首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kang JH 《BMB reports》2010,43(10):683-687
Previous studies have shown that one of the primary causes of increased iron content in the brain may be the release of excess iron from intracellular iron storage molecules such as ferritin. Free iron generates ROS that cause oxidative cell damage. Carnosine and related compounds such as endogenous histidine dipetides have antioxidant activities. We have investigated the protective effects of carnosine and homocarnosine against oxidative damage of DNA induced by reaction of ferritin with H(2)O(2). The results show that carnosine and homocarnosine prevented ferritin/H(2)O(2)-mediated DNA strand breakage. These compounds effectively inhibited ferritin/H(2)O(2)-mediated hydroxyl radical generation and decreased the mutagenicity of DNA induced by the ferritin÷H(2)O(2) reaction. Our results suggest that carnosine and related compounds might have antioxidant effects on DNA under pathophysiological conditions leading to degenerative damage such as neurodegenerative disorders.  相似文献   

2.
Abstract: The brain requires a ready supply of iron for normal neurological function, but free iron is toxic. Consequently, iron bioavailability must be stringently regulated. Recent evidence has suggested that the brain iron regulatory system is dysfunctional in neurological disorders such as Alzheimer's and Parkinson's diseases (AD and PD, respectively). A key component of the iron regulatory system in the brain is ferritin. Ferritin consists of 24 subunits, which are distinguished as either a heavy-chain (H) or light-chain (L) isoform. These peptide subunits are genetically and functionally distinct. Thus, the ability to investigate separately the types of ferritin in brain should provide insight into iron management at both the cellular and the molecular level. In this study, the ratio of isoferritins was determined in select regions of adult elderly AD and PD human brains. The H-rich ferritin was more abundant in the young brain, except in the globus pallidus where the ratio of H/L ferritin was 1:1. The balance of H/L isoferritins was influenced by age, brain region, and disease state. With normal aging, both H and L ferritin increased; however, the age-associated increase in isoferritins generally failed to occur in AD and PD brain tissue. The imbalance in H/L isoferritins was disease and region specific. For example, in frontal cortex, there was a dramatic (fivefold) increase in the ratio of H/L ferritin in AD brains but not in PD brains. In PD, caudate and putamen H/L ratios were higher than in AD and the elderly control group. The analysis of isoferritin expression in brain provides insight into regional iron regulation under normal conditions and suggests a loss of ability to maintain iron homeostasis in the two disease states. This latter observation provides further evidence of dysfunction of iron homeostatic mechanisms in AD and PD and may contribute significantly to understanding the underlying pathogenesis of each, particularly in relation to iron-induced oxidative damage.  相似文献   

3.
Excess iron accumulation in the brain has been shown to be related to a variety of neurodegenerative diseases. However, identification and characterization of iron compounds in human tissue is difficult because concentrations are very low. For the first time, a combination of low temperature magnetic methods was used to characterize iron compounds in tumour tissue from patients with mesial temporal lobe epilepsy (MTLE). Induced magnetization as a function of temperature was measured between 2 and 140 K after cooling in zero-field and after cooling in a 50 mT field. These curves reveal an average blocking temperature for ferritin of 10 K and an anomaly due to magnetite at 48 K. Hysteresis measurements at 5 K show a high coercivity phase that is unsaturated at 7 T, which is typical for ferritin. Magnetite concentration was determined from the saturation remanent magnetization at 77 K. Hysteresis measurements at various temperatures were used to examine the magnetic blocking of magnetite and ferritin. Our results demonstrate that low temperature magnetic measurements provide a useful and sensitive tool for the characterisation of magnetic iron compounds in human tissue.Published online: March 2005  相似文献   

4.

Background

The concentration of iron in the brain increases with aging. Furthermore, it has also been observed that patients suffering from neurological diseases (e.g. Parkinson, Alzheimer…) accumulate iron in the brain regions affected by the disease. Nevertheless, it is still not clear whether this accumulation is the initial cause or a secondary consequence of the disease. Free iron excess may be an oxidative stress source causing cell damage if it is not correctly stored in ferritin cores as a ferric iron oxide redox-inert form.

