首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have made use of the enhancement of the intrinsic fluorescence of the alpha subunit of transducin (alpha T), which accompanies guanine nucleotide exchange, to follow the reconstituted interactions between pure rhodopsin and pure transducin in phospholipid vesicles. When the pure alpha T.GDP complex is added to lipid vesicles containing rhodopsin and the beta gamma T complex, a light- and guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-dependent enhancement of the fluorescence emission of alpha T is observed. When GTP is substituted for GTP gamma S, a similar enhancement of the intrinsic fluorescence of alpha T occurs; however, this enhancement is transient and precedes a fluorescence decay which is complete in 2-5 min. The fact that the fluorescence decay is specifically induced by GTP and is not observed either with nonhydrolyzable GTP analogs or with NaF (plus AlCl3) indicates that the decay represents GTP hydrolysis in alpha T. The dose-response profiles for the effects of the beta gamma T complex on the rate and extent of the GTP gamma S-stimulated fluorescence enhancement of alpha T have also been examined. The addition of relatively low levels of beta gamma T to these reconstituted systems can promote the GTP gamma S-stimulated enhancement of the fluorescence of multiple alpha T subunits with half-maximal enhancement occurring at alpha T:beta gamma T ratios of 150:1. These findings are consistent with earlier suggestions (Fung, B. K.-K. (1983) J. Biol. Chem. 258, 10495-10502) that the beta gamma T subunit dissociates from alpha T as a result of the GDP-GTP exchange reaction and thus can act catalytically to promote the activation of a number of inactive alpha T species. However, the dependence of the rate of the GTP gamma S-stimulated fluorescence enhancement on beta gamma T is complex and cannot be explained adequately by simple models where alpha T-beta gamma T interactions (or rhodopsin-transducin interactions) are rate-limiting for the rhodopsin-stimulated activation of the alpha T subunits. Overall, the results reported here demonstrate that fluorescence spectroscopy can be used to monitor directly a receptor-catalyzed activation-deactivation cycle of a GTP-binding protein within a lipid milieu.  相似文献   

2.
P M Guy  J G Koland  R A Cerione 《Biochemistry》1990,29(30):6954-6964
The intrinsic tryptophan fluorescence of the alpha subunit of transducin (alpha T) has been shown to be sensitive to the binding of guanine nucleotides, with the fluorescence being enhanced by as much as 2-fold upon the binding of GTP or nonhydrolyzable GTP analogues [cf. Phillips and Cerione (1988) J. Biol. Chem. 263, 15498-15505]. In this work, we have used these fluorescence changes to analyze the kinetics for the activation (GTP binding)-deactivation (GTPase) cycle of transducin in a well-defined reconstituted phospholipid vesicle system containing purified rhodopsin and the alpha T and beta gamma T subunits of the retinal GTP-binding protein. Both the rate and the extent of the GTP-induced fluorescence enhancement are dependent on [rhodopsin], while only the rate (and not the extent) of the GTP gamma S-induced enhancement is dependent on the levels of rhodopsin. Comparisons of the fluorescence enhancements elicited by GTP gamma S and GTP indicate that the GTP gamma S-induced enhancements directly reflect the GTP gamma S-binding event while the GTP-induced enhancements represent a composite of the GTP-binding and GTP hydrolysis events. At high [rhodopsin], the rates for GTP binding and GTPase are sufficiently different such that the GTP-induced enhancement essentially reflects GTP binding. A fluorescence decay, which always follows the GTP-induced enhancement, directly reflects the GTP hydrolytic event. The rate of the fluorescence decay matches the rate of [32P]Pi production due to [gamma-32P]GTP hydrolysis, and the decay is immediately reversed by rechallenging with GTP. The GTP-induced fluorescence changes (i.e., the enhancement and ensuing decay) could be fit to a simple model describing the activation-deactivation cycle of transducin. The results of this modeling suggest the following points: (1) the dependency of the activation-deactivation cycle on [rhodopsin] can be described by a simple dose response profile; (2) the rate of the rhodopsin-stimulated activation of multiple alpha T(GDP) molecules is dependent on [rhodopsin] and when [alpha T] greater than [rhodopsin], the activation of the total alpha T pool may be limited by the rate of dissociation of rhodopsin from the activated alpha T(GTP) species; and (3) under conditions of optimal rhodopsin-alpha T coupling (i.e., high [rhodopsin]), the cycle is limited by GTP hydrolysis with the rate of Pi release, or any ensuing conformational change, being at least as fast as the hydrolytic event.  相似文献   

