首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stemloop D (SLD) of the 5' cloverleaf RNA is the cognate ligand of the coxsackievirus B3 (CVB3) 3C proteinase (3Cpro). Both are indispensable components of the viral replication initiation complex. SLD is a structurally autonomous subunit of the 5' cloverleaf. The SLD structure was solved by NMR spectroscopy to an rms deviation of 0.66 A (all heavy atoms). SLD contains a novel triple pyrimidine mismatch motif with a central Watson-Crick type C:U pair. SLD is capped by an apical uCACGg tetraloop adopting a structure highly similar to stable cUNCGg tetraloops. Binding of CVB3 3Cpro induces changes in NMR spectra for nucleotides adjacent to the triple pyrimidine mismatch and of the tetraloop implying them as sites of specific SLD:3Cpro interaction. The binding of 3Cpro to SLD requires the integrity of those structural elements, strongly suggesting that 3Cpro recognizes a structural motif instead of a specific sequence.  相似文献   

2.
Coxsackievirus B1 (CVB1) 2A proteinase (2A(pro)) is a cysteine proteinase that cleaves the viral monocistronic polyprotein between the C-terminus of the VP1 region and the N-terminus of the 2A region, and also shuts off translational initiation in host cells by cleavage of eukaryotic initiation factor 4G (eIF4G) isoforms. We expressed in Escherichia coli a series of fusions in which various C-terminal fragments of VP1 were linked to the N-terminus of 2A(pro), and we also employed site-directed mutagenesis to introduce mutations of several amino acid residues. Our results showed that the presence of the C-terminal three amino acid residues of VP1 at the N-terminus of 2A(pro) is sufficient for specific self-cleavage between VP1 and 2A(pro) to generate mature 2A(pro), but the P4 amino acid also plays an important role. We further found that 2A(pro) cleaves the amino acid sequence Leu-Val-Pro-Arg-( *)Gly-Ser (LVPRGS motif), which is the target sequence of thrombin.  相似文献   

3.
Amiloride derivatives are known blockers of the cellular Na+/H+ exchanger and the epithelial Na+ channel. More recent studies demonstrate that they also inhibit ion channels formed by a number of viral proteins. We previously reported that 5-(N-ethyl-N-isopropyl)amiloride (EIPA) modestly inhibits intracellular replication and, to a larger extent, release of human rhinovirus 2 (HRV2) (E. V. Gazina, D. N. Harrison, M. Jefferies, H. Tan, D. Williams, D. A. Anderson and S. Petrou, Antiviral Res. 67:98-106, 2005). Here, we demonstrate that amiloride and EIPA strongly inhibit coxsackievirus B3 (CVB3) RNA replication and do not inhibit CVB3 release, in contrast to our previous findings on HRV2. Passaging of plasmid-derived CVB3 in the presence of amiloride generated mutant viruses with amino acid substitutions in position 299 or 372 of the CVB3 polymerase. Introduction of either of these mutations into the CVB3 plasmid produced resistance to amiloride and EIPA, suggesting that they act as inhibitors of CVB3 polymerase, a novel mechanism of antiviral activity for these compounds.  相似文献   

4.
C U Hellen  C K Lee    E Wimmer 《Journal of virology》1992,66(6):3330-3338
Poliovirus proteinase 2A (2Apro) is autocatalytically released from the viral polyprotein by cleavage in cis of a Tyr-Gly dipeptide at its own amino terminus, resulting in separation of the P1 structural and P2-P3 nonstructural protein precursors. A second Ty-Gly dipeptide within 3D polymerase is cleaved by 2Apro in trans, but this is not essential for viral proliferation. The mechanism which limits cleavage to only 2 of the 10 Tyr-Gly dipeptides within the poliovirus polyprotein has not been characterized. We have therefore undertaken a systematic mutational analysis of the VP1-2A site to elucidate determinants of substrate recognition by 2Apro. The P2 and P1' positions are important determinants for cis cleavage of this site, whereas a variety of substituents could be tolerated at the P2', P1, and P3 positions. The requirements for trans cleavage of this site were more stringent. We found that the 2Apro of coxsackievirus type A21 and rhinoviruses 2 and 14 have stringent requirements similar to those of poliovirus 2Apro for cleavage in trans.  相似文献   

