首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Long-term culture of muscle explants from Sparus aurata   总被引:7,自引:0,他引:7  
Although there are mammalian myoblast cell lines, no fish myoblast cell line has been developed so far. The aim of this study was to develop a culture system of muscle explants for fish, as explants provide an approximation of the in vivo conditions for cell proliferation and differentiation, and enable a close comparison with events in muscle regenerating in vivo. Here we describe the main features of a long-term in vitro culture system for muscle explants from Sparus aurata fry. At the time of sampling, the original fibres were damaged and subsequently degenerated as shown by the loss of parvalbumin (PV) and presence of apoptotic nuclei. This mechanical damage provoked a myogenic response by activation of myogenic precursor cells. After a few days, new mononucleate cells aligned with the original fibres were seen in the explants, some with proliferating cell nuclear antigen (PCNA-) and Myf-5-positive nuclei, indicating proliferation and their myogenic fate. By 1 week, multinucleate cells with desmin immunoreactivity but PCNA- and Myf5-negative nuclei were present, equivalent to differentiated, postmitotic myotubes. Some of these myotubes were also immunoreactive for PV and insulin-like growth factors (IGFs). By 11 days, many of the myotubes were also immunoreactive for myostatin (MSTN). By 23 days, many of the myotubes had increased in diameter, were packed with myofibrils, and were strongly PV-positive and immunoreactive for MSTN, IGF-I and IGF-I receptor. This study shows that a proliferative process occurs in the explants despite the death of the original muscle fibres, and new muscle fibres expressing growth regulators are formed by regeneration from myogenic precursors present in the explants at the time of sampling.  相似文献   

3.
Both fetal and adult skeletal muscle cells are continually being subjected to biomechanical forces. Biomechanical stimulation during cell growth affects proliferation, differentiation and maturation of skeletal muscle cells. Bone marrow-derived hMSCs [human MSCs (mesenchymal stem cells)] can differentiate into a variety of cell types, including skeletal muscle cells that are potentially a source for muscle regeneration. Our investigations involved a 10% cyclic uniaxial strain at 1 Hz being applied to hMSCs grown on collagen-coated silicon membranes with or without IGF-I (insulin-like growth factor-I) for 24 h. Results obtained from morphological studies confirmed the rearrangement of cells after loading. Comparison of MyoD and MyoG mRNA levels between test groups showed that mechanical loading alone can initiate myogenic differentiation. Furthermore, comparison of Myf5, MyoD, MyoG and Myf6 mRNA levels between test groups showed that a combination of mechanical loading and growth factor results in the highest expression of myogenic genes. These results indicate that cyclic strain may be useful in myogenic differentiation of stem cells, and can accelerate the differentiation of hMSCs into MSCs in the presence of growth factor.  相似文献   

4.
5.
We have demonstrated previously that adult human synovial membrane-derived mesenchymal stem cells (hSM-MSCs) have myogenic potential in vitro (De Bari, C., F. Dell'Accio, P. Tylzanowski, and F.P. Luyten. 2001. Arthritis Rheum. 44:1928-1942). In the present study, we have characterized their myogenic differentiation in a nude mouse model of skeletal muscle regeneration and provide proof of principle of their potential use for muscle repair in the mdx mouse model of Duchenne muscular dystrophy. When implanted into regenerating nude mouse muscle, hSM-MSCs contributed to myofibers and to long term persisting functional satellite cells. No nuclear fusion hybrids were observed between donor human cells and host mouse muscle cells. Myogenic differentiation proceeded through a molecular cascade resembling embryonic muscle development. Differentiation was sensitive to environmental cues, since hSM-MSCs injected into the bloodstream engrafted in several tissues, but acquired the muscle phenotype only within skeletal muscle. When administered into dystrophic muscles of immunosuppressed mdx mice, hSM-MSCs restored sarcolemmal expression of dystrophin, reduced central nucleation, and rescued the expression of mouse mechano growth factor.  相似文献   

