首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
Hypoxia-inducible factor 1 (HIF-1) is controlled through stability regulation of its alpha subunit, which is expressed under hypoxia but degraded under normoxia. Degradation of HIF-1alpha requires association of the von Hippel Lindau protein (pVHL) to provoke ubiquitination followed by proteasomal digestion. Besides hypoxia, nitric oxide (NO) stabilizes HIF-1alpha under normoxia but destabilizes the protein under hypoxia. To understand the role of NO under hypoxia we made use of pVHL-deficient renal carcinoma cells (RCC4) that show a high steady state HIF-1alpha expression under normoxia. Exposing RCC4 cells to hypoxia in combination with the NO donor DETA-NO (2,2'-(hydroxynitrosohydrazono) bis-ethanimine), but not hypoxia or DETA-NO alone, decreased HIF-1alpha protein and attenuated HIF-1 transactivation. Mechanistically, we noticed a role of calpain because calpain inhibitors reversed HIF-1alpha degradation. Furthermore, chelating intracellular calcium attenuated HIF-1alpha destruction by hypoxia/DETA-NO, whereas a calcium increase was sufficient to lower the amount of HIF-1alpha even under normoxia. An active role of calpain in lowering HIF-1alpha amount was also evident in pVHL-containing human embryonic kidney cells when the calcium pump inhibitor thapsigargin reduced HIF-1alpha that was stabilized by the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG). We conclude that calcium contributes to HIF-1alpha destruction involving the calpain system.  相似文献   

8.
9.
10.
11.
Stabilization of the hypoxia-inducible factor-1 (HIF-1) protein is essential for its role as a regulator of gene expression under low oxygen conditions. Here, employing a novel hydroxylation-specific antibody, we directly show that proline 564 of HIF-1alpha and proline 531 of HIF-2alpha are hydroxylated under normoxia. Importantly, HIF-1alpha Pro-564 and HIF-2alpha Pro-531 hydroxylation is diminished with the treatment of hypoxia, cobalt chloride, desferrioxamine, or dimethyloxalyglycine, regardless of the E3 ubiquitin ligase activity of the von Hippel-Lindau (VHL) tumor suppressor gene. Furthermore, in VHL-deficient cells, HIF-1alpha Pro-564 and HIF-2alpha Pro-531 had detectable amounts of hydroxylation following transition to hypoxia, indicating that the post-translational modification is not reversible. The introduction of v-Src or RasV12 oncogenes resulted in the stabilization of normoxic HIF-1alpha and the loss of hydroxylated Pro-564, demonstrating that oncogene-induced stabilization of HIF-1alpha is signaled through the inhibition of prolyl hydroxylation. Conversely, a constitutively active Akt oncogene stabilized HIF-1alpha under normoxia independently of prolyl hydroxylation, suggesting an alternative mechanism for HIF-1alpha stabilization. Thus, these results indicate distinct pathways for HIF-1alpha stabilization by different oncogenes. More importantly, these findings link oncogenesis with normoxic HIF-1alpha expression through prolyl hydroxylation.  相似文献   

12.
The hypoxia-inducible factor-1alpha (HIF-1alpha) subunit is activated in response to lack of oxygen. HIF-1alpha-specific prolyl hydroxylase and factor inhibiting HIF-1alpha (FIH-1) catalyze hydroxylation of the proline and asparagine residues of HIF-1alpha, respectively. The hydroxyproline then interacts with ubiquitin E3 ligase, the von Hippel-Lindau protein, leading to degradation of HIF-1alpha by ubiquitin-dependent proteasomes, while the hydroxylation of the asparagine residue prevents recruitment of the coactivator, cAMP-response element-binding protein (CBP), thereby decreasing the transactivation ability of HIF-1alpha. We found that the Zn-specific chelator, N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), enhances the activity of HIF-1alpha-proline hydroxylase 2 but the level of HIF-1alpha protein does not fall because TPEN also inhibits ubiquitination. Since the Zn chelator does not prevent FIH-1 from hydroxylating the asparagine residue of HIF-1alpha, its presence leads to the accumulation of HIF-1alpha that is both prolyl and asparaginyl hydroxylated and is therefore nonfunctional. In hypoxic cells, TPEN also prevents HIF-1alpha from interacting with CBP, so reducing expression of HIF-1alpha target genes. As a result, Zn chelation causes the accumulation of nonfunctional HIF-1alpha protein in both normoxia and hypoxia.  相似文献   