5.
Amiloride and its derivative 5-(N-ethyl-N-isopropyl)amiloride (EIPA) were previously shown to inhibit coxsackievirus B3 (CVB3) RNA replication in cell culture, with two amino acid substitutions in the viral RNA-dependent RNA polymerase 3D(pol) conferring partial resistance of CVB3 to these compounds (D. N. Harrison, E. V. Gazina, D. F. Purcell, D. A. Anderson, and S. Petrou, J. Virol. 82:1465-1473, 2008). Here we demonstrate that amiloride and EIPA inhibit the enzymatic activity of CVB3 3D(pol) in vitro, affecting both VPg uridylylation and RNA elongation. Examination of the mechanism of inhibition of 3D(pol) by amiloride showed that the compound acts as a competitive inhibitor, competing with incoming nucleoside triphosphates (NTPs) and Mg(2+). Docking analysis suggested a binding site for amiloride and EIPA in 3D(pol), located in close proximity to one of the Mg(2+) ions and overlapping the nucleotide binding site, thus explaining the observed competition. This is the first report of a molecular mechanism of action of nonnucleoside inhibitors against a picornaviral RNA-dependent RNA polymerase.  相似文献   

6.
7.
Picornaviruses are a family of positive‐strand RNA viruses that includes important human and animal pathogens. Upon infection, picornaviruses induce an extensive remodelling of host cell membranes into replication organelles (ROs), which is critical for replication. Membrane lipids and lipid remodelling processes are at the base of RO formation, yet their involvement remains largely obscure. Recently, phosphatidylinositol‐4‐phosphate was the first lipid discovered to be important for the replication of a number of picornaviruses. Here, we investigate the role of the lipid cholesterol in picornavirus replication. We show that two picornaviruses from distinct genera that rely on different host factors for replication, namely the enterovirus coxsackievirus B3 (CVB3) and the cardiovirus encephalomyocarditis virus (EMCV), both recruited cholesterol to their ROs. Although CVB3 and EMCV both required cholesterol for efficient genome replication, the viruses appeared to rely on different cellular cholesterol pools. Treatments that altered the distribution of endosomal cholesterol inhibited replication of both CVB3 and EMCV, showing the importance of endosomal cholesterol shuttling for the replication of these viruses. Summarizing, we here demonstrate the importance of cholesterol homeostasis for efficient replication of CVB3 and EMCV.  相似文献   

8.
The virally encoded 3C proteinases of picornaviruses process the polyprotein produced by the translation of polycistronic viral mRNA. The X-ray crystallographic structure of a catalytically active mutant of the hepatitis A virus (HAV) 3C proteinase (C24S) has been determined. Crystals of this mutant of HAV 3C are triclinic with unit cell dimensions a = 53.6 A, b = 53.5 A, c = 53.2 A, alpha = 99.1 degrees, beta = 129.0 degrees, and gamma = 103.3 degrees. There are two molecules of HAV 3C in the unit cell of this crystal form. The structure has been refined to an R factor of 0.211 (Rfree = 0.265) at 2.0-A resolution. Both molecules fold into the characteristic two-domain structure of the chymotrypsin-like serine proteinases. The active-site and substrate-binding regions are located in a surface groove between the two beta-barrel domains. The catalytic Cys 172 S(gamma) and His 44 N(epsilon2) are separated by 3.9 A; the oxyanion hole adopts the same conformation as that seen in the serine proteinases. The side chain of Asp 84, the residue expected to form the third member of the catalytic triad, is pointed away from the side chain of His 44 and is locked in an ion pair interaction with the epsilon-amino group of Lys 202. A water molecule is hydrogen bonded to His 44 N(delta1). The side-chain phenolic hydroxyl group of Tyr 143 is close to this water and to His 44 N(delta1) and may be negatively charged. The glutamine specificity for P1 residues of substrate cleavage sites is attributed to the presence of a highly conserved His 191 in the S1 pocket. A very unusual environment of two water molecules and a buried glutamate contribute to the imidazole tautomer believed to be important in the P1 specificity. HAV 3C proteinase has the conserved RNA recognition sequence KFRDI located in the interdomain connection loop on the side of the molecule diametrically opposite the proteolytic site. This segment of polypeptide is located between the N- and C-terminal helices, and its conformation results in the formation of a well-defined surface with a strongly charged electrostatic potential. Presumably, this surface of HAV 3C participates in the recognition of the 5' and 3' nontranslated regions of the RNA genome during viral replication.  相似文献   