Scope

Both, the composition of ferritin cores and their location at subcellular level have been studied using analytical transmission electron microscopy in brain tissues from progressive supranuclear palsy (PSP) and Alzheimer disease (AD) patients.

Major conclusions

Ferritin has been mainly found in oligodendrocytes and in dystrophic myelinated axons from the neuropili in AD. In relation to the biomineralization of iron inside the ferritin shell, several different crystalline structures have been observed in the study of physiological and pathological ferritin. Two cubic mixed ferric–ferrous iron oxides are the major components of pathological ferritins whereas ferrihydrite, a hexagonal ferric iron oxide, is the major component of physiological ferritin. We hypothesize a dysfunction of ferritin in its ferroxidase activity.

General significance

The different mineralization of iron inside ferritin may be related to oxidative stress in olygodendrocites, which could affect myelination processes with the consequent perturbation of information transference.  相似文献   

5.
Decreased Ferritin Levels in Brain in Parkinson''s Disease   总被引:5,自引:2,他引:3  
Ferritin levels were measured in postmortem brain tissue from patients dying with Parkinson's disease [treated with L-3,4-dihydroxyphenylalanine (L-DOPA)] and from control patients. Ferritin levels were decreased in the substantia nigra, caudate-putamen, globus pallidus, cerebral cortex, and cerebellum when compared with age-matched control tissues. However, in CSF from L-DOPA-treated patients and in serum from L-DOPA-treated and untreated parkinsonian patients, ferritin levels were normal. Previous studies have suggested an increased total iron content in substantia nigra of parkinsonian brain. The failure of substantia nigra ferritin formation to be stimulated by increased iron levels suggests some defect in iron handling in this critical brain region in Parkinson's disease. The reason for decreased ferritin levels throughout the parkinsonian brain is not clear but does not seem to reflect a general system deficit in ferritin.  相似文献   

6.
On the limited ability of superoxide to release iron from ferritin   总被引:3,自引:0,他引:3  
Reductive release of iron from ferritin may catalyze cytotoxic radical reactions like the Haber-Weiss reaction. The ability of .O2- to mobilize Fe(II) from ferritin was studied by using the xanthine/xanthine oxidase reaction, with and without superoxide dismutase, and with bathophenanthroline sulphonate as the chelator. Not more than one or two Fe(II)/ferritin molecules could be released by an .O2(-)-dependent mechanism, even after repeated exposures of ferritin to bursts of .O2-. The amount of releaseable iron depended on the size and the age of the iron core, but not on the iron content of the protein shell of ferritin which was manipulated by chelators and addition of FeCl3. The kinetic characteristics of the .O2(-)-mediated iron release indicated the presence of a small pool of readily available iron at the surface of the core. The very limited .O2(-)-dependent release of iron from ferritin is compatible with a protective role of ferritin against toxic iron-catalyzed reactions.  相似文献   

7.
Elevated iron levels are associated with many types of neurodegenerative disease, such as Alzheimer's, Parkinson's and Huntington's diseases. However, these elevated iron levels do not necessarily correlate with elevated levels of the iron storage or transport proteins, ferritin and transferrin. As such, little is known about the form of this excess iron. It has recently been proposed that some of the excess iron in neurodegenerative tissue may be in the form of the magnetic iron oxide magnetite (Fe(3)O(4)). We demonstrate, for the first time to our knowledge, using highly sensitive superconducting quantum interference device (SQUID) magnetometry, that the concentrations of magnetite are found to be significantly higher in three samples of Alzheimer's disease tissue than in three age- and sex-matched controls. These results have implications, not only for disease progression, but also for possible early diagnosis.  相似文献   

