equimolar ratio. The enzyme is inhibited by aphidicolin and N-ethylmaleimide, and retains its activity in buffers containing moderate salt conditions. Activated DNA is a better substrate than poly-(dA) . (dT) 10. 相似文献
11.
The mechanism by which millimolar concentrations of ATP stimulate the activity and increase the processivity of calf thymus DNA polymerase alpha has been investigated with poly(dA)/oligo(dT) as template/primer to eliminate possible effects due to primer synthesis. The effect of ATP on the rate of DNA synthesis with this template/primer was found to be dependent upon whether or not the ATP was neutralized and the species of buffer used in the reaction. The present studies suggest that ATP stimulation of calf thymus DNA polymerase can be attributed to changes in the pH of the reaction mixture, a shift in the magnesium ion optimum, or both. Furthermore, effects of ATP on the processivity of DNA polymerase alpha could be mimicked by lowering the pH of the reaction mixture. 相似文献
12.
Purified calf thymus DNA polymerase alpha is inactive with native DNA as template and shows little activity with denatured DNA. DNA synthesis with denatured DNA as template is greatly stimulated by the addition of a nuclease which initially copurifies with DNA polymerase but is separated from the polymerase on DEAE-cellulose chromatography. A limit digest of nuclease treated native DNA which is then denatured is replicated 80-95%; extensive replication is also obtained with native DNA partially degraded by pancreatic DNase and then denatured. The product of the reaction with calf thymus nuclease-treated DNA as template is double-stranded DNA with a hairpin (looped back) structure. 相似文献
13.
Identification and tryptic cleavage of the catalytic core of HeLa and calf thymus DNA polymerase epsilon 总被引:4,自引:0,他引:4
DNA polymerase epsilon, formerly known as a proliferating cell nuclear antigen-independent form of DNA polymerase delta, has been shown elsewhere to be catalytically and structurally distinct from DNA polymerase delta. The catalytic activity of HeLa DNA polymerase epsilon, an enzyme consisting of greater than 200- and 55-kDa polypeptides, was assigned to the larger polypeptide by polymerase trap reaction. This catalytic polypeptide was cleaved by incubation with trypsin into two polypeptide fragments with molecular masses of 122 and 136 kDa, the former of which was relatively resistant to further proteolysis and possessed the polymerase activity. The cleavage increased the polymerase and exonuclease activities of the enzyme some 2-3-fold. DNA polymerase epsilon was also purified in a smaller 140-kDa form from calf thymus. The digestion of this form of the enzyme by trypsin also generated a 122-kDa polypeptide. These results suggest that the catalytic core of DNA polymerase epsilon is a 258-kDa polypeptide that is composed of two segments linked with a protease-sensitive area. One of the segments harbors both DNA polymerase and 3'----5' exonuclease activities. In spite of the different polypeptide structures, the catalytic properties of the HeLa enzyme, its trypsin-digested form, and the calf thymus enzyme remained essentially the same. 相似文献
14.
Purification of a DNA polymerase from calf thymus nuclei 总被引:2,自引:0,他引:2
15.
The interactions of calf thymus DNA polymerase alpha (pol alpha) with primer/templates were examined. Simply changing the primer from DNA to RNA had little effect on primer/template binding or dNTP polymerization (Km, Vmax and processivity). Surprisingly, however, adding a 5'-triphosphate to the primer greatly changed its interactions with pol alpha (binding, Vmax and Km and processivity). While changing the primer from DNA to RNA greatly altered the abilit of pol alpha to discriminate against nucleotide analogs, it did not compromise the ability of pol alpha to discriminate against non-cognate dNTPs. Thus the nature of the primer appears to affect 'sugar fidelity', without altering 'base fidelity'. DNase protection assays showed that pol alpha strongly protected 9 nt of the primer strand, 13 nt of the duplex template strand and 14 nt of the single-stranded template from hydrolysis by DNase I and weakly protected several bases outside this core region. This large DNA binding domain may account for the ability of a 5'-triphosphate on RNA primers to alter the catalytic properties of pol alpha. 相似文献
16.
