首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Human immunodeficiency virus type 1 (HIV-1) Vpr is a 96-amino-acid protein that is found associated with the HIV-1 virion. Vpr induces cell cycle arrest at the G(2)/M phase of the cell cycle, and this arrest is followed by apoptosis. We examined the mechanism of Vpr-induced apoptosis and found that HIV-1 Vpr-induced apoptosis requires the activation of a number of cellular cysteinyl aspartate-specific proteases (caspases). We demonstrate that ectopic expression of anti-apoptotic viral proteins, which inhibit caspase activity, and addition of synthetic peptides, which represent caspase cleavage sites, can inhibit Vpr-induced apoptosis. Finally, inhibition of caspase activity and subsequent inhibition of apoptosis results in increased viral expression, suggesting that therapeutic strategies aimed at reducing Vpr-induced apoptosis in vivo require careful consideration.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Definition of the p53 functional domains necessary for inducing apoptosis   总被引:8,自引:0,他引:8  
The p53 protein contains several functional domains necessary for inducing cell cycle arrest and apoptosis. The C-terminal basic domain within residues 364-393 and the proline-rich domain within residues 64-91 are required for apoptotic activity. In addition, activation domain 2 within residues 43-63 is necessary for apoptotic activity when the N-terminal activation domain 1 within residues 1-42 is deleted (DeltaAD1) or mutated (AD1(-)). Here we have discovered that an activation domain 2 mutation at residues 53-54 (AD2(-)) abrogates the apoptotic activity but has no significant effect on cell cycle arrest. We have also found that p53-(DeltaAD2), which lacks activation domain 2, is inert in inducing apoptosis. p53-(AD2(-)DeltaBD), which is defective in activation domain 2 and lacks the C-terminal basic domain, p53-(DeltaAD2DeltaBD), which lacks both activation domain 2 and the C-terminal basic domain, and p53-(DeltaPRDDeltaBD), which lacks both the proline-rich domain and the C-terminal basic domain, are also inert in inducing apoptosis. All four mutants are still capable of inducing cell cycle arrest, albeit to a lesser extent than wild-type p53. Interestingly, we have found that deletion of the N-terminal activation domain 1 alleviates the requirement of the C-terminal basic domain for apoptotic activity. Thus, we have generated a small but potent p53-(DeltaAD1DeltaBD) molecule. Furthermore, we have determined that at least two of the three domains (activation domain 1, activation domain 2, and the proline-rich domain), are required for inducing cell cycle arrest. Taken together, our results suggest that activation domain 2 and the proline-rich domain form an activation domain for inducing pro-apoptotic genes or inhibiting anti-apoptotic genes. The C-terminal basic domain is required for maintaining this activation domain competent for transactivation or transrepression.  相似文献   

9.
Cleavage of caspase substrates is believed to be the commitment point that will lead a cell towards apoptosis. While the cleavage of some caspase substrates participates directly in the dismantling of the cell, others regulate the extent of caspase activation. In this communication, we discuss some recent findings indicating that two caspase substrates, MEKK1 and RasGAP, change their functions from anti- to pro-apoptotic as caspase activity increases. MEKK1 is a MAPK kinase kinase regulating the JNK MAPK pathway. As a full-length protein, MEKK1 generates protective signals (e.g. in cardiomyocytes), but potentiates apoptosis when cleaved by caspases. This switch is mediated by a translocation of the kinase activity from insoluble to soluble cellular structures. RasGAP is a regulator of Ras GTPase family members. As a full-length protein, RasGAP does not modulate apoptosis. However, low caspase activity readily induces the cleavage of RasGAP into an N-terminal fragment that generates potent anti-apoptotic signals. At higher caspase activity, the N-terminal fragment is further cleaved into two fragments that strongly potentiate apoptosis. RasGAP can, thus, be viewed as an apoptostat because it allows the cells to determine when caspases have been mildly activated to fulfill functions other than apoptosis or when caspases are strongly activated to mediate apoptosis.  相似文献   

