首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The generation and control of cell polarity is a fundamental mechanism for directed migration of the cell. In developing neurons, the axonal growth cone recognizes environmental molecular cues and migrates toward its correct target, thereby forming neuronal networks. The spatial information provided by environmental cues directs axon growth and guidance through generating polarity of intracellular signals and cytoskeletal organization in the growth cone. This polarization process is dependent on lipid rafts, specialized microdomains in the cell membrane. Lipid rafts in specific regions of the growth cone are involved in axon growth and guidance. For example, forward migration of the growth cone requires raft membranes in its leading front. Recent experiments have suggested that lipid rafts function as a platform for localized signaling downstream of adhesion molecules and guidance receptors. The rafts assemble into an active membrane domain that captures and reorganizes the cytoskeletal machinery. In this way, the spatial control of signaling through raft membranes plays a critical role in translating extracellular information into polarized motility of the growth cone.  相似文献   

2.
Wen Z  Guirland C  Ming GL  Zheng JQ 《Neuron》2004,43(6):835-846
Axon pathfinding depends on attractive and repulsive turning of growth cones to extracellular cues. Localized cytosolic Ca2+ signals are known to mediate the bidirectional responses, but downstream mechanisms remain elusive. Here, we report that calcium-calmodulin-dependent protein kinase II (CaMKII) and calcineurin (CaN) phosphatase provide a switch-like mechanism to control the direction of Ca(2+)-dependent growth cone turning. A relatively large local Ca2+ elevation preferentially activates CaMKII to induce attraction, while a modest local Ca2+ signal predominantly acts through CaN and phosphatase-1 (PP1) to produce repulsion. The resting level of intracellular Ca2+ concentrations also affects CaMKII/CaN operation: a normal baseline allows distinct turning responses to different local Ca2+ signals, while a low baseline favors CaN-PP1 activation for repulsion. Moreover, the cAMP pathway negatively regulates CaN-PP1 signaling to inhibit repulsion. Finally, CaMKII/CaN-PP1 also mediates netrin-1 guidance. Together, these findings establish a complex Ca2+ mechanism that targets the balance of CaMKII/CaN-PP1 activation to control distinct growth cone responses.  相似文献   

3.
In the developing nervous system, neuronal growth cones explore the extracellular environment for guidance cues, which can guide them along specific trajectories toward their targets. Netrin-1, a bifunctional guidance cue, binds to deleted in colorectal cancer (DCC) and DSCAM mediating axon attraction, and UNC5 mediating axon repulsion. Here, we show that DSCAM interacts with UNC5C and this interaction is stimulated by netrin-1 in primary cortical neurons and postnatal cerebellar granule cells. DSCAM partially co-localized with UNC5C in primary neurons and brain tissues. Netrin-1 induces axon growth cone collapse of mouse cerebellum external granule layer (EGL) cells, and the knockdown of DSCAM or UNC5C by specific shRNAs or blocking their signaling by overexpressing dominant negative mutants suppresses netrin-1-induced growth cone collapse. Similarly, the simultaneous knockdown of DSCAM and UNC5C also blocks netrin-1-induced growth cone collapse in EGL cells. Netrin-1 increases tyrosine phosphorylation of endogenous DSCAM, UNC5C, FAK, Fyn, and PAK1, and promotes complex formation of DSCAM with these signaling molecules in primary postnatal cerebellar neurons. Inhibition of Src family kinases efficiently reduces the interaction of DSCAM with UNC5C, FAK, Fyn, and PAK1 and tyrosine phosphorylation of these proteins as well as growth cone collapse of mouse EGL cells induced by netrin-1. The knockdown of DSCAM inhibits netrin-induced tyrosine phosphorylation of UNC5C and Fyn as well as the interaction of UNC5C with Fyn. The double knockdown of both receptors abolishes the induction of Fyn tyrosine phosphorylation by netrin-1. Our study reveals the first evidence that DSCAM coordinates with UNC5C in netrin-1 repulsion.  相似文献   