3.
An antibody (AS/7) prepared against the carboxyl-terminal decapeptide of the alpha subunit of transducin (alpha T) has been used in various reconstitution studies aimed at characterizing the role of the carboxyl-terminal domain in the different functional activities of transducin. The peptide-specific antibody is a potent inhibitor of the rhodopsin-stimulated GTPase activity in phospholipid vesicle systems containing pure rhodopsin and pure holo-transducin, or rhodopsin and the purified alpha T and beta/gamma (beta gamma T) subunit components, with the highest levels of inhibition (80-95%) occurring under conditions where the molar ratio of holo-transducin (or alpha T) to AS/7 approximately equal to 1. The inhibition of the receptor-stimulated GTPase does not represent an interference in the interactions between the alpha T subunit and the beta gamma T complex, since essentially identical levels of inhibition are observed when AS/7 is preincubated with either free alpha T, holo-transducin, or alpha T in the presence of excess beta gamma T, prior to assay. The AS/7-induced inhibition also does not appear to reflect an alteration in the ability of alpha T to bind or hydrolyze GTP and, in fact, the incubation of alpha T with AS/7 results in a stimulation of the intrinsic GTPase activity for alpha T alone (i.e. in the absence of rhodopsin). Thus, we conclude that the inhibition of the rhodopsin-stimulated GTPase activity by AS/7 is due to the direct blocking (by the antibody) of rhodopsin-alpha T interactions. While AS/7 is capable of uncoupling rhodopsin-transducin interactions, it appears to promote the stimulation of the cyclic GMP phosphodiesterase (PDE) by an activated alpha T subunit. Specifically, when the pure alpha T-guanosine 5-O-(3-thiotriphosphate) (alpha TGTP gamma S) species is preincubated with AS/7 prior to its addition to an assay solution containing PDE, there is at least a 4-fold increase in the resultant cyclic GMP hydrolysis relative to the activities measured with alpha TGTP gamma S, alone, or with alpha TGTP gamma S preincubated with nonimmune (control) rabbit IgG. The AS/7-induced promotion is specific for the active form of alpha T; the inactive alpha TGDP species does not stimulate PDE activity either in the presence or absence of the antibody. The different effects by AS/7 on the various activities of the alpha T subunit highlight the existence of distinct functional domains on alpha T.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
A panel of monoclonal antibodies has been developed against the T alpha, T beta and T gamma subunits of bovine transducin. Two anti-T alpha antibodies from this panel (TF15 and TF16) and a third one (4A) against frog T alpha (Witt, P. L., Hamm, H. E., and Bownds, M. D. (1984) J. Gen. Physiol. 84, 251-263) were characterized. Each of these monoclonal antibodies recognizes a different region of T alpha and has a specific effect on the function of transducin. The binding of TF15 is reversibly enhanced by treating T alpha with either 1 M guanidinium chloride or, to a smaller extent, by the removal of bound guanine nucleotide. Its epitope is located in a 12-kDa tryptic fragment containing the binding site for the guanine moiety of GTP. Taken together, these results support previous observations that the conformation of T alpha is modulated by the occupancy of the guanine nucleotide binding site. In contrast to TF15, TF16 recognizes only the native form of T alpha. Its epitope resides within the central portion of the T alpha molecule. While T alpha-bound TF16 does not inhibit either pertussis toxin-catalyzed ADP-ribosylation, rhodopsin binding, or transducin subunit interaction, it blocks both the light-activated uptake of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and the GTP-dependent elution of transducin from photolyzed rhodopsin. These effects are unlikely to be caused by the occupation of the guanine nucleotide binding site by TF16 because this antibody quantitatively precipitates T alpha-GTP gamma S. We propose that bound TF16 locks T alpha in a conformation that prevents the entrance of guanine nucleotide and favors T beta gamma association. In contrast to TF16, the epitope of 4A was mapped to the amino-terminal region of T alpha. This monoclonal antibody blocks pertussis toxin-catalyzed ADP-ribosylation, GTP gamma S uptake, and T alpha-T beta gamma association. Moreover, the binding site for 4A becomes inaccessible when transducin binds to photolyzed rhodopsin. These results suggest that the inhibitory effects of 4A are due to a simultaneous steric blockage of both the interaction of T alpha with T beta gamma and their binding to photolyzed rhodopsin. The results obtained from these studies are correlated with the structure and function of T alpha.  相似文献   