10.
E1A + c-Ha-ras-transformants overexpressing bcl-2 oncogene are able to be arrested at the G1/S boundary of the cell cycle after DNA damage and upon serum starvation, this cell cycle blockage being accompanied by a decrease in the activity of cyclin E--Cdk2 complexes. Roscovitine-induced inhibition of cyclin-dependent kinases (Cdks) activity does not result in the G1/S arrest of E1A + c-Ha-ras + bcl-2-transformants. Roscovitine treatment causes an accumulation of G2/M cells, mainly at the expense of mitotic cells. However, the expression of Bcl-2 oncoproducts does not re-establish the regulation of mitotic events broken by introduction of E1A and c-Ha-ras oncogenes in normal cells, as revealed by the treatment of E1A + c-Ha-ras + bcl-2-transformants with nocodazole inducing mitotic arrest in normal cells. In spite of the elevated expression of antiapoptotic bcl-2 gene in transformants, nocodazole treatment results in mass apoptotic death preceded by polyploidy. Roscovitine also induces apoptosis with no polyploid cell accumulation being observed. Inhibition of Cdks activity with Roscovitine, as well as violation of microtubule depolymerization with nocodazole result in the apoptotic death in the tested cell lines sensitive (E1A + c-Ha-ras) and resistant (E1A + c-Ha-ras + bcl-2) to damaging agents. Thus, the application of Roscovitine, a specific inhibitor of Cdks, suggests that the decrease in Cdks activity in E1A + c-Ha-ras + bcl-2-transformants is not likely to be responsible for G1/S cell cycle arrest realization after damaging influences. Moreover, an antiproliferative effect of Bcl-2 in E1A + c-Ha-ras-transformants is restricted by restoration of cell cycle events at G1/S and G2/M boundaries, and does not concern the program of mitotic events regulation.  相似文献   

11.
12.
Induction of apoptosis by adenovirus E4orf4 protein   总被引:2,自引:0,他引:2  
Adenovirus E4orf4 protein is a multifunctional viral regulator that induces p53-independent apoptosis in transformed cells, but not in normal cells. E4orf4-induced apoptosis can occur without activation of known caspases, although E4orf4 induces caspase activity in some cell lines. The interaction of E4orf4 with a specific subpopulation of protein phosphatase 2A (PP2A) molecules that contain B subunits, but not with those that contain B subunits, is required for induction of apoptosis. This review suggests the potential use of E4orf4 in cancer therapy, and discusses whether E4orf4-induced apoptosis plays a role in the viral life cycle. Future research directions are also highlighted.  相似文献   

13.
Activation of caspases 3 and 9 is thought to commit a cell irreversibly to apoptosis. There are, however, several documented situations (e.g., during erythroblast differentiation) in which caspases are activated and caspase substrates are cleaved with no associated apoptotic response. Why the cleavage of caspase substrates leads to cell death in certain cases but not in others is unclear. One possibility is that some caspase substrates generate antiapoptotic signals when cleaved. Here we show that RasGAP is one such protein. Caspases cleave RasGAP into a C-terminal fragment (fragment C) and an N-terminal fragment (fragment N). Fragment C expressed alone induces apoptosis, but this effect could be totally blocked by fragment N. Fragment N could also block apoptosis induced by low levels of caspase 9. As caspase activity increases, fragment N is further cleaved into fragments N1 and N2. Apoptosis induced by high levels of caspase 9 or by cisplatin was strongly potentiated by fragment N1 or N2 but not by fragment N. The present study supports a model in which RasGAP functions as a sensor of caspase activity to determine whether or not a cell should survive. When caspases are mildly activated, the partial cleavage of RasGAP protects cells from apoptosis. When caspase activity reaches levels that allow completion of RasGAP cleavage, the resulting RasGAP fragments turn into potent proapoptotic molecules.  相似文献   