6.
7.
In a previous study investigating the effects of low temperature on skeletal muscle differentiation, we demonstrated that C2C12 mouse myoblasts cultured at 30 °C do not express myogenin, a myogenic regulatory factor (MRF), or fuse into multinucleated myotubes. At this low temperature, the myoblasts continuously express Id3, a negative regulator of MRFs, and do not upregulate muscle-specific microRNAs. In this study, we examined if insulin-like growth factor-I (IGF-I) and a stable form of vitamin C (L-ascorbic acid phosphate) could alleviate the low temperature-induced inhibition of myogenic differentiation in C2C12 cells. Although the addition of either IGF-I or vitamin C alone could promote myogenin expression in C2C12 cells at 30 °C, elongated multinucleated myotubes were not formed unless both IGF-I and vitamin C were continuously administered. In human skeletal muscle cells, low temperature-induced blockage of myogenic differentiation was also ameliorated by exogenous IGF-I and vitamin C. In addition, we demonstrated that satellite cells of IGF-I overexpressing transgenic mice in single-fiber culture expressed myogenin at a higher level than those of wild-type mice at 30 °C. This study suggests that body temperature plays an important role in myogenic differentiation of endotherms, but the sensitivity to low temperature could be buffered by certain factors in vivo, such as IGF-I and vitamin C.  相似文献   

8.
9.
Insulin-like growth factor binding protein (IGFBP)-3 effects proliferation and differentiation of numerous cell types by binding to insulin-like growth factors (IGF) and attenuating their activity or by directly affecting cells in an IGF-independent manner. Consequently, IGFBPs produced by specific cells may affect their differentiation and proliferation. In this study we show that embryonic porcine myogenic cells, unlike murine muscle cell lines, produce significant quantities of a binding protein immunologically identified as IGFBP-3. Nonfusing cells subcultured from highly fused porcine myogenic cell cultures do not produce detectable IGFBP-3 protein or mRNA, thus suggesting the IGFBP-3 is produced by muscle cells in the porcine myogenic cell cultures. Treatment of porcine myogenic cultures with 20 ng of IGF-I or 20 ng of Des (1-3) IGF-I/ml serum-free media for 24 h results in a threefold reduction in the level of IGFBP-3 in conditioned media. This reduction is not affected by cell density over a sixfold range. Additionally, treatment for 24 h with 20 ng of IGF-I/ml media results in a sevenfold decrease in the steady-state level of IGFBP-3 mRNA. This IGF-I-induced decrease in IGFBP-3 mRNA level appears to be relatively unique to myogenic cells. IGF-I treatment also causes a fourfold increase in the steady-state level of myogenin mRNA. This increase in myogenin mRNA suggests that, as expected, IGF-I treatment accelerates differentiation of myogenic cells. The simultaneous decrease in IGFBP-3 mRNA and protein that accompanies IGF-I-induced myogenin expression suggests that differentiation of myogenic cells may be preceded or accompanied by decreased production of IGFBP-3.  相似文献   

10.
Interleukin-15 (IL-15) is a novel anabolic factor for skeletal muscle which inhibits muscle wasting associated with cancer (cachexia) in a rat model. To develop a cell culture system in which the mechanism of the anabolic action of IL-15 on skeletal muscle could be examined, the mouse C2 skeletal myogenic cell line was transduced with a retroviral expression vector for IL-15 and compared to sister cells transduced with a control vector. Overexpression of IL-15 induced fivefold higher levels of sarcomeric myosin heavy chain and alpha-actin accumulation in differentiated myotubes. Secreted factors from IL-15-overexpressing myogenic cells, but not from control cells, induced increased myofibrillar protein accumulation in cocultured control myotubes. IL-15 overexpression induced a hypertrophic myotube morphology similar to that described for cultured myotubes which overexpressed the well-characterized anabolic factor insulin-like growth factor-I (IGF-I). However, in contrast to IGF-I, the hypertrophic action of IL-15 on skeletal myogenic cells did not involve stimulation of skeletal myoblast proliferation or differentiation. IL-15 induced myotube hypertrophy at both low and high IGF-I concentrations. Furthermore, in contrast to IGF-I, which stimulated only protein synthesis under these culture conditions, IL-15 both stimulated protein synthesis and inhibited protein degradation in cultured skeletal myotubes. These findings indicate that IL-15 action on skeletal myogenic cells is distinct from that of IGF-I. Due to the ability of IGF-I to stimulate cell division and its association with several forms of cancer, controversy exists concerning the advisability of treating cachexia or age-associated muscle wasting with IGF-I. Administration of IL-15 or modulation of the IL-15 signaling pathway may represent an alternative strategy for maintaining skeletal muscle mass under these conditions.  相似文献   