5.
We have assessed the functional interactions of two pure receptor proteins with three different pure guanine nucleotide regulatory proteins in phosphatidylcholine vesicles. The receptor proteins are the guinea pig lung beta-adrenergic receptor (beta AR) and the retinal photon receptor rhodopsin. The guanine nucleotide regulatory proteins were the stimulatory (Ns) and inhibitory (Ni) proteins of the adenylate cyclase system and transducin (T), the regulatory protein from the light-activated cyclic GMP phosphodiesterase system in retinal rod outer segments. The insertion of Ns with beta AR in lipid vesicles increases the extent of binding of [35S] GTP gamma S to Ns and in parallel, the total GTPase activity. However, there is little change in the actual rate of catalytic turnover of GTPase activity (defined as mol of Pi released/min/mol of Ns-guanine nucleotide complexes). Enhancement of this turnover rate requires the beta-agonist isoproterenol and is accounted for by an isoproterenol-promoted increase in the rate and extent of [35S]GTP gamma S binding to Ns. The co-insertion of the beta AR with Ni or transducin results in markedly lower stimulation by isoproterenol of both the GTPase activity and [35S]GTP gamma S binding to these nucleotide regulatory proteins indicating that their preferred order of interaction with beta AR is Ns much greater than Ni greater than T. This contrasts with the preferred order of interaction of these different nucleotide regulatory proteins with light-activated rhodopsin which we find to be T approximately equal to Ni much greater than Ns. Nonetheless the fold stimulation of GTPase activity and [35S]GTP gamma S binding in T, induced by light-activated rhodopsin, is significantly greater than the "fold" stimulation of these activities in Ni. This reflects the greater intrinsic ability of Ni to hydrolyze GTP and bind guanine nucleotides (at 10 mM MgCl2, 100-200 nM GTP or [35S] GTP gamma S) compared to T. The maximum turnover numbers for the rhodopsin-stimulated GTPase in both Ni and T are similar to those obtained for isoproterenol-stimulated activity in Ns. This suggests that the different nucleotide regulatory proteins are capable of a common upper limit of catalytic efficiency which can best be attained when coupled to the appropriate receptor.  相似文献   

6.
In this study, we have examined the interactions of the beta gamma subunit complex of the retinal GTP-binding protein transducin (beta gamma T) with its alpha subunit (alpha T) using fluorescence spectroscopic approaches. The beta gamma T subunit complex was covalently labeled with 2-(4'-maleimidylanilino)napthalene-6-sulfonic acid (MIANS), an environmentally sensitive fluorescent cysteine reagent. The formation of the MIANS beta gamma T complexes (two to five MIANS adducts per beta gamma T) resulted in 2-3-fold enhancements in the MIANS fluorescence, and 20-25-nm blue shifts in the fluorescence emission maxima, relative to the emission for identical concentrations of MIANS-labeled MIANS complexes. The addition of alpha T.GDP to these MIANS beta gamma T complexes resulted in an additional enhancement in the MIANS fluorescence (typically ranging from 20 to 40%) and a 5-10-nm blue shift in the wavelength for maximum emission. These fluorescence changes were specifically elicited by the GDP-bound form of alpha T and were not observed upon the addition of purified alpha T.guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) complexes to the MIANS beta gamma T species. Conditions which resulted in the activation of the alpha T.GDP subunit (i.e. the addition of AlF4- or the addition of rhodopsin-containing vesicles and GTP gamma S) resulted in a reversal of the alpha T.GDP-induced enhancement of the MIANS beta gamma T fluorescence. Thus the MIANS beta gamma T fluorescence provided a spectroscopic monitor for transducin-subunit association and transducin-activation. Based on the results from studies using this spectroscopic read-out, it appears that the association of the alpha T.GDP species with the beta gamma T subunit complex to form the holotransducin molecule is rapid and does not limit the rate of the rhodopsin-stimulated activation of holotransducin. However, either the dissociation of the activated alpha T subunit from the beta gamma T complex, or a conformational change in beta gamma T which occurs as a result of the subunit dissociation event, appears to be slow relative to the G protein-subunit association event.  相似文献   

7.
In this work we have used fluorescence spectroscopic approaches to examine the binding of the beta gamma T subunit complex of transducin to the photoreceptor, rhodopsin. To do this, we have covalently labeled the beta gamma T subunit complex with the environmentally sensitive fluorescent cysteine reagent 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid (MIANS). By using the MIANS moiety as a fluorescent reporter group, we were able to monitor directly the binding of the MIANS-beta gamma T complex to light-activated rhodopsin, which was reconstituted into phosphatidylcholine vesicles, through an enhancement (30-50%) in the MIANS fluorescence. Phosphatidylcholine vesicles, alone, elicited only minor changes in the MIANS-beta gamma T fluorescence (i.e. less than 10% enhancement), whereas the addition of rhodopsin in the absence of lipid vesicles and in minimal detergent fully mimicked the effects of reconstituted rhodopsin and caused a significant enhancement of the MIANS fluorescence. The interactions between the MIANS-beta gamma T complex and rhodopsin also resulted in a quenching of the rhodopsin tryptophan fluorescence (approximately 30%), which most likely reflected resonance energy transfer between the tryptophan residues and the MIANS moieties. The binding of the MIANS-beta gamma T species to the alpha T subunit was accompanied by an enhancement of the MIANS fluorescence (30-50%) and a slight blue shift of the emission maximum, as described previously (Phillips, W. J., and Cerione, R. A. (1991) J. Biol. Chem. 266, 11017-11024). However, the alpha T-induced enhancement of the MIANS-beta gamma T fluorescence was not additive with the enhancement elicited by rhodopsin. Conditions which resulted in the activation of the alpha T subunit reversed the alpha T-induced enhancement of the MIANS emission, whereas the rhodopsin-induced enhancement persisted, thereby suggesting that the rhodopsin-beta gamma T complex can remain intact throughout the G protein activation event. Studies with synthetic peptides representing different regions of the cytoplasmic domain of rhodopsin demonstrated that a portion of the putative carboxyl-terminal tail (amino acid residues 310-324) was capable of eliciting changes in the MIANS-beta gamma T fluorescence as well as inhibiting the MIANS-beta gamma T-induced quenching of the rhodopsin tryptophan fluorescence. These results suggest that this region of the rhodopsin molecule may constitute a portion of the binding domain for the beta gamma T complex.  相似文献   