Studies on the inhibition of highly purified calf thymus 8S and 7.3S DNA polymerase alpha by aphidicolin. 总被引:2,自引:3,他引:2 下载免费PDF全文
A M Holmes 《Nucleic acids research》1981,9(1):161-168
On activated DNA aphidicolin competitively inhibits the incorporation of dCMP by both calf thymus DNA polymerase alpha A2 and C enzymes and inhibits the incorporation of the other three deoxynucleoside monophosphates apparently non-competitively. However, aphidicolin does not inhibit the incorporation of dAMP into poly(dT) . oligo(A)10 nor does it inhibit the incorporation of dGMP into poly(dC) . oligo(dG)10, but, it does competitively inhibit the incorporation of dTMP into poly(dA) . oligo(dT)10. 相似文献
17.
The processivity of the DNA polymerase alpha-primase complex from calf thymus was analyzed under various conditions. When multi-RNA-primed M13 DNA was used as the substrate, the DNA polymerase alpha-primase complex was found to incorporate 19 +/- 3 nucleotides per primer binding event. This result was confirmed by product analysis on sequencing gels following DNA synthesis on poly(dT) X (rA)10. The processivity depends strongly on the assay conditions but does not correlate with enzymic activity. Lowering the concentration of Mg2+ ions to less than 2 mM increases the processivity to 60. Replacing Mg2+ by 0.2 mM Mn2+ results in 90 nucleotides being incorporated per primer binding event. Neither the presence of ATP nor the addition of noncognate deoxynucleotide triphosphates affects the processivity of the DNA polymerase alpha-primase complex. Lower processivity was induced by lowering the reaction temperature, by adding spermine, spermidine, or putrescine, in the presence of the antibiotics novobiocin and ciprofloxacin, by adding Escherichia coli single-stranded DNA binding protein, or by adding calf thymus topoisomerase II and RNase H. Three single-stranded DNA binding proteins from calf thymus, including unwinding protein 1, do not affect processivity to any significant extent. Freshly prepared DNA polymerase alpha-primase complex exhibits in addition to its processivity of 20 further discrete processivities of about 55, 90, and 105. This result suggest that further subunits of the polymerase alpha-primase complex are necessary to reconstitute the holoenzyme form of the eukaryotic replicase. 相似文献
18.
19.
Purification of DNA ligase II from calf thymus and preparation of rabbit antibody against calf thymus DNA ligase II 总被引:10,自引:0,他引:10
DNA ligase II has been purified about 4,000-fold to apparent homogeneity from a calf thymus extract. The ligase consists of a single polypeptide with a molecular weight of 68,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On fluorography after electrophoresis, a DNA ligase-[3H]AMP complex gave a single band corresponding to a molecular weight of 68,000. The Km values of the ligase for ATP and nicked DNA (5'-phosphoryl ends) were obtained to be 40 and 0.04 microM, respectively. Antibody against calf thymus DNA ligase II was prepared by injecting the purified enzyme into a rabbit. The antibody cross-reacted with DNA ligase II but not with calf thymus DNA ligase I. DNA ligase II was not affected by antibody against calf thymus DNA ligase I with a molecular weight of 130,000 (Teraoka, H. and Tsukada, K. (1982) J. Biol. Chem. 257, 4758-4763). These results indicate that DNA ligase II (Mr = 68,000) is immunologically distinct from DNA ligase I (Mr = 130,000). 相似文献
20.
Distinction between mouse DNA polymerases alpha and beta by tryptic peptide mapping. 总被引:2,自引:2,他引:0
Results presented here and in a previous paper (Tanabe et al. (1979) Biochemistry 18, 3401--3406) indicate that mouse beta-polymerase is a single polypeptide with an apparent molecular weight of 40,000. This polypeptide has now been analyzed by tryptic peptide mapping. Comparison of the results with identical analysis of mouse alpha-polymerase reveals that the tryptic peptides derived from the two enzymes are different. These results indicate that beta-polymerase is neither a subunit of alpha-polymerase nor a proteolytic degradation product of alpha-polymerase. 相似文献