8.
Abstract: Iron is a universal cofactor for mitochondrial energy generation and supports the growth and differentiation of all cell types. In the CNS, iron is a key component of systems responsible for myelination and the synthesis of several neurotransmitters. In this study the spatial and temporal pattern of iron and its regulatory proteins transferrin and ferritin are quantitatively examined in the rat CNS during the first 3 weeks of postnatal life and in adults and aged animals. The midbrain, the cerebral cortex, and the cerebellum-pons are examined independently. Iron, transferrin, and ferritin concentrations are highest in all three brain regions at birth and decrease in each region to minimum levels during the third postnatal week. The decrease in levels of iron, transferrin, and ferritin is most pronounced in the cerebellum-pons and cortex and least in the midbrain. From postnatal day 17, iron (total iron content) and ferritin levels increase throughout the lifetime of the rat. In contrast, transferrin levels remain fairly constant in each brain region after postnatal day 24. The midbrain region, which includes the iron-rich regions such as the globus pallidus, substantia nigra, and red nucleus, has the least change in iron with development, has the highest level of ferritin during development, and consistently has the highest level of transferrin at all ages. These observations are consistent with reports that iron is important for normal motor function. Transferrin did not increase after postnatal day 24 in the three brain regions examined despite increasing amounts of iron, which implies a decrease in iron mobility in the aged rats, a finding that is consistent with observations of human brain tissue. The data reported in this study demonstrate that iron acquisition and mobilization systems in the CNS are established early in development and that the overall pattern of acquisition among brain regions is similar. These data offer support and insight into established concepts that a sufficient iron supply is critical for normal neurological development.  相似文献   

9.
Even with uncomplicated iron overload, serum ferritin which can be identified in the circulating blood by sensitive immunochemical methods has a direct and quantitative correlation to the iron stored in the organism. The relation of stored iron and serum ferritin is not linear, but has an exponential character. The diagnostic function of serum ferritin as an indicator of stored iron, however, is virtually not influenced by it. The indications listed in Tab. 3 can be demarcated for diagnostic application in cases of iron overload. Hitherto, the molecular microheterogenicity of serum ferritin has exercised no essential impact on its diagnostic application. High ferritin concentrations may arise in the circulating blood by a number of disease processes listed in Tab. 4, without the simultaneous existence of a respective iron overload of the tissue. These correlations have to be observed in the diagnostic application of determining serum ferritin as well as in methodical possibilities of fault (high dose hook effect), thus limiting the use of serum ferritin as an indicator of stored iron both in case of iron overload and iron deficiency. As in all isolated laboratory investigations, all other clinical and chemical laboratory information available about the individual patient has to be taken into account in each case for interpreting the serum ferritin concentration.  相似文献   

10.
Aluminium toxicity and iron homeostasis.   总被引:7,自引:0,他引:7  
In an animal model of aluminum overload, (aluminium gluconate), the increases in tissue aluminium content were paralleled by elevations of tissue iron in the kidney, liver heart and spleen as well as in various brain regions, frontal, temporal and parietal cortex and hippocampus. Despite such increases in iron content there were no significant changes in the activities of a wide range of cytoprotective enzymes apart from an increase in superoxide dismutase in the frontal cortex of the aluminium loaded rats. Such increases in tissue iron content may be attributed to the stabilisation of IRP-2 by aluminium thereby promoting transferrin receptor synthesis while blocking ferritin synthesis. Using the radioactive tracer (26)Al less than 1% of the injected dose was recovered in isolated ferritin, supporting previous studies which also found little evidence for aluminium storage within ferritin. The increases in brain iron may well be contributory to neurodegeneration, although the pathogenesis by which iron exerts such an effect is unclear.  相似文献   