8.
S C Tsai  R Adamik  Y Kanaho  J L Halpern  J Moss 《Biochemistry》1987,26(15):4728-4733
Guanyl nucleotide binding proteins couple agonist interaction with cell-surface receptors to an intracellular enzymatic response. In the adenylate cyclase system, inhibitory and stimulatory effects are mediated through guanyl nucleotide binding proteins, Gi and Gs, respectively. In the visual excitation complex, the photon receptor rhodopsin is linked to its target, cGMP phosphodiesterase, through transducin (Gt). Bovine brain contains another guanyl nucleotide binding protein, Go. The proteins are heterotrimers of alpha, beta, and gamma subunits; the alpha subunits catalyze receptor-stimulated GTP hydrolysis. To examine the interaction of Go alpha with beta gamma subunits and rhodopsin, the proteins were reconstituted in phosphatidylcholine vesicles. The GTPase activity of Go alpha purified from bovine brain was stimulated by photolyzed, but not dark, rhodopsin and was enhanced by bovine retinal Gt beta gamma or by rabbit liver G beta gamma. Go alpha in the presence of G beta gamma is a substrate for pertussis toxin catalyzed ADP-ribosylation; the modification was inhibited by photolyzed rhodopsin and enhanced by guanosine 5'-O-(2-thiodiphosphate). ADP-Ribosylation of Go alpha by pertussis toxin inhibited photolyzed rhodopsin-stimulated, but not basal, GTPase activity. It would appear from this and prior studies that Go alpha is similar to Gt alpha and Gi alpha; all three proteins exhibit photolyzed rhodopsin-stimulated GTPase activity, are pertussis toxin substrates, and functionally couple to Gt beta gamma. Go alpha (39K) can be distinguished from Gi alpha (41K) but not from Gt alpha (39K) by molecular weight.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Transducin (T alpha beta gamma), the heterotrimeric GTP-binding protein that interacts with photoexcited rhodopsin (Rh*) and the cGMP-phosphodiesterase (PDE) in retinal rod cells, is sensitive to cholera (CTx) and pertussis toxins (PTx), which catalyze the binding of an ADP-ribose to the alpha subunit at Arg174 and Cys347, respectively. These two types of ADP-ribosylations are investigated with transducin in vitro or with reconstituted retinal rod outer-segment membranes. Several functional perturbations inflicted on T alpha by the resulting covalent modifications are studied such as: the binding of T alpha to T beta gamma to the membrane and to Rh*; the spontaneous or Rh*-catalysed exchange of GDP for GTP or guanosine 5-[gamma-thio]triphosphate (GTP[gamma S]), the conformational switch and activation undergone by transducin upon this exchange, the activation of T alpha GDP by fluoride complexes and the activation of the PDE by T alpha GTP. ADP-ribosylation of transducin by CTx requires the GTP-dependent activation of ADP-ribosylation factors (ARF), takes place only on the high-affinity, nucleotide-free complex, Rh*-T alpha empty-T beta gamma and does not activate T alpha. Subsequent to CTx-catalyzed ADP-ribosylation the following occurs: (a) addition of GDP induces the release from Rh* of inactive CTxT alpha GDP (CTxT alpha, ADP-ribosylated alpha subunit of transducin) which remains associated to T beta gamma; (b) CTxT alpha GDP-T beta gamma exhibits the usual slow kinetics of spontaneous exchange of GDP for GTP[gamma S] in the absence of Rh*, but the association and dissociation of fluoride complexes, which act as gamma-phosphate analogs, are kinetically modified, suggesting that the ADP-ribose on Arg174 specifically perturbs binding of the gamma-phosphate in the nucleotide site; (c) CTxT alpha GDP-T beta gamma can still couple to Rh* and undergo fast nucleotide exchange; (d) CTxT alpha GTP[gamma S] and CTxT alpha GDP-AlFx (AlFx, Aluminofluoride complex) activate retinal cGMP-phosphodiesterase (PDE) with the same efficiency as their unmodified counterparts, but the kinetics and affinities of fluoride activation are changed; (e) CTxT alpha GTP hydrolyses GTP more slowly than unmodified T alpha GTP, which entirely accounts for the prolonged action of CTxT alpha GTP on the PDE; (f) after GTP hydrolysis, CTxT alpha GDP reassociates to T beta gamma and becomes inactive. Thus, CTx catalyzed ADP-ribosylation only perturbs in T alpha the GTP-binding domain, but not the conformational switch nor the domains of contact with the T beta gamma subunit, with Rh* and with the PDE.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The retinal nucleotide regulatory protein, transducin, can substitute for the inhibitory guanine nucleotide-binding regulatory protein (Ni) in inhibiting adenylate cyclase activity in phospholipid vesicle systems. In the present work we have assessed the roles of the alpha (alpha T) and beta gamma (beta gamma T) subunit components in mediating this inhibition. The inclusion of either a preactivated alpha T . GTP gamma S (where GTP gamma S is guanosine 5'-O-(thiotriphosphate)) complex, or the beta gamma complex, in phospholipid vesicles containing the pure human erythrocyte stimulatory guanine nucleotide-binding regulatory protein (Ns) and the resolved catalytic moiety of bovine caudate adenylate cyclase (C) resulted in inhibition of the GppNHp-stimulated (where GppNHp is guanyl-5'-yl imidodiphosphate) activity (by approximately 30-60 and 90%, respectively, at 2 mM MgCl2). The inhibitions by both of these subunit species are specific for the Ns-stimulated activity with neither alpha T . GTP gamma S nor beta gamma T having any direct effect on the intrinsic activity of the catalytic moiety. Increasing the MgCl2 concentration in the assay incubations significantly decreases the inhibitions by both alpha T . GTP gamma S and beta gamma T. Similarly, when the pure hamster lung beta-adrenergic receptor is included in the lipid vesicles with Ns and C, the levels of inhibition of the GppNHp-stimulated activity by both alpha T . GTP gamma S and beta gamma T are reduced compared to those obtained in vesicles containing just Ns and C (but not stimulatory receptor). These inhibitions are reduced still further under conditions where the agonist stimulation of adenylate cyclase activity is maximal, i.e. when stimulating with isoproterenol plus GTP. In these cases the alpha T . GTP gamma S inhibitory effects are completely eliminated and the inhibitions observed with holotransducin can be fully accounted for by the beta gamma T complex. The ability of the beta-adrenergic receptor to relieve these inhibitions suggests that the receptor may remain coupled to Ns (or alpha s) during the activation of the regulatory protein and the stimulation of adenylate cyclase. These results also suggest that under physiological conditions the beta gamma subunit complex is primarily responsible for mediating the inhibition of adenylate cyclase activity.  相似文献   