4.
Electrical activity modulates growth cone guidance by diffusible factors   总被引:9,自引:0,他引:9  
Ming G  Henley J  Tessier-Lavigne M  Song H  Poo M 《Neuron》2001,29(2):441-452
Brief periods of electrical stimulation of cultured Xenopus spinal neurons resulted in a marked alteration in the turning responses of the growth cone induced by gradients of attractive or repulsive guidance cues. Netrin-1-induced attraction was enhanced, and the repulsion induced by myelin-associated glycoprotein (MAG) or myelin membrane fragments was converted to attraction. The effect required the presence of extracellular Ca(2+) during electrical stimulation and appeared to be mediated by an elevation of both cytoplasmic Ca(2+) and cAMP. Thus, electrical activity may influence the axonal path finding of developing neurons, and intermittent electrical stimulation may be effective in promoting nerve regeneration after injury.  相似文献   

5.
Henley JR  Huang KH  Wang D  Poo MM 《Neuron》2004,44(6):909-916
Cytoplasmic second messengers, Ca2+ and cAMP, regulate nerve growth cone turning responses induced by many guidance cues, but the causal relationship between these signaling pathways has been unclear. We here report that, for growth cone turning induced by a gradient of myelin-associated glycoprotein (MAG), cAMP acts by modulating MAG-induced Ca2+ signaling. Growth cone repulsion induced by MAG was accompanied by localized Ca2+ signals on the side of the growth cone facing the MAG source, due to Ca2+ release from intracellular stores. Elevating cAMP signaling activity or membrane depolarization enhanced MAG-induced Ca2+ signals and converted growth cone repulsion to attraction. Directly imposing high- or low-amplitude Ca2+ signals with an extracellular gradient of Ca2+ ionophore was sufficient to trigger either attractive or repulsive turning, respectively. Thus, distinct Ca2+ signaling, which can be modulated by cAMP, mediates the bidirectional turning responses induced by MAG.  相似文献   

6.
Expression of rat TrkA in Xenopus spinal neurons confers responsiveness of these neurons to nerve growth factor (NGF) in assays of neuronal survival and growth cone chemotropism. Mutational analysis indicates that coactivation of phospholipase C-gamma (PLC-gamma) and phosphoinositide 3-kinase (PI3-kinase) by specific cytoplasmic domains of TrkA is essential for triggering chemoattraction of the growth cone in an NGF gradient. Uniform exposure of TrkA-expressing neurons to NGF resulted in a cross-desensitization of turning responses induced by a gradient of netrin-1, brain-derived neurotrophic factor (BDNF), or myelin-associated glycoprotein (MAG) but not by a gradient of collapsin-1/semaphorin III/D or neurotrophin-3 (NT-3). These results, together with the effects of pharmacological inhibitors, support the notion that there are common cytosolic signaling pathways for two separate groups of guidance cues, one of which requires coactivation of PLC-gamma and PI3-kinase pathways.  相似文献   

7.
Regulation of growth cone actin filaments by guidance cues   总被引:16,自引:0,他引:16  
The motile behaviors of growth cones at the ends of elongating axons determine pathways of axonal connections in developing nervous systems. Growth cones express receptors for molecular guidance cues in the local environment, and receptor-guidance cue binding initiates cytoplasmic signaling that regulates the cytoskeleton to control growth cone advance, turning, and branching behaviors. The dynamic actin filaments of growth cones are frequently targets of this regulatory signaling. Rho GTPases are key mediators of signaling by guidance cues, although much remains to be learned about how growth cone responses are orchestrated by Rho GTPase signaling to change the dynamics of polymerization, transport, and disassembly of actin filaments. Binding of neurotrophins to Trk and p75 receptors on growth cones triggers changes in actin filament dynamics to regulate several aspects of growth cone behaviors. Activation of Trk receptors mediates local accumulation of actin filaments, while neurotrophin binding to p75 triggers local decrease in RhoA signaling that promotes lengthening of filopodia. Semaphorin IIIA and ephrin-A2 are guidance cues that trigger avoidance or repulsion of certain growth cones, and in vitro responses to these proteins include growth cone collapse. Dynamic changes in the activities of Rho GTPases appear to mediate responses to these cues, although it remains unclear what the changes are in actin filament distribution and dynamic reorganization that result in growth cone collapse. Growth cones in vivo simultaneously encounter positive and negative guidance cues, and thus, growth cone behaviors during axonal pathfinding reflect the complex integration of multiple signaling activities.  相似文献   