9.
We have cloned various lengths of coxsackievirus B3 cDNA encompassing the region encoding the 3C proteinase, which is essential to the viral replication cycle. Such viral cDNAs were fused in frame to the 5'terminal portion of the lacZ' gene carried on the vector pUC118 to express mature 3C proteinase in Escherichia coli. In the E. coli cells containing pCXB108 or pCXB117, constructed for this study, a large amount of 23-kDa protein was synthesized in the presence of IPTG. This protein was purified and was shown to be intact 3C proteinase. These data suggest that 3C proteinase, expressed as a part of a fusion protein, was active in E. coli and released itself from the precursor fusion protein by autocatalytic cleavage.  相似文献   

10.
Si X  Wang Y  Wong J  Zhang J  McManus BM  Luo H 《Journal of virology》2007,81(7):3142-3150
Curcumin (diferuloylmethane), a natural polyphenolic compound extracted from the spice turmeric, has been reported to have anti-inflammatory, antioxidant, and antiproliferative properties by modulating multiple cellular machineries. It inhibits several intracellular signaling pathways, including the mitogen-activated protein kinases (MAPKs), casein kinase II (CKII), and the COP9 signalosome (CSN), in various cell types. It has also been recently demonstrated that exposure to curcumin leads to the dysregulation of the ubiquitin-proteasome system (UPS). Coxsackievirus infection is associated with various diseases, including myocarditis and dilated cardiomyopathy. In searching for new antiviral agents against coxsackievirus, we found that treatment with curcumin significantly reduced viral RNA expression, protein synthesis, and virus titer and protected cells from virus-induced cytopathic effect and apoptosis. We further demonstrated that reduction of viral infection by curcumin was unlikely due to inhibition of CVB3 binding to its receptors or CVB3-induced activation of MAPKs. Moreover, gene silencing of CKII and Jab1, a component of CSN, by small interfering RNAs did not inhibit the replication of coxsackievirus, suggesting that the antiviral action of curcumin is independent of these pathways. Finally, we showed that curcumin treatment reduced both the 20S proteasome proteolytic activities and the cellular deubiquitinating activities, leading to increased accumulation of ubiquitinated proteins and decreased protein levels of free ubiquitin. We have recently demonstrated that the UPS-mediated protein degradation and/or modification plays a critical role in the regulation of coxsackievirus replication. Thus, our results suggest an important antiviral effect of curcumin wherein it potently inhibits coxsackievirus replication through dysregulation of the UPS.  相似文献   

11.
Replicase gene of coxsackievirus B3.   总被引:4,自引:1,他引:3       下载免费PDF全文
A cDNA copy covering two-thirds of the coxsackievirus B3 genome was cloned in the PstI site of the pBR322 vector. A nucleotide sequence containing the gene for the viral replicase and the 3' noncoding region of the coxsackievirus B3 genome was determined. The predicted amino acid sequence of the coxsackievirus B3 replicase was shown to be remarkably similar to that of the poliovirus 1 replicase. The 3' noncoding region, in contrast, was only weakly homologous to the poliovirus 1 sequence but showed a close relationship to the sequence of swine vesicular disease virus, a variant of coxsackievirus B5. A 13-nucleotide-long segment located near the polyadenylic acid junction is conserved in several members of the enterovirus group and may thus serve an important function during replication of viral RNA.  相似文献   

12.
Ahn J  Jun ES  Lee HS  Yoon SY  Kim D  Joo CH  Kim YK  Lee H 《Journal of virology》2005,79(13):8620-8624
We examined the ability of small interfering RNAs (siRNAs) to disrupt infection by coxsackievirus B3 (CVB3). The incorporation of siRNAs dramatically decreased cell death in permissive HeLa cells in parallel with a reduction in viral replication. Three of four siRNAs had potent anti-CVB3 activity. The present study thus demonstrates that the antiviral effect is due to the downregulation of viral replication. In addition, an effective CVB3-specific siRNA had similar antiviral effects in other related enteroviruses possessing sequence homology in the targeted region. Because the CVB3-specific siRNA is effective against other enteroviruses, siRNAs have potential for a universal antienterovirus strategy.  相似文献   