11.
Photolyzed rhodopsin acts in a catalytic manner to mediate the exchange of GTP for GDP bound to transducin. We have analyzed the steady-state kinetics of this activation process in order to determine the molecular mechanism of interactions between rhodopsin, transducin, and guanine nucleotides. Initial velocities (Vo) of the exchange reaction catalyzed by rhodopsin were measured for various transducin concentrations at several fixed levels of the GTP analog, [35S]guanosine 5'-(3-O-thio)triphosphate (GTP gamma S). The initial rate data analysis rigorously demonstrates that rhodopsin mediates the activation of transducin by a double-displacement catalytic mechanism. The Michaelis-Menten curves determined as a function of [transducin] reveal remarkable allosteric behavior; analysis of this data yields a Hill coefficient of 2. Lineweaver-Burk plots of Vo-1 versus [transducin]-1 display curvilinearity indicative of positive cooperativity and a series of parallel lines are generated by plotting Vo-1 as a function of [transducin]-2. The plots of Vo-1 versus [GTP gamma S]-1 show no evidence of allosterism and are a parallel series. Furthermore, the allosteric behavior observed in the activation of transducin is also witnessed in the rhodopsin-catalyzed guanine nucleotide exchange of the G protein's purified alpha subunit in the absence of the beta X gamma subunit complex. The latter observation implies that the molecular basis for allosterism in the activation process resides in the interactions between the photoreceptor and transducin's alpha subunit.  相似文献   