8.
More than 10 years after its initial discovery, netrin-1 - the first described chimioattractive molecule controlling the guidance of the commissural axons - has recently known a unsuspected wave of interest because of its implication in the development of the nervous system but also, more recently, fot its role in angiogenesis and tumorigenesis. Because, of a series of recent publications on netrin-1 signaling, we propose here to describe the recent insight in netrin-1 signaling via its main receptor DCC (deleted in colorectal cancer), and the recent discovery that netrin controls the assymetric distribution of beta-actin in the growth cone. Thus, it seems that netrin-1, but also the neurotrophic factor BDNF, controls acute growth cone responses such as collapse and turning by the regulation of localized protein translation, such as beta-actin. This process involves both transport of beta-actin mRNA, bound to Vg1RBP, to specific locations, and mRNA translation upon stimulation by local activation of the translation initiation regulator eIF-4E-binding protein 1. Indeed, Netrin-1 induces the movement of Vg1RBP granules into filopodia, and triggers a polarized increase in beta-actin translation on the near side of the growth cone before growth cone turning. The binding of BDNF to its receptor Trk has a similar effect for growth cone attraction, althought it is differentially regulated. Thus, this asymetrically synthesized beta-actin may direct actin polymerization and consequently the migration of the growth cone toward the cue.  相似文献   

9.
Guiding neuronal growth cones using Ca2+ signals   总被引:4,自引:0,他引:4  
Pathfinding by growing axons in the developing or regenerating nervous system is guided by gradients of molecular guidance cues. The neuronal growth cone, located at the ends of axons, uses surface receptors to sense these cues and to transduce guidance information to cellular machinery that mediates growth and turning responses. Cytoplasmic Ca2+ signals have key roles in regulating this motility. Global growth cone Ca2+ signals can regulate cytoskeletal elements and membrane dynamics to control elongation, whereas Ca2+ signals localized to one side of the growth cone can cause asymmetric activation of effector enzymes to steer the growth cone. Modulating Ca2+ levels in the growth cone might overcome inhibitory signals that normally prevent regeneration in the central nervous system.  相似文献   

10.
Proper neural circuitry requires that growth cones, motile tips of extending axons, respond to molecular guidance cues expressed in the developing organism. However, it is unclear how guidance cues modify the cytoskeleton to guide growth cone pathfinding. Here, we show acute treatment with two attractive guidance cues, nerve growth factor (NGF) and netrin‐1, for embryonic dorsal root ganglion and temporal retinal neurons, respectively, results in increased growth cone membrane protrusion, actin polymerization, and filamentous actin (F‐actin). ADF/cofilin (AC) family proteins facilitate F‐actin dynamics, and we found the inactive phosphorylated form of AC is decreased in NGF‐ or netrin‐1‐treated growth cones. Directly increasing AC activity mimics addition of NGF or netrin‐1 to increase growth cone protrusion and F‐actin levels. Extracellular gradients of NGF, netrin‐1, and a cell‐permeable AC elicit attractive growth cone turning and increased F‐actin barbed ends, F‐actin accumulation, and active AC in growth cone regions proximal to the gradient source. Reducing AC activity blunts turning responses to NGF and netrin. Our results suggest that gradients of NGF and netrin‐1 locally activate AC to promote actin polymerization and subsequent growth cone turning toward the side containing higher AC activity. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 565–588, 2010  相似文献   

