共查询到20条相似文献,搜索用时 0 毫秒
1.
E Fujimori 《European journal of biochemistry》1985,152(2):299-306
High-molecular-mass aggregates were made soluble from insoluble collagens of bovine Achilles tendon and rat tail tendon by limited thermal hydrolysis. These polymeric collagen aggregates were cross-linked by 390-nm-fluorescent 3-hydroxy-pyridinium residues (excited at 325 nm) in the former tendon and by unknown non-fluorescent residues in the latter. With the solubilized insoluble-collagens from both tendons, as well as with acid-soluble collagen from rat tail tendon, other 350-385-nm fluorescence intensities (excited at 300 nm) were found to be higher in monomeric chains than in dimeric and polymeric chains. Low levels of ozone inhibited fibril formation of acid-soluble collagen particularly from young rat tail tendon, reacting with tyrosine residues and the 350-385-nm fluorophores. Aldehyde groups, involved in cross-linking, were not effectively modified by ozone. beta-Components (alpha-chain dimers) were not efficiently dissociated even by higher doses of ozone compared to gamma-components (alpha-chain trimers). Polymeric chain aggregates from bovine Achilles tendon collagen, whose 3-hydroxy-pyridinium cross-links are cleaved by ozone, were more readily dissociated by ozone than those from rat tail tendon collagen. Ultraviolet (300-nm) light, which destroyed the 350-385-nm fluorophores, inhibited fibril formation less effectively than ultraviolet (275-nm) light, which is absorbed by tyrosine residues, and did not dissociate collagen polymers from rat tail tendon. On the other hand, ultraviolet (320-nm) light, absorbed by 3-hydroxy-pyridinium cross-links which were rapidly photolyzed, partially dissociated polymeric collagen aggregates from bovine Achilles tendon after subsequent heating. 相似文献
2.
Understanding the relationship between cell shape and cellular function is important for study of cell biology in general and for regulation of cell phenotype in tissue engineering in particular. In this study, microcontact printing technique was used to create cell-adhesive rectangular and circular islands. The rectangular islands had three aspect ratios: 19.6, 4.9, and 2.2, respectively, whereas circular islands had a diameter of 50 microm. Both rectangular and circular islands had the same area of 1960 microm(2). In culture, we found that human tendon fibroblasts (HTFs) assumed the shapes of these islands. Quantitative immunofluorescence measurement showed that more elongated cells expressed higher collagen type I than did less stretched cells even though cell spreading area was the same. This suggests that HTFs, which assume an elongated shape in vivo, have optimal morphology in terms of expression of collagen type I, which is a major component of normal tendons. Using immunohistochemistry along with cell traction force microscopy (CTFM), we further found that these HTFs with different shapes exhibited variations in actin cytoskeletal structure, spatial arrangement of focal adhesions, and spatial distribution and magnitude of cell traction forces. The changes in the actin cytoskeletal structure, focal adhesion distributions, and traction forces in cells with different shapes may be responsible for altered collagen expression, as they are known to be involved in cellular mechanotransduction. 相似文献
3.
Chavez-Muñoz C Hartwell R Jalili RB Jafarnejad SM Lai A Nabai L Ghaffari A Hojabrpour P Kanaan N Duronio V Guns E Cherkasov A Ghahary A 《Journal of cellular biochemistry》2012,113(8):2622-2632
We previously suggested that keratinocyte releasable factors might modulate the wound healing process by regulating the expression of key extracellular matrix components such as collagenase (matrix metalloproteinase-1) and type I collagen in fibroblasts. The first one, we called it keratinocyte-derived anti-fibrogenic factor (KDAF), identified as stratifin (SFN) also named 14-3-3σ, revealing a strong collagenase activity. However, the second factor, which we named keratinocyte-derived collagen-inhibiting factor(s) (KD-CIF) that has shown to control the synthesis of type I collagen, was not known. Upon conducting a series of systematic protein purification methods followed by mass spectroscopy, two proteins: secreted protein acidic rich in cystein (SPARC) and SFN were identified in keratinocyte-conditioned media. Using co-immunoprecipitation and 3D modeling, we determined that SFN and SPARC form a complex thereby controlling the type I collagen synthesis and expression in fibroblasts. The levels of these proteins in fibrotic tissues (animal and human) were also evaluated and a differential expression of these proteins between normal and fibrotic tissue confirmed their potential role in development of fibrotic condition. In conclusion, this study describes for the first time an interaction between SPARC and SFN that may have implications for the regulation of matrix deposition and prevention of dermal fibrotic conditions such as hypertrophic scars and keloid. 相似文献
4.