11.
BACKGROUND: The basal ganglia contain the highest levels of iron in the brain and post-mortem studies indicate a disruption of iron metabolism in the basal ganglia of patients with neurodegenerative disorders such as Alzheimer's disease (AD) and Huntington's disease (HD). Iron can catalyze free radical reactions and may contribute to oxidative damage observed in AD and HD brain. Magnetic resonance imaging (MRI) can quantify transverse relaxation rates, which can be used to quantify tissue iron stores as well as evaluate increases in MR-visible water (an indicator of tissue damage). METHODS: A magnetic resonance imaging (MRI) method termed the field dependent relaxation rate increase (FDRI) was employed which quantifies the iron content of ferritin molecules (ferritin iron) with specificity through the combined use of high and low field-strength MRI instruments. Three basal ganglia structures (caudate, putamen and globus pallidus) and one comparison region (frontal lobe white matter) were evaluated. Thirty-one patients with AD and a group of 68 older control subjects, and 11 patients with HD and a group of 27 adult controls participated (4 subjects overlap between AD and HD controls). RESULTS: Compared to their respective normal control groups, increases in basal ganglia FDRI levels were seen in both AD and HD. FDRI levels were significantly increased in the caudate (p = 0.007) and putamen (p = 0.008) of patients with AD with a trend toward an increase in the globus pallidus (p = 0.13). In the patients with HD, all three basal ganglia regions showed highly significant FDRI increases (p<0.001) and the magnitude of the increases were 2 to 3 times larger than those observed in AD versus control group comparison. For both HD andAD subjects, the basal ganglia FDRI increase was not a generalized phenomenon, as frontal lobe white matter FDRI levels were decreased in HD (p = 0.015) and remained unchanged in AD. Significant low field relaxation rate decreases (suggestive of increased MR-visible water and indicative of tissue damage) were seen in the frontal lobe white matter of both HD and AD but only the HD basal ganglia showed such decreases. CONCLUSIONS: The data suggest that basal ganglia ferritin iron is increased in HD and AD. Furthermore, the increased iron levels do not appear to be a byproduct of the illness itself since they seem to be present at the onset of the diseases, and thus may be considered a putative risk factor. Published post-mortem studies suggest that the increase in basal ganglia ferritin iron may occur through different mechanisms in HD and AD. Consistent with the known severe basal ganglia damage, only HD basal ganglia demonstrated significant decreases in low field relaxation rates. MRI can be used to dissect differences in tissue characteristics, such as ferritin iron and MR-visible water, and thus could help clarify neuropathologic processes in vivo. Interventions aimed at decreasing brain iron levels, as well as reducing the oxidative stress associated with increased iron levels, may offer novel ways to delay the rate of progression and possibly defer the onset of AD and HD.  相似文献   

12.
Yoon JH  An SH  Kyeong IG  Lee MS  Kwon SC  Kang JH 《BMB reports》2011,44(3):165-169
Excess free iron generates oxidative stress that may contribute to the pathogenesis of various causes of neurodegenerative diseases. In this study, we assessed the modification of ferritin induced by H(2)O(2). When ferritin was incubated with H(2)O(2), the degradation of ferritin L-chain increased with the H(2)O(2) concentration whereas ferritin H-chain was remained. Free radical scavengers, azide, thiourea, and N-acetyl-(L)-cysteine suppressed the H(2)O(2)-mediated ferritin modification. The iron specific chelator, deferoxamine, effectively prevented H(2)O(2)-mediated ferritin degradation in modified ferritin. The release of iron ions from ferritin was increased in H(2)O(2) concentration-dependent manner. The present results suggest that free radicals may play a role in the modification and iron releasing of ferritin by H(2)O(2). It is assumed that oxidative damage of ferritin by H(2)O(2) may induce the increase of iron content in cells and subsequently lead to the deleterious condition.  相似文献   

13.
Reductive release of ferritin iron: a kinetic assay   总被引:1,自引:0,他引:1  
Ferritin iron release, a process of considerable interest in biology and medicine, occurs most readily in the presence of reducing agents. Here is described a kinetic assay for measuring the rate of ferritin iron removal promoted by various reductants. The new procedure uses ferrozine as a chromophoric, high-affinity chelator for the product, Fe(II). The initial rate of iron release is quantified by continuous spectrophotometric measurement of the Fe(ferrozine)2/3+ complex which absorbs maximally at 562 nm. The initial rate of iron mobilization is dependent on reductant concentration, but not on the concentration of the chelating agent, ferrozine. Saturation kinetics are observed for all reductants, including dihydroxyfumarate, cysteine, caffeic acid, ascorbate, and glutathione. Superoxide dismutase greatly inhibits ferritin iron release by ascorbate, but has little or no effect on the reducing action of dihydroxyfumarate, cysteine, caffeic acid, or glutathione. Ferritin iron removal by dihydroxyfumarate was inhibited by various metal ions. This new assay may be used for rapid screening of test compounds for treatment of iron overload and for investigation of the mechanistic aspects of ferritin iron reduction.  相似文献   