11.
Muscle is an important target tissue for insulin-like growth factor (IGF) action. We have previously reported that muscle cell differentiation is associated with down-regulation of the IGF-I receptor at the level of gene expression that is concomitant with an increase in the expression and secretion of IGF-II. Furthermore, treatment of myoblasts with IGF-II resulted in a similar decrease in IGF-I receptor mRNA abundance, suggesting an autocrine role of IGF-II in IGF-I receptor regulation. To explore further the role of IGF-II in IGF-I receptor regulation, BC3H-1 mouse muscle cells were exposed to differentiation medium in the presence of basic fibroblast growth factor (FGF), a known inhibitor of myogenic differentiation. FGF treatment of cells resulted in a 50% inhibition of IGF-II gene expression compared to that in control myoblasts and markedly inhibited IGF-II secretion. Concomitantly, FGF resulted in a 60-70% increase in IGF-I binding compared to that in control myoblasts. Scatchard analyses and studies of gene expression demonstrated that the increased IGF-I binding induced by FGF reflected parallel increases in IGF-I receptor content and mRNA abundance. These studies indicate that FGF may up-regulate IGF-I receptor expression in muscle cells through inhibition of IGF-II peptide expression and further support the concept of an autocrine role of IGF-II in IGF-I receptor regulation. In addition, these studies suggest that one mechanism by which FGF inhibits muscle cell differentiation is through inhibition of IGF-II expression.  相似文献   

12.
13.
14.
15.
16.
Autosomal recessive hereditary inclusion-body myopathy (h-IBM) is caused by mutations of the UDP- N -acetylglucosamine 2-epimerase/ N -acetylmannosamine kinase gene, a rate-limiting enzyme in the sialic acid metabolic pathway. Previous studies have demonstrated an abnormal sialylation of glycoproteins in h-IBM. h-IBM muscle shows the abnormal accumulation of proteins including amyloid-β (Aβ). Neprilysin (NEP), a metallopeptidase that cleaves Aβ, is characterized by the presence of several N-glycosylation sites, and changes in these sugar moieties affect its stability and enzymatic activity. In the present study, we found that NEP is hyposialylated and its expression and enzymatic activity reduced in all h-IBM muscles analyzed. In vitro , the experimental removal of sialic acid by Vibrio Cholerae neuraminidase in cultured myotubes resulted in reduced expression of NEP. This was most likely because of a post-translational modification consisting in an abnormal sialylation of the protein that leads to its reduced stability. Moreover, treatment with Vibrio Cholerae neuraminidase was associated with an increased immunoreactivity for Aβ mainly in the form of distinct cytoplasmic foci within myotubes. We hypothesize that, in h-IBM muscle, hyposialylated NEP has a role in hampering the cellular Aβ clearing system, thus contributing to its abnormal accumulation within vulnerable fibers and possibly promoting muscle degeneration.  相似文献   

17.
The heparan sulfate proteoglycan, glypican-1, is a low affinity receptor for fibroblast growth factor 2 (FGF2). Fibroblast growth factor 2 is a potent stimulator of skeletal muscle cell proliferation and an inhibitor of differentiation. Heparan sulfate proteoglycans like glypican-1 are required for FGF2 to transduce an intracellular signal. Understanding the role of glypican-1 in the regulation of FGF2-mediated signaling is important in furthering the understanding of the biological processes involved in muscle development and growth. In the current study, a turkey glypican-1 expression vector construct was transfected into turkey myogenic satellite cells resulting in the overexpression of glypican-1. The proliferation, differentiation, and responsiveness to FGF2 were measured in control and transfected cell cultures. The overexpression of glypican-1 in turkey myogenic satellite cells increased both satellite cell proliferation and FGF2 responsiveness, but decreased the rate of differentiation. The current data support glypican-1 modulation of both proliferation and differentiation through an FGF2-mediated pathway.  相似文献   