Collagenolytic cleavage products of collagen type I as chemoattractants for human dermal fibroblasts 总被引:3,自引:0,他引:3
The chemoattractive properties of collagen in native (triple-helical) and denatured (random coil) conformation were compared in a Boyden chamber type assay to those of collagen fragments derived from cleavage with mammalian or bacterial collagenase using human embryonic dermal fibroblasts as target cells. Chemotaxis to native collagen required low collagen concentrations because fibril formation at high concentrations and at physiological pH and ionic strength prevented chemoattractiveness. Chemotaxis of denatured collagen was comparable to that of native collagen in solution. Cleavage of native collagen with mammalian collagenase increased, digestion with bacterial collagenase abolished its chemotactic activity. It is thought that these data may reflect the in vivo situation during inflammation and wound repair. 相似文献
5.
Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. 总被引:37,自引:8,他引:37
下载免费PDF全文
![点击此处可从《The Biochemical journal》网站下载免费的PDF全文](/ch/ext_images/free.gif)
The small dermatan sulphate proteoglycan of bovine tendon demonstrated a unique ability to inhibit fibrillogenesis of both type I and type II collagen from bovine tendon and cartilage respectively in an assay performed in vitro. None of the other proteoglycan populations from cartilage, tendon or aorta, even those similar in size and chemical structure, had this effect. Alkali treatment of the small proteoglycan of tendon eliminated its ability to inhibit fibrillogenesis, whereas chondroitinase digestion did not. This indicates that its interaction with collagen depends on the core protein. Fibrillogenesis of pepsin-digested collagens was affected similarly, indicating that interaction with the collagen telopeptides is not involved. The results suggest that interactions between collagen and proteoglycans may be quite specific both for the type of proteoglycan and its tissue of origin. 相似文献
6.
Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections
下载免费PDF全文
![点击此处可从《Biophysical journal》网站下载免费的PDF全文](/ch/ext_images/free.gif)
We performed second harmonic generation (SHG) imaging of collagen in rat-tendon cryosections, using femtosecond laser scanning confocal microscopy, both in backscattering and transmission geometries. SHG transmission images of collagen fibers were spatially resolved due to a coherent, directional SHG component. This effect was enhanced with the use of an index-matching fluid (n(i) = 1.52). The average SHG intensity oscillated with wavelength in the backscattered geometry (isotropic SHG component), whereas the spectral profile was consistent with quasi-phase-matching conditions in transmission geometry (forward propagating, coherent SHG component) around 440 nm (lambda(p) = 880 nm). Collagen type I from bovine Achilles tendon was imaged for SHG in the backscattered geometry and its first-order effective nonlinear coefficient was determined (|d(eff)| approximately 0.085(+/-0.025)x10(-12)mV(-1)) by comparison to samples of inorganic materials with known effective nonlinear coefficients (LiNbO3 and LiIO3). The SHG spectral response of collagen type I from bovine Achilles tendon matched that of the rat-tendon cryosections in backscattered geometry. Collagen types I, II, and VI powders (nonfibrous) did not show any detectable SHG, indicating a lack of noncentrosymmetric crystalline structure at the molecular level. The various stages of collagen thermal denaturation were investigated in rat-tendon cryosections using SHG and bright-field imaging. Thermal denaturation resulted in the gradual destruction of the SHG signal. 相似文献
7.
Ohguchi K Banno Y Akao Y Nozawa Y 《Biochemical and biophysical research communications》2006,348(4):1398-1402
In the current study, the involvement of phospholipase D (PLD) in the regulation of collagen type I production was examined using human dermal fibroblasts. Procollagen I production in the cells overexpressing PLD1, but not PLD2, was found to be increased compared with those in the vector control cells. To investigate the role of PLD1, we examined the effect of knockdown of endogenous PLD1 by small interference RNA (siRNA) on collagen production. The reduction of expression levels of PLD1 by siRNA transfection was accompanied by diminution of procollagen biosynthesis and also ribosomal S6 kinase 1 (S6K1) phosphorylation. The activity of mammalian target of rapamycin (mTOR) is essential for phosphorylation of S6K1 and the treatment of dermal fibroblasts with rapamycin, a potent inhibitor of mTOR abolished procollagen I production. These results suggest that PLD1 plays a crucial role in collagen type I production through mTOR signaling in human dermal fibroblast. 相似文献
8.