12.
The beta gamma subunits of G-proteins are composed of closely related beta 35 and beta 36 subunits tightly associated with diverse 6-10 kDa gamma subunits. We have developed a reconstitution assay using rhodopsin-catalyzed guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) binding to resolved alpha subunit of the retinal G-protein transducin (Gt alpha) to quantitate the activity of beta gamma proteins. Rhodopsin facilitates the exchange of GTP gamma S for GDP bound to Gt alpha beta gamma with a 60-fold higher apparent affinity than for Gt alpha alone. At limiting rhodopsin, G-protein-derived beta gamma subunits catalytically enhance the rate of GTP gamma S binding to resolved Gt alpha. The isolated beta gamma subunit of retinal G-protein (beta 1, gamma 1 genes) facilitates rhodopsin-catalyzed GTP gamma S exchange on Gt alpha in a concentration-dependent manner (K0.5 = 254 +/- 21 nM). Purified human placental beta 35 gamma, composed of beta 2 gene product and gamma-placenta protein (Evans, T., Fawzi, A., Fraser, E.D., Brown, L.M., and Northup, J.K. (1987) J. Biol. Chem. 262, 176-181), substitutes for Gt beta gamma reconstitution of rhodopsin with Gt alpha. However, human placental beta 35 gamma facilitates rhodopsin-catalyzed GTP gamma S exchange on Gt alpha with a higher apparent affinity than Gt beta gamma (K0.5 = 76 +/- 54 nM). As an alternative assay for these interactions, we have examined pertussis toxin-catalyzed ADP-ribosylation of the Gt alpha subunit which is markedly enhanced in rate by beta gamma subunits. Quantitative analyses of rates of pertussis modification reveal no differences in apparent affinity between Gt beta gamma and human placental beta 35 gamma (K0.5 values of 49 +/- 29 and 70 +/- 24 nM, respectively). Thus, the Gt alpha subunit alone does not distinguish among the beta gamma subunit forms. These results clearly show a high degree of functional homology among the beta 35 and beta 36 subunits of G-proteins for interaction with Gt alpha and rhodopsin, and establish a simple functional assay for the beta gamma subunits of G-proteins. Our data also suggest a specificity of recognition of beta gamma subunit forms which is dependent both on Gt alpha and rhodopsin. These results may indicate that the recently uncovered diversity in the expression of beta gamma subunit forms may complement the diversity of G alpha subunits in providing for specific receptor recognition of G-proteins.  相似文献   

13.
The first stage of amplification in the cyclic GMP cascade in bovine retinal rod is carried out by transducin, a guanine nucleotide regulatory protein consisting of two functional subunits, T alpha (Mr approximately 39,000) and T beta gamma (Mr approximately 36,000 and approximately 10,000). Limited trypsin digestion of the T beta gamma subunit converted the beta polypeptide to two stable fragments (Mr approximately 26,000 and approximately 14,000). The GTPase and Gpp(NH)p binding activities were not significantly affected by the cleavage. Trypsin digestion of the T alpha subunit initially removed a small segment from the polypeptide terminus and resulted in the formation of a single 38,000-Da fragment. When this fragment was recombined with the intact T beta gamma subunit in the presence of membranes containing photolyzed rhodopsin, the reconstituted transducin exhibited greatly reduced GTPase and Gpp(NH)p binding activities. The loss in activities was due to the inability of the cleaved T alpha to bind to the photolyzed rhodopsin. Prolonged digestion converted the 38,000-Da fragment to a transient 32,000-Da fragment and then to two stable 23,000-Da and 12,000-Da fragments. The cleavage of the 32,000-Da fragment, however, can be blocked by bound Gpp(NH)p. The 32,000-Da fragment contains the Gpp(NH)p binding site and retains the ability to activate phosphodiesterase. These results indicate that the guanine nucleotide binding and rhodopsin binding sites are located in topologically distinct regions of the T alpha subunit and proved evidence that a large conformational transition of the molecule occurs upon the conversion of the bound GDP to GTP.  相似文献   

14.
Modification of bovine brain G proteins by an N-hydroxysuccinimide ester of biotin has been studied. In the presence of GDP, but in the absence of Mg2+, neither guanine nucleotide binding nor GTPase activity of the protein was altered by modification using less than 1.25 mM biotin derivative with 1 mg/ml G protein. Under these conditions the alpha subunit was modified more extensively than the beta and gamma subunits. However, biotinyl-alpha was less readily bound to streptavidin-agarose than was the less modified beta subunit. Biotinyl-beta gamma was isolated from the modified, intact G protein and further characterized to determine if biotinylation alters its functional properties. Isolated biotinyl-beta gamma and unmodified beta gamma were equivalent based upon: 1) inhibition of the S49 cell membrane adenylyl cyclase, 2) changes in hydrodynamic parameters after being recombined with isolated alpha and treated with guanine nucleotides or complexes of fluoride and aluminum, and 3) competition for isolated alpha binding to biotinyl-beta gamma immobilized previously on streptavidin-agarose. Biotinyl-beta gamma prebound to streptavidin-agarose was 70-100% functional, based upon binding of isolated alpha subunits. Estimates of the affinity of alpha binding to biotinyl-beta gamma indicate that bovine brain alpha 41 has a 10-15-fold higher affinity for beta gamma than does alpha 39. Nonhydrolyzable guanine nucleotides and complexes of fluoride and aluminum decreased binding of either alpha 39 or alpha 41 to biotinyl-beta gamma, and these effects were dependent upon the amount of Mg2+ present. GTP decreased binding of alpha 39, but not alpha 41, to biotinyl-beta gamma. These results indicate that GTP can affect G protein subunit interactions and that its effects do not necessarily require an intact membrane environment or the participation of activating receptors or other membrane-associated proteins. They further indicate that biotinylation of beta gamma does not alter its functional properties and that it can be used for studying G protein subunit interactions.  相似文献   