13.
Many entero-, parecho-, and rhinoviruses use immunoglobulin (Ig)-like receptors that bind into the viral canyon and are required to initiate viral uncoating during infection. However, some of these viruses use an alternative or additional receptor that binds outside the canyon. Both the coxsackievirus-adenovirus receptor (CAR), an Ig-like molecule that binds into the viral canyon, and decay-accelerating factor (DAF) have been identified as cellular receptors for coxsackievirus B3 (CVB3). A cryoelectron microscopy reconstruction of a variant of CVB3 complexed with DAF shows full occupancy of the DAF receptor in each of 60 binding sites. The DAF molecule bridges the canyon, blocking the CAR binding site and causing the two receptors to compete with one another. The binding site of DAF on CVB3 differs from the binding site of DAF on the surface of echoviruses, suggesting independent evolutionary processes.  相似文献   

14.
15.
肠道病毒3D蛋白是其RNA聚合酶。柯萨奇病毒B3型(coxsackievirus B3,CVB3)主要感染心脏,其3D蛋白在心肌表达中的时序和分布尚不清楚。本研究将通过聚合酶链反应(polymerase chain reaction,PCR)获得的CVB 3D片段插入pET28a(+)的表达框,获得pET28a(+)-3D重组质粒。异丙基 β-D-硫代半乳糖苷(isopropyl β-D-1-thiogalactopyranoside,IPTG)诱导pET28a(+)-3D表达3D-His蛋白,十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate-polyacrylamide gel electrophoresis,SDS-PAGE)后,切胶,获得3D-His蛋白。3D-His蛋白加佐剂免疫新西兰大白兔制备3D蛋白多克隆抗体,蛋白免疫印迹法检测抗体效价及特异性。结果显示,本研究获得了高效价且特异性好的抗CVB3 3D蛋白抗体,可用于CVB3 3D蛋白功能的后续研究。  相似文献   

16.
Development of potent inhibitors of the coxsackievirus 3C protease   总被引:1,自引:0,他引:1  
Coxsackievirus B3 (CVB3) 3C protease (3CP) plays essential roles in the viral replication cycle, and therefore, provides an attractive therapeutic target for treatment of human diseases caused by CVB3 infection. CVB3 3CP and human rhinovirus (HRV) 3CP have a high degree of amino acid sequence similarity. Comparative modeling of these two 3CPs revealed one prominent distinction; an Asn residue delineating the S2' pocket in HRV 3CP is replaced by a Tyr residue in CVB3 3CP. AG7088, a potent inhibitor of HRV 3CP, was modified by substitution of the ethyl group at the P2' position with various hydrophobic aromatic rings that are predicted to interact preferentially with the Tyr residue in the S2' pocket of CVB3 3CP. The resulting derivatives showed dramatically increased inhibitory activities against CVB3 3CP. In addition, one of the derivatives effectively inhibited the CVB3 proliferation in vitro.  相似文献   

17.
Cleavage of synthetic peptides by purified poliovirus 3C proteinase   总被引:23,自引:0,他引:23  
Synthetic peptides, 14-16 residues in length, were used as substrates for purified recombinant poliovirus proteinase 3C. The sequences of the substrates correspond to the sequences of authentic cleavage sites in the poliovirus polyprotein, all of which contain Gln-Gly at the scissile bond. Specificity of cleavages was demonstrated by analysis of 3C digests of synthetic peptides. Relative rate constants for the cleavages were derived by competition experiments. The rate constants roughly correlated with the estimated half-life of the homologous precursor proteins detected in poliovirus-infected cells. The peptide most resistant to cleavage corresponded to the 3C/3D junction, a site known to be cleaved very slowly by 3C in vivo. Substitution of threonine for alanine in P4 position of this peptide, however, resulted in significant cleavage. This observation supports the hypothesis that the residue in P4 position, in addition to the Gln-Gly in P1 and P1', respectively, contributes to substrate recognition. Ac-Gln-Gly-NH2 was not a substrate for 3C.  相似文献   