Mechanism of human dermal fibroblast migration driven by type I collagen and platelet-derived growth factor-BB 总被引:1,自引:0,他引:1
下载免费PDF全文
![点击此处可从《Molecular biology of the cell》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Li W Fan J Chen M Guan S Sawcer D Bokoch GM Woodley DT 《Molecular biology of the cell》2004,15(1):294-309
Migration of human dermal fibroblasts (HDFs) is critical for skin wound healing. The mechanism remains unclear. We report here that platelet-derived growth factor-BB (PDGF-BB) is the major promotility factor in human serum for HDF motility on type I collagen. PDGF-BB recapitulates the full promotility activity of human serum and anti-PDGF neutralizing antibodies completely block it. Although collagen matrix initiates HDF migration without growth factors, PDGF-BB-stimulated migration depends upon attachment of the cells to a collagen matrix. The PDGF-BB's role is to provide directionality and further enhancement for the collagen-initiated HDF motility. To study the collagen and PDGF-BB "dual signaling" in primary HDF, we establish "gene cassettes" plus lentiviral gene delivery approach, in which groups of genes are studied individually or in combination for their roles in HDF migration. Focal adhesion kinase, p21(Rac,CDC42)-activated kinase and Akt are grouped into an upstream kinase gene cassette, and the four major mitogen-activated protein kinases (extracellular signal-regulated kinase 1/2, p38, c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase 5) are grouped into a downstream kinase gene cassette. The experiments demonstrate 1) the genes' individual roles and specificities, 2) their combined effects and sufficiency, and 3) the mechanisms of their intermolecular connections in HDF migration driven by collagen and PDGF-BB. 相似文献
9.
Antonio D McCarthy Susana B Etcheverry Liliana Bruzzone Gabriela Lettieri Daniel A Barrio Ana M Cortizo 《BMC cell biology》2001,2(1):16-10
Background
The tissue accumulation of protein-bound advanced glycation endproducts (AGE) may be involved in the etiology of diabetic chronic complications, including osteopenia. The aim of this study was to investigate the effect of an AGE-modified type I collagen substratum on the adhesion, spreading, proliferation and differentiation of rat osteosarcoma UMR106 and mouse non-transformed MC3T3E1 osteoblastic cells. We also studied the role of reactive oxygen species (ROS) and nitric oxide synthase (NOS) expression on these AGE-collagen mediated effects. 相似文献10.
Effect of nitric oxide and peroxynitrite on type I collagen synthesis in normal and scleroderma dermal fibroblasts 总被引:1,自引:0,他引:1
Dooley A Gao B Shi-Wen X Abraham DJ Black CM Jacobs M Bruckdorfer KR 《Free radical biology & medicine》2007,43(2):253-264
Nitric oxide ((.-)NO) is an important physiological signaling molecule and potent vasodilator. Recently, we have shown abnormal (.-)NO metabolism in the plasma of patients with systemic sclerosis (SSc), a disease that features excessive collagen overproduction as well as vascular dysfunction. The current study investigates the effects of (.-)NO and peroxynitrite (ONOO(-)) on secretion of type I collagen by SSc dermal fibroblasts, compared with those from normal dermal fibroblasts (CON) and a dermal fibroblast cell line (AG). Dermal fibroblasts were incubated with (.-)NO donors (SNP, DETA-NONOate) with or without the antioxidant ascorbic acid, or ONOO(-) for 24-72 h. In CON and AG fibroblasts, type I collagen was dose dependently decreased by SNP or DETA-NONOate. However, (.-)NO had no effect in SSc fibroblasts. Furthermore, the inhibition of collagen synthesis by (.-)NO was reversed by ascorbic acid and was not affected by 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanyl cyclase, or 8-bromoguanosine cyclic 3',5'-monophosphate, a cGMP agonist. SNP also showed a significant up-regulation of matrix metalloproteinase-1 (MMP-1) protein and activity levels, an essential collagenase involved in collagen degradation, in the AG fibroblasts. Additionally, (.-)NO-treated fibroblasts had lower prolyl hydroxylase activity, an enzyme important in the post-translational processing of collagen, while there was no effect on total protein levels. There were no significant effects on type I collagen levels when dermal fibroblasts were treated with ONOO(-). Taken together, ()NO inhibits collagen secretion in normal dermal fibroblasts but regulation is lost in SSc fibroblasts, while ONOO(-) itself is ineffective. (.-)NO inhibition of collagen was by cGMP-independent regulatory mechanisms and in part may be due to up-regulation of MMP-1 and/or inhibition of prolyl hydroxylase. These differences may contribute to the observed pathology of SSc. 相似文献
11.