14.
In contrast to extracellular signals, the mechanisms utilized to transduce nuclear apoptotic signals are not well understood. Characterizing these mechanisms is important for predicting how tumors will respond to genotoxic radiation or chemotherapy. The retinoblastoma (Rb) tumor suppressor protein can regulate apoptosis triggered by DNA damage through an unknown mechanism. The nuclear death domain-containing protein p84N5 can induce apoptosis that is inhibited by association with Rb. The pattern of caspase and NF-kappaB activation during p84N5-induced apoptosis is similar to p53-independent cellular responses to DNA damage. One hallmark of this response is the activation of a G(2)/M cell cycle checkpoint. In this report, we characterize the effects of p84N5 on the cell cycle. Expression of p84N5 induces changes in cell cycle distribution and kinetics that are consistent with the activation of a G(2)/M cell cycle checkpoint. Like the radiation-induced checkpoint, caffeine blocks p84N5-induced G(2)/M arrest but not subsequent apoptotic cell death. The p84N5-induced checkpoint is functional in ataxia telangiectasia-mutated kinase-deficient cells. We conclude that p84N5 induces an ataxia telangiectasia-mutated kinase (ATM)-independent, caffeine-sensitive G(2)/M cell cycle arrest prior to the onset of apoptosis. This conclusion is consistent with the hypotheses that p84N5 functions in an Rb-regulated cellular response that is similar to that triggered by DNA damage.  相似文献   

15.
We have recently shown that curcumin induces apoptosis in prostate cancer cells through Bax translocation to mitochondria and caspase activation, and enhances the therapeutic potential of TRAIL. However, the molecular mechanisms by which it causes growth arrest are not well-understood. We studied the molecular mechanism of curcumin-induced cell cycle arrest in prostate cancer androgen-sensitive LNCaP and androgen-insensitive PC-3 cells. Treatment of both cell lines with curcumin resulted in cell cycle arrest at G1/S phase and that this cell cycle arrest is followed by the induction of apoptosis. Curcumin induced the expression of cyclin-dependent kinase (CDK) inhibitors p16/INK4a, p21/WAF1/CIP1 and p27/KIP1, and inhibited the expression of cyclin E and cyclin D1, and hyperphosphorylation of retinoblastoma (Rb) protein. Lactacystin, an inhibitor of 26 proteasome, blocks curcumin-induced down-regulation of cyclin D1 and cyclin E proteins, suggesting their regulation at level of posttranslation. The suppression of cyclin D1 and cyclin E by curcumin may inhibit CDK-mediated phosphorylation of pRb protein. The inhibition of p21/WAF1/CIP1 by siRNA blocks curcumin-induced apoptosis, thus establishing a link between cell cycle and apoptosis. These effects of curcumin result in the proliferation arrest and disruption of cell cycle control leading to apoptosis. Our study suggests that curcumin can be developed as a chemopreventive agent for human prostate cancer.  相似文献   

16.
17.
18.
Vesicular stomatitis virus (VSV) induces apoptosis by at least two mechanisms. The viral matrix (M) protein induces apoptosis via the mitochondrial pathway due to the inhibition of host gene expression. However, in some cell types, the inhibition of host gene expression by VSV expressing wild-type (wt) M protein delays VSV-induced apoptosis, indicating that another mechanism is involved. In support of this, the recombinant M51R-M (rM51R-M) virus, expressing a mutant M protein that is defective in its ability to inhibit host gene expression, induces apoptosis much more rapidly in L929 cells than do viruses expressing wt M protein. Here, we determine the caspase pathways by which the rM51R-M virus induces apoptosis. An analysis of caspase activity, using fluorometric caspase assays and Western blots, indicated that each of the main initiator caspases, caspase-8, caspase-9, and caspase-12, were activated during infection with the rM51R-M virus. The overexpression of Bcl-2, an inhibitor of the mitochondrial pathway, or MAGE-3, an inhibitor of caspase-12 activation, did not delay apoptosis induction in rM51R-M virus-infected L929 cells. However, an inhibitor of caspase-8 activity significantly delayed apoptosis induction. Furthermore, the inhibition of caspase-8 activity prevented the activation of caspase-9, suggesting that caspase-9 is activated by cross talk with caspase-8. These data indicate that VSV expressing the mutant M protein induces apoptosis via the death receptor apoptotic pathway, a mechanism distinct from that induced by VSV expressing the wt M protein.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号