11.
The receptor deleted in colorectal cancer (DCC) mediates the attraction of growing axons to netrin-1 during brain development. In response to netrin-1 stimulation, DCC becomes a signaling platform to recruit proteins that promote axon outgrowth and guidance. The Ras GTPase-activating protein (GAP) p120RasGAP inhibits Ras activity and mediates neurite retraction and growth cone collapse in response to repulsive guidance cues. Here we show an interaction between p120RasGAP and DCC that positively regulates netrin-1-mediated axon outgrowth and guidance in embryonic cortical neurons. In response to netrin-1, p120RasGAP is recruited to DCC in growth cones and forms a multiprotein complex with focal adhesion kinase and ERK. We found that Ras/ERK activities are elevated aberrantly in p120RasGAP-deficient neurons. Moreover, the expression of p120RasGAP Src homology 2 (SH2)-SH3-SH2 domains, which interact with the C-terminal tail of DCC, is sufficient to restore netrin-1-dependent axon outgrowth in p120RasGAP-deficient neurons. We provide a novel mechanism that exploits the scaffolding properties of the N terminus of p120RasGAP to tightly regulate netrin-1/DCC-dependent axon outgrowth and guidance.  相似文献   

12.
Campbell DS  Holt CE 《Neuron》2003,37(6):939-952
Previous work has shown that guidance cues trigger rapid changes in protein dynamics in retinal growth cones: netrin-1 stimulates both protein synthesis and degradation, while Sema3A elicits synthesis, and LPA induces degradation. What signaling pathways are involved? Our studies confirm that p42/44 MAPK mediates netrin-1 responses and further show that inhibiting its activity blocks cue-induced protein synthesis. Unexpectedly, p38 MAPK is also activated by netrin-1 in retinal growth cones and is required for chemotropic responses and translation. Sema3A- and LPA-induced responses, by contrast, require a single MAPK, p42/p44 and p38, respectively. In addition, we report that caspase-3, an apoptotic protease, is rapidly activated by netrin-1 and LPA in a proteasome- and p38-dependent manner and is required for chemotropic responses. These findings suggest that the apoptotic pathway may be used locally to control protein levels in growth cones and that the differential activation of MAPK pathways may underlie cue-directed migration.  相似文献   

13.
The UNC-6/netrin guidance cue functions in axon guidance in vertebrates and invertebrates, mediating attraction via UNC-40/DCC family receptors and repulsion via by UNC-5 family receptors. The growth cone reads guidance cues and extends lamellipodia and filopodia, actin-based structures that sense the extracellular environment and power the forward motion of the growth cone. We show that UNC-6/netrin, UNC-5 and UNC-40/DCC modulated the extent of growth cone protrusion that correlated with attraction versus repulsion. Loss-of-function unc-5 mutants displayed increased protrusion in repelled growth cones, whereas loss-of-function unc-6 or unc-40 mutants caused decreased protrusion. In contrast to previous studies, our work suggests that the severe guidance defects in unc-5 mutants may be due to latent UNC-40 attractive signaling that steers the growth cone back towards the ventral source of UNC-6. UNC-6/Netrin signaling also controlled polarity of growth cone protrusion and F-actin accumulation that correlated with attraction versus repulsion. However, filopodial dynamics were affected independently of polarity of protrusion, indicating that the extent versus polarity of protrusion are at least in part separate mechanisms. In summary, we show here that growth cone guidance in response to UNC-6/netrin involves a combination of polarized growth cone protrusion as well as a balance between stimulation and inhibition of growth cone (e.g. filopodial) protrusion.  相似文献   

14.
Graded distributions of extracellular cues guide developing axons toward their targets. A network of second messengers - Ca(2+) and cyclic nucleotides - shapes cue-derived information into either attractive or repulsive signals that steer growth cones bidirectionally. Emerging evidence suggests that such guidance signals create a localized imbalance between exocytosis and endocytosis, which in turn redirects membrane, adhesion and cytoskeletal components asymmetrically across the growth cone to bias the direction of axon extension. These recent advances allow us to propose a unifying model of how the growth cone translates shallow gradients of environmental information into polarized activity of the steering machinery for axon guidance.  相似文献   