In vivo glycosylation of mucin tandem repeats. 总被引:4,自引:0,他引:4
H S Silverman S Parry M Sutton-Smith M D Burdick K McDermott C J Reid S K Batra H R Morris M A Hollingsworth A Dell A Harris 《Glycobiology》2001,11(6):459-471
The biochemical and biophysical properties of mucins are largely determined by extensive O-glycosylation of serine- and threonine-rich tandem repeat (TR) domains. In a number of human diseases aberrant O-glycosylation is associated with variations in the properties of the cell surface-associated and secreted mucins. To evaluate in vivo the O-glycosylation of mucin TR domains, we generated recombinant chimeric mucins with TR sequences from MUC2, MUC4, MUC5AC, or MUC5B, which were substituted for the native TRs of epitope-tagged MUC1 protein (MUC1F). These hybrid mucins were extensively O-glycosylated and showed the expected association with the cell surface and release into culture media. The presence of different TR domains within the chimeric mucins appears to have limited influence on their posttranslational processing. Alterations in glycosylation were detailed by fast atom bombardment mass spectrometry and reactivity with antibodies against particular blood-group and tumor-associated carbohydrate antigens. Future applications of these chimeras will include investigations of mucin posttranslational modification in the context of disease. 相似文献
12.
It is established fact that type I collagen spontaneously self-assembles in vitro in the absence of cells or other macromolecules. Whether or not this is the situation in vivo was unknown. Recent evidence shows that intracellular cleavage of procollagen (the soluble precursor of collagen) to collagen can occur in embryonic tendon cells in vivo, and when this occurs, intracellular collagen fibrils are observed. A cause-and-effect relationship between intracellular collagen and intracellular fibrils was not established. Here we show that intracellular cleavage of procollagen to collagen occurs in postnatal murine tendon cells in situ. Pulse-chase analyses showed cleavage of procollagen to collagen via its two propeptide-retained intermediates. Furthermore, immunoelectron microscopy, using an antibody that recognizes the triple helical domain of collagen, shows collagen molecules in large-diameter transport compartments close to the plasma membrane. However, neither intracellular fibrils nor fibripositors (collagen fibril-containing plasma membrane protrusions) were observed. The results show that intracellular collagen occurs in murine tendon in the absence of intracellular fibrillogenesis and fibripositor formation. Furthermore, the results show that murine postnatal tendon cells have a high capacity to prevent intracellular collagen fibrillogenesis. 相似文献
13.
Lees S 《Biophysical journal》2003,85(1):204-207
It was previously found that the lateral spacing of the collagen molecules in wet mineralized tissues is exactly proportional to the inverse wet density. Several properties were investigated and the same type of relationship was observed each time. A possible explanation is offered. It is hypothesized that mineral is deposited initially in the extrafibrillar space so as to isolate the fibrils. Further deposition reduces the net free fibril volume thereby decreasing the spacing between collagen molecules. The linear relationship is derived from density considerations together with limitations on the collagen packing structure described as the generalized packing model. Three experimental situations were studied: lateral spacing wet tissue versus density; lateral spacing dry tissue versus density; and lateral spacing versus water content. The observed variations of the spacing can be attributed to a structure where the mass of the tissue remains constant but the volume decreases linearly with increasing mineral content. 相似文献
14.