15.
Receptor activation of G proteins   总被引:6,自引:0,他引:6  
G proteins are a highly conserved family of membrane-associated proteins composed of alpha, beta, and gamma subunits. The alpha subunit, which is unique for each G protein, binds GDP or GTP. Receptors such as those for beta- and alpha-adrenergic catecholamines, muscarinic agonists, and the retinal photoreceptor rhodopsin, catalyze the exchange of GDP for GTP binding to the alpha subunit of a specific G protein. G alpha.GTP regulates appropriate effector enzymes such as adenylyl cyclase or the cyclic GMP phosphodiesterase. The beta gamma-subunit complex of G proteins is required for efficient receptor-catalyzed alpha subunit guanine nucleotide exchange and also functions as an attenuator of alpha subunit activation of effector enzymes. Recent elucidation of both receptor and G protein primary sequence has allowed structural predictions and new experimental approaches to study the mechanism of receptor-catalyzed G protein regulation of specific effector systems and the control of cell function including metabolism, secretion, and growth.  相似文献   

16.
The visual excitation system of the retinal rod outer segments and the hormone-sensitive adenylate cyclase complex are regulated through guanine nucleotide-binding proteins, transducin in the former and inhibitory and stimulatory regulatory components, Gi and Gs, in the latter. These proteins are functionally and structurally similar; all are heterotrimers composed of alpha, beta, and gamma subunits and exhibit guanosine triphosphatase activity stimulated by light-activated rhodopsin or the agonist-receptor complex. Adenylate cyclase can be stimulated by vanadate, which, like NaF, probably acts through Gs. Effects of vanadate on the function of a guanine nucleotide-binding protein were investigated in a reconstituted model system consisting of purified transducin subunits (T alpha, T beta gamma) and rhodopsin in phosphatidylcholine vesicles. Vanadate (decameric) inhibited [3H]GTP binding to T alpha and noncompetitively inhibited GTP hydrolysis in a concentration-dependent manner with maximal inhibition of approximately 90% at 3-5 mM. Vanadate also inhibited release of bound GDP but did not affect the rate of hydrolysis of bound GTP (single turnover rate), indicating that vanadate did not interfere with the intrinsic GTPase activity of T alpha. Binding of T alpha to rhodopsin and the ADP-ribosylation of T alpha by pertussis toxin, both of which are enhanced in the presence of T beta gamma, were inhibited by vanadate. These findings are consistent with the conclusion that vanadate can cause the dissociation of T alpha from T beta gamma, resulting in the inhibition of GDP-GTP exchange and thereby GTP hydrolysis. Adenylate cyclase activation could result from a similar effect of vanadate on Gs.  相似文献   