14.
Xanthine oxidase is able to mobilize iron from ferritin. This mobilization can be blocked by 70% by superoxide dismutase, indicating that part of its action is mediated by superoxide (O2-). Uric acid induced the release of ferritin iron at concentrations normally found in serum. The O2(-)-independent mobilization of ferritin iron by xanthine oxidase cannot be attributed to uric acid, because uricase did not influence the O2(-)-independent part and acetaldehyde, a substrate for xanthine oxidase, also revealed an O2(-)-independent part, although no uric acid was produced. Presumably the amount of uric acid produced by xanthine oxidase and xanthine is insufficient to release a measurable amount of iron from ferritin. The liberation of iron from ferritin by xanthine oxidase has important consequences in ischaemia and inflammation. In these circumstances xanthine oxidase, formed from xanthine dehydrogenase, will stimulate the formation of a non-protein-bound iron pool, and the O2(-)-produced by xanthine oxidase, or granulocytes, will be converted by 'free' iron into much more highly toxic oxygen species such as hydroxyl radicals (OH.), exacerbating the tissue damage.  相似文献   

15.
Variations in the turnover of storage iron have been attributed to differences in apoferritin and in the cytoplasm but rarely to differences in the structure of the iron core (except size). To explore the idea that the iron environment in soluble iron complexes could vary, we compared horse spleen ferritin to pharmaceutically important model complexes of hydrous ferric oxide formed from FeCl3 and dextran (Imferon) or chondroitin sulfate (Blutal), using x-ray absorption (EXAFS) and M?ssbauer spectroscopy. The results show that the iron in the chondroitin sulfate complex was more ordered than in either horse spleen ferritin or the dextran complex (EXAFS), with two magnetic environments (M?ssbauer), one (80%-85%) like Fe2O3 X nH2O (ferritinlike) and one (15%-20%) like Fe2O3 (hematite); since sulfate promotes the formation of inorganic hematite, the sulfate in the chondroitin sulfate most likely nucleated Fe2O3 and hydroxyl/carboxyls, which are ligands common to chondroitin sulfate, ferritin and dextran most likely nucleated Fe2O3 X nH2O. Differences in the structure of the iron complexed with chondroitin sulfate or dextran coincide with altered rates of iron release in vivo and in vitro and provide the first example relating function to local iron structure. Differences might also occur among ferritins in vivo, depending on the apoferritin (variations in anion-binding sites) or the cytoplasm (anion concentration).  相似文献   

16.
J. Sorbie  L. S. Valberg  W. E. Corbett  J. Ludwig 《CMAJ》1975,112(10):1173-1178
Serum ferritin concentration was measured by immunoradiometric assay in 64 subjects. It was closely related to the size of body iron stores measured by hemosiderin content of bone marrow in all subjects and by the deferoxamine test in 10 patients with iron overload. Urinary cobalt excretion, an indirect measure of iron absorption, was inversely related to hemosiderin content of bone marrow in 34 patients aged 18 to 72 with or without liver disease, but this relation did not hold in a group of 20 student volunteers aged 17 to 30, indicating that the test is unreliable in young people. A strong inverse correlation was demonstrated between values for cobalt excretion and serum ferritin in the 34 patients and between those for iron absorption and serum ferritin in the 20 students. Serum ferritin concentration appears to reflect accurately the iron status of the healthy individual but high values in liver disease must be interpreted with caution.  相似文献   

17.
The yield and purity of synaptic plasma membranes (SPM) and synaptic junctions (SJ) from rat brain has been examined as a function of the concentration ofp-iodonitrotetrazolium (INT)-succinate used during their preparation. An INT concentration of 1 mg/g brain tissue (wet weight) was sufficient to obtain SPM and SJ of purity comparable to that obtained using 4–6 times that concentration of dye (1–3). At this lower level of INT the yield of SPM increased by about 100%, whereas mitochondrial contamination remained at 10–13% of the total SPM protein. At concentrations of INT below 0.5 mg/g brain tissue (wet weight) the contamination of SPM by mitochondria increased rapidly. At very low concentrations of INT (0.13 mg/g tissue) the contaminating protein of mitochondrial origin was 40–50% of the total protein in the SPM fraction. Examination by gel electrophoresis of SPM, SJ, and mitochondrial fractions with different degrees of cross-contamination allowed the assignment of marker polypeptides for mitochondrial, junctional, and nonjunctional plasma membranes. Under the conditions used to prepare SJ, a variable amount of particulate material floated over 1.0M sucrose. It consisted of SJ and many membrane vesicles and had a protein composition similar to that of SJ contaminated by extrajunctional membrane proteins. An analogous fraction arose during in the preparation of postsynaptic densities.  相似文献   