13.
Hypoxia-inducible factor (HIF)-1α undergoes degradation under normoxia, which involves its proline hydroxylation and subsequent binding of proline-hydroxylated HIF-1α to the von Hippel-Lindau protein–Elongin B–Elongin C (VBC) complex. In this study, we designed and synthesized a series of peptides containing 556–575 residues of HIF-1α with modifications at the Pro-564 residue to inhibit the interaction between proline-hydroxylated HIF-1α and VBC. Employing a fluorescence polarization-based interaction assay, we evaluated inhibitory potency of these peptides and selected potent inhibitors. We then analyzed their effects in the cell level to show that the selected inhibitors induced HIF-1α stabilization in normoxic cells. Considering that proline hydroxylation of HIF-1α is routinely targeted for modulating the HIF pathway, our approach of using inhibitors against the interactions between HIF-1α and VBC would provide an alternative way of upregulating HIF-1 activity.  相似文献   

14.
15.
Li Z  Wang D  Messing EM  Wu G 《EMBO reports》2005,6(4):373-378
Hypoxia-inducible factor (HIF)-1alpha is a short-lived protein and is ubiquitinated and degraded through the von Hippel-Lindau protein (pVHL)-E3 ubiquitin ligase pathway at normoxia. Deubiquitination, by reversing ubiquitination, has been recognized as an important regulatory step in ubiquitination-related processes. Here, we show that pVHL-interacting deubiquitinating enzyme 2, VDU2, but not VDU1, interacts with HIF-1alpha. VDU2 can specifically deubiquitinate and stabilize HIF-1alpha and, therefore, increase expression of HIF-1alpha targeted genes, such as vascular endothelial growth factor (VEGF). These findings suggest that ubiquitination of HIF-1alpha is a dynamic process and that ubiquitinated HIF-1alpha might be rescued from degradation by VDU2 through deubiquitination. Although pVHL functions as a master control for HIF-1alpha stabilization, as pVHL-E3 ligase mediates the ubiquitination of both HIF-1alpha and VDU2, the balance between the pVHL-mediated ubiquitination and VDU2-mediated deubiquitination of HIF-1alpha provides another level of control for HIF-1alpha stabilization.  相似文献   

16.
17.
18.
19.
In the last years, nitric oxide (NO) mediated signaling became an integral component in understanding physiological and pathophysiological processes of cell proliferation, death or cellular adaptation. Among other activities, NO affects multiple targets that allow regulation of gene expression. Recently, NO was found to attenuate accumulation of hypoxia inducible factor-1alpha (HIF-1alpha) under hypoxic conditions because of several mechanisms: redistribution of oxygen toward non-respiratory oxygen-dependent targets (like HIF-1alpha proline hydroxylases--PHDs, which perform hydroxylation of Pro402/564 of HIF-1alpha leading to its proteasomal degradation); in addition, peroxynitrite formed during interactions between NO and mitochondria derived superoxide leads to an increase in cytosolic iron/2-oxoglutarate (2-OG), which required for PHD activation. Here, we propose a hypothesis that peroxynitrite, formed in the cells upon exposure to NO under low oxygen availability, serves as an alternative donor of oxygen for activated PHDs so they can perform HIF-1alpha proline hydroxylation to de-accumulate the protein.  相似文献   

20.
Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation   总被引:22,自引:0,他引:22  
Jeong JW  Bae MK  Ahn MY  Kim SH  Sohn TK  Bae MH  Yoo MA  Song EJ  Lee KJ  Kim KW 《Cell》2002,111(5):709-720
Hypoxia-inducible factor 1 (HIF-1) plays a central role in cellular adaptation to changes in oxygen availability. Recently, prolyl hydroxylation was identified as a key regulatory event that targets the HIF-1alpha subunit for proteasomal degradation via the pVHL ubiquitination complex. In this report, we reveal an important function for ARD1 in mammalian cells as a protein acetyltransferase by direct binding to HIF-1alpha to regulate its stability. We present further evidence showing that ARD1-mediated acetylation enhances interaction of HIF-1alpha with pVHL and HIF-1alpha ubiquitination, suggesting that the acetylation of HIF-1alpha by ARD1 is critical to proteasomal degradation. Therefore, we have concluded that the role of ARD1 in the acetylation of HIF-1alpha provides a key regulatory mechanism underlying HIF-1alpha stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号