17.
J Bigay  P Deterre  C Pfister    M Chabre 《The EMBO journal》1987,6(10):2907-2913
Fluoride activation of G proteins requires the presence of aluminium or beryllium and it has been suggested that AIF4- acts as an analogue of the gamma-phosphate of GTP in the nucleotide site. We have investigated the action of AIF4- or of BeF3- on transducin (T), the G protein of the retinal rods, either indirectly through the activation of cGMP phosphodiesterase, or more directly through their effects on the conformation of transducin itself. In the presence of AIF4- or BeF3-, purified T alpha subunit of transducin activates purified cyclic GMP phosphodiesterase (PDE) in the absence of photoactivated rhodopsin. Activation is totally reversed by elution of fluoride or partially reversed by addition of excess T beta gamma. Activation requires that GDP or a suitable analogue be bound to T alpha: T alpha-GDP and T alpha-GDP alpha S are activable by fluorides, but not T alpha-GDP beta S, nor T alpha that has released its nucleotide upon binding to photoexcited rhodopsin. Analysis of previous works on other G proteins and with other nucleotide analogues confirm that in all cases fluoride activation requires that a GDP unsubstituted at its beta phosphate be bound in T alpha. By contrast with alumino-fluoride complexes, which can adopt various coordination geometries, all beryllium fluoride complexes are tetracoordinated, with a Be-F bond length of 1.55 A, and strictly isomorphous to a phosphate group. Our study confirms that fluoride activation of transducin results from a reversible binding of the metal-fluoride complex in the nucleotide site of T alpha, next to the beta phosphate of GDP, as an analogue of the gamma phosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Adenylylcyclase cannot be activated by hormones or guanine nucleotide analogs in membranes from cells that express the G226A mutant form Gs alpha instead of the wild-type protein. The mutant Gs alpha protein appears incapable of undergoing the conformational change necessary for guanine nucleotide-induced dissociation of the G protein alpha subunit from the beta gamma subunit complex (Miller, R.T., Masters, S.B., Sullivan, K.A., Beiderman, B., and Bourne, H.R. (1988) Nature 334, 712-715). G226A Gs alpha was synthesized in Escherichia coli, purified, and characterized. Examination of the kinetics of dissociation of guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) suggests that G226A Gs alpha is incapable of assuming the conformation necessary for high affinity binding of Mg2+ to the alpha subunit-GTP gamma S complex. Associated changes include the failure of Mg2+ and GTP gamma S to confer resistance to tryptic proteolysis upon the protein, to enhance intrinsic tryptophan fluorescence, or to cause dissociation of alpha from beta gamma. However, the GTPase activity of the mutant protein is near normal (at high Mg2+ concentrations), and the protein is capable of activating adenylylcyclase. A similar defect is present in G49V Gs alpha. Failure of G protein subunit dissociation appears to be the explanation for the phenotypic properties of cells that express G226A Gs alpha, and this mutation thus highlights the crucial nature of this reaction as a component of G protein action.  相似文献   

19.
Transducin is a member of the family of GTP-binding regulatory proteins that interact with cell surface receptors and that include Gs, Gi, and Go. Kinetic and physical properties of purified bovine transducin were characterized by the following results: (1) Initial rate analysis demonstrates a dissociative-type mechanism for the guanine nucleotide exchange process of transducin in the absence of rhodopsin. A second-order rate constant of kf = (1.7-2.7) X 10(-7) M-1 s-1 was determined for this reaction. (2) Equilibrium binding measurements indicated a Kd of 0.05-0.10 microM for guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) binding to transducin. (3) Neither the rate nor the extent of GTP gamma S binding was affected in the presence of up to 50 mM Mg2+, as compared to values obtained in the presence of excess ethylenediaminetetraacetic acid. (4) Sucrose density gradient ultracentrifugation gave S20,w values for transducin, its alpha subunit, and its beta gamma subunit complex of 4.23 +/- 0.25, 3.42 +/- 0.37, and 4.04 +/- 0.2, respectively. (5) Incubation of transducin in the presence of up to 20 mM Mg2+ did not alter its sedimentation behavior; however, the presence of guanine nucleotides did produce a shift in transducin's migration in the sucrose gradient. (6) Gel filtration over Sephacryl S-300 indicated that transducin elutes at a Stokes radius of 37.5 A and that transducin's alpha subunit displays a Stokes radius of 24 A. (7) A molecular mass of 68 kDa for transducin is derived from the determined hydrodynamic parameters. These results are compared with properties known for other G proteins, and functional differences between transducin and Gs, Gi, and Go are proposed in relation to the proteins' primary sequences.  相似文献   

20.
M R Mazzoni  H E Hamm 《Biochemistry》1989,28(25):9873-9880
The guanyl nucleotide binding regulatory protein of retinal rod outer segments, called Gt, that couples the photon receptor rhodopsin with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, alpha t and beta gamma t. The effect of monoclonal antibody binding to the alpha t subunit of Gt on subunit association has been investigated in the present study. It was previously shown that this monoclonal antibody, mAb 4A, blocks interactions with rhodopsin and its epitope was located within the region Arg310-Phe350 at the COOH terminus of the alpha t subunit. In this paper, we show that mAb 4A disrupts the Gt complex. Gt migrates in 5-20% linear sucrose density gradients as a monomer, with a sedimentation coefficient of 4.1 +/- 0.07 S, while in the presence of mAb 4A, the alpha t and beta gamma t subunits show sedimentation coefficients of 7.7 +/- 0.2 and 3.7 +/- 0.1 S, respectively. The beta gamma t subunit migrates with the same sedimentation rate as pure beta gamma t. Nonimmune rabbit IgG does not modify the sedimentation behavior of Gt. The Fab fragment of mAb 4A also dissociates the Gt complex, as suggested by the change of the sedimentation rate of alpha t. This effect of mAb 4A on Gt subunit association was also confirmed by immunoprecipitation studies in the presence of detergent. In the presence of detergent, subunit association is not affected, but the formation of Gt oligomers and, therefore, the nonspecific precipitation of beta gamma t subunit are reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号