18.
Iron mobilization in three animal models of inflammation   总被引:2,自引:0,他引:2  
The effect of acute, subchronic, and chronic experimental models of inflammation upon hematocrit, hemoglobin, serum iron and ferritin iron and nonheme iron concentration in the liver and spleen has been studied in the rat. In the acute model (carrageenan oedema) no iron mobilization took place, whereas in the chronic models differences in iron mobilization were observed, related to their different chronicity and to the time elapsed from induction. The carrageenan-induced granuloma (from 12 h to 8 days) (subchronic model) was accompanied by a decrease of plasma iron (12 and 24 h), a later decrease of the hematocrit values (2 and 4 days) and high ferritin and nonheme iron concentrations in the liver and spleen for 4 days, followed by a tendency to return to the control values. The anemia in the adjuvant arthritis (from 1 to 4 weeks after induction) (chronic model) was observed at 7 days and is related to increased iron stores in the liver and spleen. However, the iron store levels in liver decreased and fell later below control values. The increase of ferritin and nonheme iron concentrations may be responsible for the reduced availability of iron release from tissue.  相似文献   

19.
In Vitro Studies of Ferritin Iron Release and Neurotoxicity   总被引:2,自引:1,他引:1  
Abstract: The increase in brain iron associated with several neurodegenerative diseases may lead to an increased production of free radicals via the Fenton reaction. Intracellular iron is usually tightly regulated, being bound by ferritin in an insoluble ferrihydrite core. The neurotoxin 6-hydroxydopamine (6-OHDA) releases iron from the ferritin core by reducing it to the ferrous form. Iron release induced by 6-OHDA and structurally related compounds and two other dopaminergic neurotoxins, 1-methyl-4-phenylpyridinium iodide (MPP+) and 1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo), were compared, to identify the structural characteristics important for such release. 1,2,4-Trihydroxybenzene (THB) was most effective in releasing ferritin-bound iron, followed by 6-OHDA, dopamine, catechol, and hydroquinone. Resorcinol, MPP+, and TaClo were ineffective. The ability to release iron was associated with a low oxidation potential. It is proposed that a low oxidation potential and an ortho -dihydroxyphenyl structure are important in the mechanism by which ferritin iron is mobilized. In the presence of ferritin, both 6-OHDA and THB strongly stimulated lipid peroxidation, an effect abolished by the addition of the iron chelator deferoxamine. These results suggest that ferritin iron release contributes to free radical-induced cell damage in vivo.  相似文献   

20.
Iron imbalances in the brain, including excess accumulation and deficiency, are associated with neurological disease and dysfunction; yet, their origins are poorly understood. Using systems genetics analysis, we have learned that large individual differences exist in brain iron concentrations, even in the absence of neurological disease. Much of the individual differences can be tied to the genetic makeup of the individual. This genetic-based differential regulation can be modeled in genetic reference populations of rodents. The work in our laboratory centers on iron regulation in the brain and our animal model consists of 25 BXD/Ty recombinant inbred mouse strains. By studying naturally occurring variation in iron phenotypes, such as tissue iron concentration, we can tie that variability to one or more genes by way of quantitative trait loci (QTL) analysis. Moreover, we can conduct genetic correlation analyses between our phenotypes and others previously measured in the BXD/Ty strains. We have observed several suggestive QTL related to ventral midbrain iron content, including one on chromosome 17 that contains btbd9, a gene that in humans has been associated with restless legs syndrome and serum ferritin. We have also observed gene expression correlations with ventral midbrain iron, including btbd9 expression and dopamine receptor expression. In addition, we have observed significant correlations between ventral midbrain iron content and dopamine-related phenotypes. The following is a discussion of iron regulation in the brain and the contributions a systems genetics approach can make toward understanding the genetic underpinnings and relation to neurological disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号