18.
The origin of replication ( oriR ) involved in the initiation of (-) strand enterovirus RNA synthesis is a quasi-globular multi-domain RNA structure which is maintained by a tertiary kissing interaction. The kissing interaction is formed by base pairing of complementary sequences within the predominant hairpin-loop structures of the enteroviral 3' untranslated region. In this report, we have fully characterised the kissing interaction. Site-directed mutations which affected the different base pairs involved in the kissing interaction were generated in an infectious coxsackie B3 virus cDNA clone. The kissing interaction appeared to consist of 6 bp. Distortion of the interaction by mispairing of each of the base pairs involved in this higher order RNA structure resulted in either temperature sensitive or lethal phenotypes. The nucleotide constitution of the base which gaps the major groove of the kissing domain was not relevant for virus growth. The reciprocal exchange of the complete sequence involved in the kissing resulted in a mutant virus with wild type virus growth characteristics arguing that the base pair constitution is of less importance for the initiation of (-) strand RNA synthesis than the existence of the tertiary structure itself.  相似文献   

19.
Prototype temperature-sensitive (ts) mutants of a coxsackievirus B3 parent virus capable of replication to similar levels at 34 or 39.5 degrees C were examined for the nature of the temperature-sensitive event restricting replication in HeLa cells at 39.5 degrees C. The ts mutant prototypes represented three different non-overlapping complementation groups. The ts1 mutant (complementation group III) synthesized less than 1% of the infectious genomic RNA synthesized by the coxsackievirus B3 parent virus at 39.5 degrees C and was designated an RNA- mutant. Agarose gel analysis of glyoxal-treated RNA from cells inoculated with ts1 virus revealed that cell RNA synthesis continued in the presence of synthesis of the small amount of viral RNA. This mutant was comparatively ineffective in inducing cell cytopathology and in directing synthesis of viral polypeptides, likely due to the paucity of nascent genomes for translation. The ts5 mutant (complementation group II) directed synthesis of appreciable quantities of both viral genomes (RNA+) and capsid polypeptides; however, assembly of these products into virions occurred at a low frequency, and virions assembled at 39.5 degrees C were highly unstable at that temperature. Shift-down experiments with ts5-inoculated cells showed that capsid precursor materials synthesized at 39.5 degrees C can, after shift to 34 degrees C, be incorporated into ts5 virions. We suggest that the temperature-sensitive defect in this prototype is in the synthesis of one of the capsid polypeptides that cannot renature into the correct configuration required for stability in the capsid at 39.5 degrees C. The ts11 mutant (complementation group I) also synthesized appreciable amounts of viral genomes (RNA+) and viral polypeptides at 39.5 degrees C. Assembly of ts11 virions at 39.5 degrees C occurred at a low frequency, and the stability of these virions at 39.5 degrees C was similar to that of the parent coxsackievirus B3 virions. The temperature-sensitive defect in the ts11 prototype is apparently in assembly. The differences in biochemical properties of the three prototype ts mutants at temperatures above 34 degrees C may ultimately offer insight into the differences in pathogenicity observed in neonatal mice for the three prototype ts mutants.  相似文献   

20.
Coxsackievirus B3 (CV-B3) is a cardiovirulent enterovirus that utilizes a 5′ untranslated region (5′UTR) to complete critical viral processes. Here, we directly compared the structure of a 5′UTR from a virulent strain with that of a naturally occurring avirulent strain. Using chemical probing analysis, we identified a structural difference between the two 5′UTRs in the highly substituted stem-loop II region (SLII). For the remainder of the 5′UTR, we observed conserved structure. Comparative sequence analysis of 170 closely related enteroviruses revealed that the SLII region lacks conservation. To investigate independent folding and function, two chimeric CV-B3 strains were created by exchanging nucleotides 104–184 and repeating the 5′UTR structural analysis. Neither the parent SLII nor the remaining domains of the background 5′UTR were structurally altered by the exchange, supporting an independent mechanism of folding and function. We show that the attenuated 5′UTR lacks structure in the SLII cardiovirulence determinant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号