15.
STIM1 is necessary for store-operated calcium entry in turning growth cones   总被引:1,自引:0,他引:1  
J. Neurochem. (2012) 122, 1155-1166. ABSTRACT: Coordinated calcium signalling is vital for neuronal growth cone function and axon pathfinding. Although store-operated calcium entry (SOCE) has been suggested to be an important source of calcium in growth cone navigation, the mechanisms that regulate calcium signalling, particularly the regulation of internal calcium stores within growth cones, are yet to be fully determined. Stromal Interaction Molecule 1 (STIM1) is a calcium-sensing protein localized in the endoplasmic reticulum membrane that interacts with Orai proteins in the plasma membrane to initiate SOCE and refilling of intracellular calcium stores. We hypothesize that STIM1- and Orai1/2-mediated SOCE are necessary for growth cone turning responses to extracellular guidance cues. We show that STIM1 and Orai reorganize into puncta upon store depletion and during growth cone turning with STIM1 localization biased towards the turning side (high calcium side) of the growth cone. Importantly, STIM1 knock-down perturbed growth cone turning responses to the guidance cues brain-derived neurotrophic factor and semaphorin-3a (Sema-3a), as well as abolishing Sema-3a-induced growth cone collapse. Furthermore, STIM1 knock-down abolished SOCE induced by brain-derived neurotrophic factor, but not Sema-3a. Our data suggest that STIM1 is essential for correct growth cone navigation, playing multiple roles in growth cone motility, including the activation of SOCE.  相似文献   

16.
NADPH oxidases (Nox) are membrane‐bound multi‐subunit protein complexes producing reactive oxygen species (ROS) that regulate many cellular processes. Emerging evidence suggests that Nox‐derived ROS also control neuronal development and axonal outgrowth. However, whether Nox act downstream of receptors for axonal growth and guidance cues is presently unknown. To answer this question, we cultured retinal ganglion cells (RGCs) derived from zebrafish embryos and exposed these neurons to netrin‐1, slit2, and brain‐derived neurotrophic factor (BDNF). To test the role of Nox in cue‐mediated growth and guidance, we either pharmacologically inhibited Nox or investigated neurons from mutant fish that are deficient in Nox2. We found that slit2‐mediated growth cone collapse, and axonal retraction were eliminated by Nox inhibition. Though we did not see an effect of either BDNF or netrin‐1 on growth rates, growth in the presence of netrin‐1 was reduced by Nox inhibition. Furthermore, attractive and repulsive growth cone turning in response to gradients of BDNF, netrin‐1, and slit2, respectively, were eliminated when Nox was inhibited in vitro. ROS biosensor imaging showed that slit2 treatment increased growth cone hydrogen peroxide levels via mechanisms involving Nox2 activation. We also investigated the possible relationship between Nox2 and slit2/Robo2 signaling in vivo. astray/nox2 double heterozygote larvae exhibited decreased area of tectal innervation as compared to individual heterozygotes, suggesting both Nox2 and Robo2 are required for establishment of retinotectal connections. Our results provide evidence that Nox2 acts downstream of slit2/Robo2 by mediating growth and guidance of developing zebrafish RGC neurons.  相似文献   

17.
Growth cone response to the bifunctional guidance cue netrin-1 is regulated by the activity of intracellular signaling intermediates such as protein kinase C-alpha (PKCα) and adenylyl cyclase. Among the diverse cellular events these enzymes regulate is receptor trafficking. Netrin-1, itself, may govern the activity of these signaling intermediates, thereby regulating axonal responses to itself. Alternatively, other ligands, such as activators of G protein-coupled receptors, may regulate responses to netrin-1 by governing these signaling intermediates. Here, we investigate the mechanisms controlling activation of PKCα and the subsequent downstream regulation of cell surface UNC5A receptors. We report that activation of adenosine receptors by adenosine analogs, or activation of the putative netrin-1 receptor, the G protein-coupled receptor adenosine A2b receptor (A2bR) results in PKCα-dependent removal of UNC5A from the cell surface. This decrease in cell surface UNC5A reduces the number of growth cones that collapse in response to netrin-1 and converts repulsion to attraction. We show these A2bR-mediated alterations in axonal response are not because of netrin-1 because netrin-1 neither binds A2bR, as assayed by protein overlay, nor stimulates PKCα-dependent UNC5A surface loss. Our results demonstrate that netrin-1-independent A2bR signaling governs the responsiveness of a neuron to netrin-1 by regulating the levels of cell surface UNC5A receptor.  相似文献   