Both the triple-helical and denatured forms of nonfibrillar bovine dermal type I collagen were tested as substrates for the catalytic subunit of cAMP-dependent protein kinase in an in vitro reaction. Native, triple-helical collagen was not phosphorylated, but collagen that had been thermally denatured into individual alpha chains was a substrate for the protein kinase. Catalytic subunit of cAMP-dependent protein kinase phosphorylated denatured collagen to between 3 to 4 mol of phosphate/mol of (alpha 1(I)2 alpha 2(I). Pepsin-solubilized and intact collagens were phosphorylated similarly, as long as each was in a nonhelical conformation. The first 2 mol of phosphate incorporated into type I collagen by the protein kinase were present in the alpha 2(I) chain. The alpha 1(I) chain was only phosphorylated during long incubations in which the stoichiometry exceeded 2 mol of phosphate/mol of (alpha 1(I)2 alpha 2(I). Phosphoserine was the only phosphoamino acid identified in collagen that had been phosphorylated to any degree by the protein kinase. The 2 mol of phosphate incorporated into the alpha 2(I) chain were localized to the alpha 2(I)CB4 cyanogen bromide fragment. The catalytic subunit of cAMP-dependent protein kinase phosphorylated denatured pepsin-solubilized collagen with a Km of 8 microM and a Vmax of approximately 0.1 mumol/min/mg of enzyme. Denatured, but not triple-helical, type I collagen was also phosphorylated by cGMP-dependent protein kinase, although it was a poorer substrate for this enzyme than for the cAMP-dependent protein kinase. Collagen was not a substrate for phospholipid-sensitive Ca2+-dependent protein kinase. These results suggest the potential for nascent alpha chains of type I collagen to be susceptible to phosphorylation by cAMP-dependent protein kinase in vivo prior to triple-helix formation. Such a phosphorylation of collagen could be relevant to the action of cAMP to increase the intracellular degradation of newly synthesized collagen. 相似文献
15.
Czuwara-Ladykowska J Shirasaki F Jackers P Watson DK Trojanowska M 《The Journal of biological chemistry》2001,276(24):20839-20848
Fibrosis is characterized by the excessive deposition of extracellular matrix (ECM), especially collagen. Because Ets factors are implicated in physiological and pathological ECM remodeling, the aim of this study was to investigate the role of Ets factors in collagen production. We demonstrate that the expression of collagenous proteins and collagen alpha2(I) (COL1A2) mRNA was inhibited following stable transfection of Fli-1 in dermal fibroblasts. Subsequent analysis of the COL1A2 promoter identified a critical Ets binding site that mediates Fli-1 inhibition. In contrast, Ets-1 stimulates COL1A2 promoter activity. In vitro binding assays demonstrate that both Fli-1 and Ets-1 form DNA-protein complexes with sequences present in COL1A2 promoter. Furthermore, Fli-1 binding to the COL1A2 is enhanced via Sp1-dependent interaction. Studies using Fli-1 dominant interference and DNA binding mutants indicate that Fli-1 inhibition is mediated by both direct (DNA binding) and indirect (via protein-protein interaction) mechanisms and that Sp1 is an important mediator of the Fli-1 function. Furthermore, experiments using the Gal4 system in the context of different cell types as well as experiments with the COL1A2 promoter in different cell lines demonstrate that the direction and magnitude of the effect of Fli-1 is promoter- and cell context-specific. We propose that Fli-1 inhibits COL1A2 promoter activity by competition with Ets-1. In addition, we postulate that another factor (co-repressor) may be required for maximal inhibition after recruitment to the Fli-1-Sp1 complex. We conclude that the ratio of Fli-1 to Ets-1 and the presence of co-regulatory proteins ultimately control ECM production in fibroblasts. 相似文献
16.
Guinea-pig dermal scar was shown to contain type III collagen, and, from densitometric analysis of gel electrophoretograms, it was shown to have a higher concentration than the surrounding dermis. This finding is consistent with the 'embryonic' nature of newly formed dermal wound tissue, reflected in increased hydroxylation of collagen lysine and the presence of dihydroxylysinonorleucine (after reduction) as the major cross-link. 相似文献
17.