18.
高表达FoxO1抑制猪骨骼肌成肌细胞的分化   总被引:1,自引:0,他引:1  
FoxO1(Forkhead box O1)是调控肌肉生长、代谢和细胞分化的重要转录因子,但其在成肌细胞分化中的作用还不甚清楚。为了研究FoxO1对哺乳动物成肌细胞分化的影响,以原代培养的长白仔猪成肌细胞作为实验材料,用2%马血清诱导分化,采用实时荧光定量PCR、Western blotting和脂质体转染等方法检测FoxO1及早期和晚期生肌调节因子MyoD和myogenin在猪成肌细胞分化过程中的表达变化。结果显示,在猪成肌细胞分化过程中,FoxO1mRNA表达量显著增加,但总蛋白量变化不显著,其磷酸化水平显著上调。同时,高表达FoxO1的猪成肌细胞中,生肌调节因子MyoD和myogenin mRNA表达受到显著抑制,而MyoD蛋白变化不显著,myogenin却显著下调(P0.05)。以上结果表明,FoxO1能够推迟猪成肌细胞的分化时间并抑制分化;同时推测,FoxO1可能通过抑制生肌调节因子的表达控制骨骼肌纤维类型的终末分化。  相似文献   

19.
In tetrapod phylogeny, the dramatic modifications of the trunk have received less attention than the more obvious evolution of limbs. In somites, several waves of muscle precursors are induced by signals from nearby tissues. In both amniotes and fish, the earliest myogenesis requires secreted signals from the ventral midline carried by Hedgehog (Hh) proteins. To determine if this similarity represents evolutionary homology, we have examined myogenesis in Xenopus laevis, the major species from which insight into vertebrate mesoderm patterning has been derived. Xenopus embryos form two distinct kinds of muscle cells analogous to the superficial slow and medial fast muscle fibres of zebrafish. As in zebrafish, Hh signalling is required for XMyf5 expression and generation of a first wave of early superficial slow muscle fibres in tail somites. Thus, Hh-dependent adaxial myogenesis is the likely ancestral condition of teleosts, amphibia and amniotes. Our evidence suggests that midline-derived cells migrate to the lateral somite surface and generate superficial slow muscle. This cell re-orientation contributes to the apparent rotation of Xenopus somites. Xenopus myogenesis in the trunk differs from that in the tail. In the trunk, the first wave of superficial slow fibres is missing, suggesting that significant adaptation of the ancestral myogenic programme occurred during tetrapod trunk evolution. Although notochord is required for early medial XMyf5 expression, Hh signalling fails to drive these cells to slow myogenesis. Later, both trunk and tail somites develop a second wave of Hh-independent slow fibres. These fibres probably derive from an outer cell layer expressing the myogenic determination genes XMyf5, XMyoD and Pax3 in a pattern reminiscent of amniote dermomyotome. Thus, Xenopus somites have characteristics in common with both fish and amniotes that shed light on the evolution of somite differentiation. We propose a model for the evolutionary adaptation of myogenesis in the transition from fish to tetrapod trunk.  相似文献   

20.
Bioelectrical potentials were studied from longitudinal muscle fibres of the cockroach proctodeum. The muscle bundle receives a polyaxonal innervation from both anterior and posterior branches of the anterior proctodeal nerve. Evoked post-synaptic potentials consisted of two independent, but similar components generated through the two branches. An action potential in the muscle fibre could be generated with single branch stimulation, and more readily by co-operation of excitation in the two nerve branches.Any part of the muscle was capable of acting as a pacemaker for myogenic rhythmic action potential, and the pacemaker region fluctuated with time. Excitation of the muscle could spread in two ways, directly myogenic and indirectly through nerve tracts. Myogenic conduction (2 cm/sec) was observed to be slower than neural conduction (35–38 cm/sec) in the muscle bundle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号