18.
Growth cone navigation is guided by extrinsic environmental proteins, called guidance cues. Many in vitro studies have characterized growth cone turning up and down gradients of soluble guidance cues. Although previous studies have shown that axonal elongation rates can be regulated by gradients of surface-bound molecules, there are no convincing demonstrations of growth cones turning to migrate up a surface-bound gradient of an adhesive ligand or guidance cue. In order to test this mode of axonal guidance, we used a photo-immobilization technique to create grids and gradients of an adhesive laminin peptide on polystyrene culture dish surfaces. Chick embryo dorsal root ganglia (DRGs) were placed on peptide grid patterns containing surface-bound gradients of the IKVAV-containing peptide. DRG growth cones followed a path of surface-bound peptide to the middle of a perpendicularly oriented gradient with a 25% concentration difference across 30 microm. The majority of growth cones turned and migrated up the gradient, turning until they were oriented directly up the gradient. Growth cones slowed their migration when they encountered the gradient, but growth cone velocity returned to the previous rate after turning up or down the gradient. This resembles in vivo situations where growth cones slow at a choice point before changing the direction of axonal extension. Thus, these results support the hypothesis that mechanisms of axonal guidance include growth cone orientation by gradients of surface-bound adhesive molecules and guidance cues.  相似文献   

19.
Neuron navigator 1 (Nav1) is a cytoskeleton-associated protein expressed during brain development that is necessary for proper neuritogenesis, but the underlying mechanisms are poorly understood. Here we show that Nav1 is present in elongating axon tracts during mouse brain embryogenesis. We found that depletion of Nav1 in cultured neurons disrupts growth cone morphology and neurotrophin-stimulated neuritogenesis. In addition to regulating both F-actin and microtubule properties, Nav1 promotes actin-rich membrane ruffles in the growth cone and promotes macropinocytosis at those membrane ruffles, including internalization of the TrkB receptor for the neurotrophin brain-derived neurotropic factor (BDNF). Growth cone macropinocytosis is important for downstream signaling, neurite targeting, and membrane recycling, implicating Nav1 in one or more of these processes. Depletion of Nav1 also induces transient membrane blebbing via disruption of signaling in the Rho GTPase signaling pathway, supporting the novel role of Nav1 in dynamic actin-based membrane regulation at the cell periphery. These data demonstrate that Nav1 works at the interface of microtubules, actin, and plasma membrane to organize the cell periphery and promote uptake of growth and guidance cues to facilitate neural morphogenesis during development.  相似文献   

20.
The plasma membrane is not homogeneous but contains specific subcompartments characterized by their unique lipid and protein composition. Based on their enrichment in various signaling molecules, these membrane microdomains are recognized to be sites of localized signal transduction for a number of extracellular stimuli. We have previously shown that fibroblast growth factor-2 (FGF2) induced a specific signaling response within a lipid raft membrane microdomain in human neuroblastoma cells characterized by the tyrosine phosphorylation of a p80 phosphoprotein. Herein, we show that this protein is the signaling adaptor FRS2 and that it is localized exclusively to lipid rafts in vitro and in vivo. We have examined how the tyrosine phosphorylation and serine-threonine phosphorylation of FRS2 within lipid rafts affect the response of cells to FGF2 signaling. Our data suggest that activation of protein kinase C, Src family kinases, and MEK1/2 are involved in regulating serine-threonine phosphorylation of FRS2, which can indirectly affect FRS2 phosphotyrosine levels. We also show that Grb2 is recruited to lipid rafts during signaling events and that activation of MEK1/2 by different mechanisms within lipid rafts may lead to different cellular responses. This work suggests that compartmentalized signaling within lipid rafts may provide a level of specificity for growth factor signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号