R Fleischmajer E D MacDonald J S Perlish R E Burgeson L W Fisher 《Journal of structural biology》1990,105(1-3):162-169
It has been suggested that dermal collagen fibrils with 67-nm periodicity consist of hybrids of type I and type III collagens. This is based on the assumption that all these banded fibrils are coated with type III collagen regardless of their diameter. However, conclusive evidence for this form of hybridization is lacking. In order to clarify this problem dermal collagen fibrils were disrupted into microfibrils using 8 M urea. Single and double indirect immunoelectron microscopy showed type III collagen at the periphery of intact collagen fibrils but no labeling with type I collagen antibodies, suggesting that the epitopes for this collagen were masked. Disrupted collagen fibrils revealed type I collagen throughout the fibril except for the periphery which was coated with type III collagen. Almost no type III collagen was noted in the interior of the collagen fibrils. Since type III collagen is present only at the periphery it suggests that this collagen has a different role than type I collagen and may have a regulatory function in fibrillogenesis. 相似文献
18.
19.
Studies on the glycosylation of hydroxylysine residues during collagen biosynthesis and the subcellular localization of collagen galactosyltransferase and collagen glucosyltransferase in tendon and cartilage cells
下载免费PDF全文
![点击此处可从《The Biochemical journal》网站下载免费的PDF全文](/ch/ext_images/free.gif)
1. The glycosylation of hydroxylysine during the biosynthesis of procollagen by embryonic chick tendon and cartilage cells was examined. When free and membrane-bound ribosomes isolated from cells labelled for 4min with [(14)C]lysine were assayed for hydroxy[(14)C]lysine and hydroxy[(14)C]lysine glycosides, it was found that hydroxylation took place only on membrane-bound ribosomes and that some synthesis of galactosylhydroxy[(14)C]lysine and glucosylgalactosylhydroxy[(14)C]lysine had occurred on the nascent peptides. 2. Assays of subcellular fractions isolated from tendon and cartilage cells labelled for 2h with [(14)C]lysine demonstrated that the glycosylation of procollagen polypeptides began in the rough endoplasmic reticulum. (14)C-labelled polypeptides present in the smooth endoplasmic reticulum and Golgi fractions were glycosylated to extents almost identical with the respective secreted procollagens. 3. Assays specific for collagen galactosyltransferase and collagen glucosyltransferase are described, using as substrate chemically treated bovine anterior-lens-capsule collagen. 4. When homogenates were assayed for the collagen glycosyltransferase activities, addition of Triton X-100 (0.01%, w/v) was found to stimulate enzyme activities by up to 45%, suggesting that the enzymes were probably membrane-bound. 5. Assays of subcellular fractions obtained by differential centrifugation for collagen galactosyltransferase activity indicated the specific activity to be highest in the microsomal fractions. Similar results were obtained for collagen glucosyltransferase activity. 6. When submicrosomal fractions obtained by discontinuous-sucrose-density-gradient-centrifugation procedures were assayed for these enzymic activities, the collagen galactosyltransferase was found to be distributed in the approximate ratio 7:3 between rough and smooth endoplasmic reticulum of both cell types. Similar determinations of collagen glucosyltransferase indicated a distribution in the approximate ratio 3:2 between rough and smooth microsomal fractions. 7. Assays of subcellular fractions for the plasma-membrane marker 5'-nucleotidase revealed a distribution markedly different from the distributions obtained for the collagen glycosyltransferase. 8. The studies described here demonstrate that glycosylation occurs early in the intracellular processing of procollagen polypeptides rather than at the plasma membrane, as was previously suggested. 相似文献
20.
Toshikatsu Igata Takamitsu Makino Chikako Moriya Faith C. Muchemwa Tsuyoshi Ishihara Hironobu Ihn 《Biochemical and biophysical research communications》2010,393(1):101-105
Tissue remodeling is known to play important roles in wound healing. Although Rac1 is reported to be one of the key signaling molecules in cutaneous wound healing process, the exact mechanisms of Rac1-mediated tissue remodeling is still unknown. This study investigated the role of Rac1 in the regulation of extracellular matrix in cultured human dermal fibroblasts obtained by skin biopsy from three healthy donors. Protein levels of type I collagen in cultured human fibroblasts were increased by the treatment with Rac1 inhibitor NSC23766 in a dose-dependent manner. However, the mRNA levels of α2(I) collagen was not altered by the inhibitor. On the other hand, by the addition of inhibitor, half-lives of type I collagen protein were increased and MMP1 levels were reduced. These data suggest that blockade of Rac1 signaling results in accumulation of type I collagen due to decreased collagenase activity. This study also suggests that controlling Rac1 signaling is a new therapeutic approach to chronic/untreatable ulcer. 相似文献